1
|
Qian J, Yang Z, Lyu J, Yao Q, Xie J. Molecular Interactions in Atomically Precise Metal Nanoclusters. PRECISION CHEMISTRY 2024; 2:495-517. [PMID: 39483272 PMCID: PMC11522999 DOI: 10.1021/prechem.4c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 11/03/2024]
Abstract
For nanochemistry, precise manipulation of nanoscale structures and the accompanying chemical properties at atomic precision is one of the greatest challenges today. The scientific community strives to develop and design customized nanomaterials, while molecular interactions often serve as key tools or probes for this atomically precise undertaking. In this Perspective, metal nanoclusters, especially gold nanoclusters, serve as a good platform for understanding such nanoscale interactions. These nanoclusters often have a core size of about 2 nm, a defined number of core metal atoms, and protecting ligands with known crystal structure. The atomically precise structure of metal nanoclusters allows us to discuss how the molecular interactions facilitate the systematic modification and functionalization of nanoclusters from their inner core, through the ligand shell, to the external assembly. Interestingly, the atomic packing structure of the nanocluster core can be affected by forces on the surface. After discussing the core structure, we examine various atomic-level strategies to enhance their photoluminescent quantum yield and improve nanoclusters' catalytic performance. Beyond the single cluster level, various attractive or repulsive molecular interactions have been employed to engineer the self-assembly behavior and thus packing morphology of metal nanoclusters. The methodological and fundamental insights systemized in this review should be useful for customizing the cluster structure and assembly patterns at the atomic level.
Collapse
Affiliation(s)
- Jing Qian
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Zhucheng Yang
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Jingkuan Lyu
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Qiaofeng Yao
- Key
Laboratory of Organic Integrated Circuits, Ministry of Education &
Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department
of Chemistry, School of Science, Tianjin
University, Tianjin 300072, P.R. China
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
| | - Jianping Xie
- Joint
School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P.R. China
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
2
|
Mu WL, Li L, Cong XZ, Chen X, Xia P, Liu Q, Wang L, Yan J, Liu C. Hierarchical Assembly of High-Nuclearity Copper(I) Alkynide Nanoclusters: Highly Effective CO 2 Electroreduction Catalyst toward Hydrocarbons. J Am Chem Soc 2024. [PMID: 39365080 DOI: 10.1021/jacs.4c07518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The pursuit of precision in the engineering of metal nanoparticle assemblies has long fascinated scientists, but achieving atomic-level accuracy continues to pose a significant challenge. This research sheds light on the hierarchical assembly processes of two high-nuclearity Cu(I) nanoclusters (NCs). By employing a multiligand cooperative stabilization strategy, we have isolated a series of thiacalix[4]arene (TC4A)/alkynyl coprotected Cu(I) NCs (Cux, where x = 9, 13, 17, 22). These NCs are intricately coassembled from the fundamental building units of {Cu4(TC4A)} and alkynyl-stabilized Cu5L6 in various ratios. By capturing active anion templates such as O2-, Cl-, or C22- that are generated in situ, we have further explored the secondary structural self-assembly of these clusters. Cu13 serves as a secondary assembly module for constructing Cu38 and Cu43, which exhibit the highest nuclearity reported to date among Cu(I) NCs encased in macrocyclic ligands. Notably, Cu38 demonstrates an impressive Faradaic efficiency of 62.01% for hydrocarbons at -1.57 V vs RHE during CO2 electroreduction, with 34.03% for C2H4 and 27.98% for CH4. This performance establishes it as an exceptionally rare, large, atomically precise metal NC (nuclearity >30) capable of catalyzing the formation of highly electro-reduced hydrocarbon products. Our research has introduced a new approach for constructing high-nuclearity Cu(I) NCs through a hierarchical assembly method and investigating their potential in the electrocatalytic transformation of CO2 into hydrocarbons.
Collapse
Affiliation(s)
- Wen-Lei Mu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Lanyan Li
- School of Resources and Environment, Hunan University of Technology and Business, Changsha, Hunan 410205, PR China
| | - Xu-Zi Cong
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Xinyu Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Pengkun Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Qingyi Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Likai Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255049, PR China
| | - Jun Yan
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| | - Chao Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
3
|
Sooraj BS, Roy J, Mukherjee M, Jose A, Pradeep T. Extensive Polymerization of Atomically Precise Alloy Metal Clusters During Solid-State Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15244-15251. [PMID: 38918935 DOI: 10.1021/acs.langmuir.4c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Exploring the reactions between atomically precise metal clusters and the consequences of such reactions has been an exciting field of research during the past decade. Initial studies in the area were on reactions between clusters in the solution phase, which proceed through the formation of dimers of reacting clusters. In the present work, we examine the interaction between two atomically precise clusters, [Au25(PET)18]- and [Ag25(DMBT)18]-, in the solid state, where PET and DMBT are 2-phenylethanethiol and 2,4-dimethylbenzenethiol, respectively. The experiments were performed using different ratios of these two clusters, and it was inferred that the kinetics of the reactions were faster compared with reactions in the solution. The metal exchange between these two clusters, due to their interactions in the solid state, leads to the formation of dimers, trimers, tetramers, and polymers of atomically precise alloy metal clusters. We observed polymer entities up to hexamers, which were observed for the first time. Control experiments revealed that metal exchange is a key factor leading to polymerization. Our work points to a new approach for synthesizing polymers of atomically precise alloy metal clusters.
Collapse
Affiliation(s)
- B S Sooraj
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India
| | - Jayoti Roy
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India
| | - Manish Mukherjee
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India
- Department of Chemistry, Indian Institute of Science Education and Research Kolkata, Kolkata 741246, India
| | - Anagha Jose
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- Department of Chemistry, DST Unit of Nanoscience (DST UNS) and Thematic Unit of Excellence (TUE), Indian Institute of Technology Madras, Chennai 600036, India
- International Centre for Clean Water, Chennai 600113, India
| |
Collapse
|
4
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
5
|
Wang J, Cai J, Ren KX, Liu L, Zheng SJ, Wang ZY, Zang SQ. Stepwise structural evolution toward robust carboranealkynyl-protected copper nanocluster catalysts for nitrate electroreduction. SCIENCE ADVANCES 2024; 10:eadn7556. [PMID: 38691609 PMCID: PMC11062576 DOI: 10.1126/sciadv.adn7556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Atomically precise metal nanoclusters (NCs) are emerging as idealized model catalysts for imprecise metal nanoparticles to unveil their structure-activity relationship. However, the directional synthesis of robust metal NCs with accessible catalytic active sites remains a great challenge. In this work, we achieved bulky carboranealkynyl-protected copper NCs, the monomer Cu13·3PF6 and nido-carboranealkynyl bridged dimer Cu26·4PF6, with fair stability as well as accessible open metal sites step by step through external ligand shell modification and metal-core evolution. Both Cu13·3PF6 and Cu26·4PF6 demonstrate remarkable catalytic activity and selectivity in electrocatalytic nitrate (NO3-) reduction to NH3 reaction, with the dimer Cu26·4PF6 displaying superior performance. The mechanism of this catalytic reaction was elucidated through theoretical computations in conjunction with in situ FTIR spectra. This study not only provides strategies for accessing desired copper NC catalysts but also establishes a platform to uncover the structure-activity relationship of copper NCs.
Collapse
Affiliation(s)
| | | | - Kai-Xin Ren
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Liu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Su-Jun Zheng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | | | | |
Collapse
|
6
|
Qiao Y, Zou J, Fei W, Fan W, You Q, Zhao Y, Li MB, Wu Z. Building Block Metal Nanocluster-Based Growth in 1D Direction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305556. [PMID: 37849043 DOI: 10.1002/smll.202305556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/03/2023] [Indexed: 10/19/2023]
Abstract
Metal nanoclusters with precisely modulated structures at the nanoscale give us the opportunity to synthesize and investigate 1D nanomaterials at the atomic level. Herein, it realizes selective 1D growth of building block nanocluster "Au13 Cd2 " into three structurally different nanoclusters: "hand-in-hand" (Au13 Cd2 )2 O, "head-to-head" Au25 , and "shoulder-to-shoulder" Au33 . Detailed studies further reveals the growth mechanism and the growth-related tunable properties. This work provides new hints for the predictable structural transformation of nanoclusters and atomically precise construction of 1D nanomaterials.
Collapse
Affiliation(s)
- Yao Qiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Jiafeng Zou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Wenwen Fei
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Yan Zhao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| | - Zhikun Wu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, 230031, China
| |
Collapse
|
7
|
Hu Y, Zhang Q, Zhou J, Guo S, Xu J, Zheng H, Yang Y. Supramolecularly Dimeric Assemble of Planar Cu 13 Clusters Controlled by the Length of Spacers of Diphosphine. Inorg Chem 2023; 62:21091-21100. [PMID: 38079613 DOI: 10.1021/acs.inorgchem.3c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
The controlled formation of dimeric clusters is challenging. Three copper(I) clusters, labeled as {Cu13[o-Ph(C≡C)2]6(L)4}(ClO4), were synthesized by using three different ligands, including 1,4-bis(diphenylphosphino)butane (dppb), 1,5-bis(diphenylphosphino)pentane (dpppe), and bis(diphenylphosphino)hexane (dpph). By increasing the flexibility of alkyl spacers in the diphosphine ligands, the relative positions of the phenyl rings could be optimized to achieve efficient packing with maximized intercluster interactions. In the crystal structures, cluster 1 with dppb ligands did not display interlocked structures. In contrast, cluster 2 with dpppe ligands formed supramolecularly interlocked polymers through weak π-π interactions and C-H···π interactions, while cluster 3 employing dpph ligands formed supramolecularly interlocked dimers with strong π-π interactions and C-H···π interactions. The supramolecular dimer of 3 was also evidenced by analyses through electrospray ionization mass spectrometry and transmission electron microscopy. Density functional theory calculation was used to understand the electronic structure and transitions. Supramolecularly interlocked polymers/dimers with rigid structures exhibited higher quantum efficiency. The solution of these clusters demonstrated remarkable aggregation-induced emission enhancements. This study presents unique examples of planar luminescent copper clusters, featuring the first serial dialkynyl-protected cluster. It underlines the importance of ligand flexibility in creating supramolecular cluster dimers.
Collapse
Affiliation(s)
- Yun Hu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Qian Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jie Zhou
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Shan Guo
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jia Xu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Hao Zheng
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yang Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
8
|
Dong C, Huang RW, Sagadevan A, Yuan P, Gutiérrez-Arzaluz L, Ghosh A, Nematulloev S, Alamer B, Mohammed OF, Hussain I, Rueping M, Bakr OM. Isostructural Nanocluster Manipulation Reveals Pivotal Role of One Surface Atom in Click Chemistry. Angew Chem Int Ed Engl 2023; 62:e202307140. [PMID: 37471684 DOI: 10.1002/anie.202307140] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Elucidating single-atom effects on the fundamental properties of nanoparticles is challenging because single-atom modifications are typically accompanied by appreciable changes to the overall particle's structure. Herein, we report the synthesis of a [Cu58 H20 PET36 (PPh3 )4 ]2+ (Cu58 ; PET: phenylethanethiolate; PPh3 : triphenylphosphine) nanocluster-an atomically precise nanoparticle-that can be transformed into the surface-defective analog [Cu57 H20 PET36 (PPh3 )4 ]+ (Cu57 ). Both nanoclusters are virtually identical, with five concentric metal shells, save for one missing surface copper atom in Cu57 . Remarkably, the loss of this single surface atom drastically alters the reactivity of the nanocluster. In contrast to Cu58 , Cu57 shows promising activity for click chemistry, particularly photoinduced [3+2] azide-alkyne cycloaddition (AAC), which is attributed to the active catalytic site in Cu57 after the removal of one surface copper atom. Our study not only presents a unique system for uncovering the effect of a single-surface atom modification on nanoparticle properties but also showcases single-atom surface modification as a powerful means for designing nanoparticle catalysts.
Collapse
Affiliation(s)
- Chunwei Dong
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Ren-Wu Huang
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Peng Yuan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Luis Gutiérrez-Arzaluz
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Atanu Ghosh
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Saidkhodzha Nematulloev
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Badriah Alamer
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC), KAUST Catalysis Center (KCC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Irshad Hussain
- Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science & Engineering, Lahore University of Management Sciences (LUMS), DHA, 54792, Lahore, Pakistan
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900, Thuwal, Saudi Arabia
| |
Collapse
|
9
|
Hu J, Zhou M, Li K, Yao A, Wang Y, Zhu Q, Zhou Y, Huang L, Pei Y, Du Y, Jin S, Zhu M. Evolution of Electrocatalytic CO 2 Reduction Activity Induced by Charge Segregation in Atomically Precise AuAg Nanoclusters Based on Icosahedral M 13 Unit 3D Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301357. [PMID: 37127865 DOI: 10.1002/smll.202301357] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/05/2023] [Indexed: 05/03/2023]
Abstract
The precise self-assembly of building blocks at atomic level provides the opportunity to achieve clusters with advanced catalytic properties. However, most of the current self-assembled materials are fabricated by 1/2D assembly of blocks. High dimensional (that is, 3D) assembly is widely believed to improve the performance of cluster. Herein, the effect of 3D assembly on the activity for electrocatalytic CO2 reduction reaction (CO2 RR) is investigated by using a range of clusters (Au8 Ag55 , Au8 Ag57 , Au12 Ag60 ) based on 3D assembly of M13 unit as models. Although three clusters have almost the same sizes and geometric structures, Au8 Ag55 exhibits the best CO2 RR performance due to the strong CO2 adsorption capacity and effective inhibition of H2 evolution competition reaction. The deep insight into the superior activity of Au8 Ag55 is the unique electronic structure attributed to the charge segregation. This study not only demonstrates that the assembly mode greatly affects the catalytic activity, but also offers an idea for rational designing and precisely constructing catalysts with controllable activities.
Collapse
Affiliation(s)
- Jiashen Hu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Manman Zhou
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Kang Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Aimin Yao
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yan Wang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Qingtao Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yanting Zhou
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Liu Huang
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan, 411105, China
| | - Yuanxin Du
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Shan Jin
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| | - Manzhou Zhu
- Department of Materials Science and Engineering, Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, China
| |
Collapse
|
10
|
Zou X, Kang X, Zhu M. Recent developments in the investigation of driving forces for transforming coinage metal nanoclusters. Chem Soc Rev 2023; 52:5892-5967. [PMID: 37577838 DOI: 10.1039/d2cs00876a] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Metal nanoclusters serve as an emerging class of modular nanomaterials. The transformation of metal nanoclusters has been fully reflected in their studies from every aspect, including the structural evolution analysis, physicochemical property regulation, and practical application promotion. In this review, we highlight the driving forces for transforming atomically precise metal nanoclusters and summarize the related transforming principles and fundamentals. Several driving forces for transforming nanoclusters are meticulously reviewed herein: ligand-exchange-induced transformations, metal-exchange-induced transformations, intercluster reactions, photochemical transformations, oxidation/reduction-induced transformations, and other factors (intrinsic instability, pH, temperature, and metal salts) triggering transformations. The exploitation of transforming principles to customize the preparations, structures, physicochemical properties, and practical applications of metal nanoclusters is also disclosed. At the end of this review, we provide our perspectives and highlight the challenges remaining for future research on the transformation of metal nanoclusters. Our intended audience is the broader scientific community interested in metal nanoclusters, and we believe that this review will provide researchers with a comprehensive synthetic toolbox and insights on the research fundamentals needed to realize more cluster-based nanomaterials with customized compositions, structures, and properties.
Collapse
Affiliation(s)
- Xuejuan Zou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
11
|
Li Q, Tan Y, Huang B, Yang S, Chai J, Wang X, Pei Y, Zhu M. Mechanistic Study of the Hydride Migration-Induced Reversible Isomerization in Au 22(SR) 15H Isomers. J Am Chem Soc 2023. [PMID: 37438248 DOI: 10.1021/jacs.3c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Unraveling the evolution mechanism of metal nanoclusters is of great importance in understanding the formation and evolution of metallic condensed matters. In this work, the specific evolution process between a pair of gold nanocluster (Au NC) isomers is completely revealed by introducing hydride ligands to simplify the research system. A hydride-containing Au NC, Au22(SR)15H, was synthesized by kinetic control, and the positions of the hydrides were then confirmed by combining X-ray diffraction, neutron diffraction, and DFT calculations. Importantly, a reversible structural isomerization was found to occur on this Au22(SR)15H. By combining the crystal structures and theoretical calculations, the focus was placed on the hydride-binding site, and a [Au-H] migration mechanism of this isomerization process is clearly shown. Furthermore, this [Au-H] migration mechanism is confirmed by the subsequent capture and structural determination of theoretically predicted intermediates. This work provides insight into the dynamic behavior of hydride ligands in nanoclusters and a strategy to study the evolution mechanism of nanoclusters by taking the hydride ligand as the breakthrough point.
Collapse
Affiliation(s)
- Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yesen Tan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Baoyu Huang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
12
|
Lin Z, Lv Y, Jin S, Yu H, Zhu M. Size Growth of Au 4Cu 4: From Increased Nucleation to Surface Capping. ACS NANO 2023; 17:8613-8621. [PMID: 37115779 DOI: 10.1021/acsnano.3c01238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The size conversion of atomically precise metal nanoclusters is fundamental for elucidating structure-property correlations. In this study, copper salt (CuCl)-induced size growth from [Au4Cu4(Dppm)2(SAdm)5]+ (abbreviated as [Au4Cu4S5]+) to [Au4Cu6(Dppm)2(SAdm)4Cl3]+ (abbreviated as [Au4Cu6S4Cl3]+) (SAdmH = 1-adamantane mercaptan, Dppm = bis-(diphenylphosphino)methane) was investigated via experiments and density functional theory calculations. The [Au4Cu4S5]+ adopts a defective pentagonal bipyramid core structure with surface cavities, which could be easily filled with the sterically less hindered CuCl and CuSCy (i.e., core growth) (HSCy = cyclohexanethiol) but not the bulky CuSAdm. As long as the Au4Cu5 framework is formed, ligand exchange or size growth occurs easily. However, owing to the compact pentagonal bipyramid core structure, the latter growth mode occurs only for the surface-capped [Au4Cu6(Dppm)2(SAdm)4Cl3]+ structure (i.e., surface-capped size growth). A preliminary mechanistic study with density functional theory (DFT) calculations indicated that the overall conversion occurred via CuCl addition, core tautomerization, Cl migration, the second [CuCl] addition, and [CuCl]-[CuSR] exchange steps. And the [Au4Cu6(Dppm)2(SAdm)4Cl3]+ alloy nanocluster exhibits aggregation-induced emission (AIE) with an absolute luminescence quantum yield of 18.01% in the solid state. This work sheds light on the structural transformation of Au-Cu alloy nanoclusters induced by Cu(I) and contributes to the knowledge base of metal-ion-induced size conversion of metal nanoclusters.
Collapse
Affiliation(s)
- Zidong Lin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Ying Lv
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Shan Jin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Haizhu Yu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
13
|
Ishii W, Okayasu Y, Kobayashi Y, Tanaka R, Katao S, Nishikawa Y, Kawai T, Nakashima T. Excited State Engineering in Ag 29 Nanocluster through Peripheral Modification with Silver(I) Complexes for Bright Near-Infrared Photoluminescence. J Am Chem Soc 2023; 145:11236-11244. [PMID: 37126432 DOI: 10.1021/jacs.3c01259] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The optical property of an ionic metal nanocluster (NC) is affected by the ionic interaction with counter ions. Here, we report that the modification of trianionic [Ag29(BDT)12(TPP)4]3- NC (BDT: 1.3-benzenedithiol; TPP: triphenylphosphine) with silver(I) complexes led to the intense photoluminescence (PL) in the near-infrared (NIR) region. The binding of silver(I) complexes to the peripheral region of Ag29 NC is confirmed by the single-crystal X-ray diffraction (SCXRD) measurement, which is further supported by electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) spectroscopy. The change of excited-state dynamics by the binding of silver(I) complexes is discussed based on the results of a transient absorption study as well as temperature-dependent PL spectra and PL lifetime measurements. The modification of Ag29 NCs with cationic silver(I) complexes is considered to give rise to a triplet excited state responsible for the intense NIR PL. These findings also afford important insights into the origin of the PL mechanism as well as the possible light-driven motion in Ag29-based NCs.
Collapse
Affiliation(s)
- Wataru Ishii
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Yoshinori Okayasu
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yoichi Kobayashi
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Rika Tanaka
- X-ray Crystal Analysis Laboratory, Graduate School of Engineering, Osaka Metropolitan University, Osaka 558-8585, Japan
| | - Shohei Katao
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yoshiko Nishikawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Tsuyoshi Kawai
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Takuya Nakashima
- Department of Chemistry, Graduate School of Science, Osaka Metropolitan University, Osaka 558-8585, Japan
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| |
Collapse
|
14
|
Wang X, Zhu X, Shi X, Zhou Y, Chai Y, Yuan R. Electrostatic Interaction-Induced Aggregation-Induced Emission-Type AgAu Bimetallic Nanoclusters as a Highly Efficient Electrochemiluminescence Emitter for Ultrasensitive Detection of Glial Fibrillary Acidic Protein. Anal Chem 2023; 95:3452-3459. [PMID: 36719845 DOI: 10.1021/acs.analchem.2c05209] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Herein, the aggregation-induced emission (AIE)-type carboxymethyl chitosan (CMCS)@6-aza-2-thiothymine (ATT) templated AgAu bimetallic nanoclusters (CMCS@ATT-AgAu BMNCs) with superior electrochemiluminescence (ECL) emission were first synthesized to construct a biosensor for the ultrasensitive detection of glial fibrillary acidic protein (GFAP). Impressively, unlike the traditional AIE-type bimetallic nanoclusters (BMNCs) obtained by complicated multi-step synthesis, the AIE-type CMCS@ATT-AgAu BMNCs were prepared by the electrostatic interaction between the negatively charged ATT and positively charged CMCS, in which the molecule ATT was served as a capping and reducing agent of bimetal ions. In addition, a rapidly moving cholesterol labeled DNA walker was constructed to move freely on the lipid bilayer to increase its moving efficiency, and the well-regulated DNA was intelligently designed to further improve its walking efficiency for rapid and ultrasensitive detection of GFAP with a limit of detection (LOD) as low as 73 ag/mL. This strategy proposed an avenue to synthesize highly efficient BMNCs-based ECL emitters, which have great potential in ultrasensitive biosensing for early diagnosis of diseases.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R China
| | - Xiaochun Zhu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R China
| | - Xiaoyu Shi
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R China
| | - Ying Zhou
- College of Food Science, Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Southwest University, Chongqing400715, P. R. China
| | - Yaqin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R China
| |
Collapse
|
15
|
Zhou M, Li K, Wang P, Zhou H, Jin S, Pei Y, Zhu M. Overall structure of Au 12Ag 60(S- c-C 6H 11) 31Br 9(Dppp) 6: achieving a stronger assembly of icosahedral M 13 units. NANOSCALE 2023; 15:2633-2641. [PMID: 36692214 DOI: 10.1039/d2nr06613k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Precise atomically assembled nanoclusters provide a great platform to elucidate the evolution of the assembly of building blocks. Herein, a large icosahedral (M13)-based silver-gold alloy nanocluster [Au12Ag60(S-c-C6H11)31Br9(Dppp)6]Br2 (dppp = 1,3-bis(diphenylphosphino)propane) is reported. Structurally, Au12Ag60 consists of an Au12Ag40 kernel, which is viewed as the interpenetration of ten twisted complete icosahedrons (M13) and two missing icosahedrons (M12), and this is surrounded by a complex metal-organic shell. Benefiting from the extra doping of eight to twelve Au atoms, the octameric assembly was increased to a twelve-mer assembly. The time-dependent density functional theory (TDDFT) method with a Tamm-Dancoff approximation (TDA) was performed to investigate the difference in the optical properties of Au12Ag60 and Au8Ag57. The results indicate that the difference in the amount of Au atoms results in different optical properties. Furthermore, transient absorption spectroscopy (TA) was also performed, revealing that a twelve-mer assembly greatly enhances the excited-state lifetime. The [Au12Ag60(S-c-C6H11)31Br9(Dppp)6]Br2 alloy nanocluster has provided a breakthrough in the number of icosahedral M13 assemblies, i.e., achieving a twelve-mer assembly, helping to elucidate the fusion growth of M13-based assembled nanoclusters as well as their geometric/electronic structure correlations, which will promote further research on the assembly of M13 nano-building blocks, especially on their optical properties.
Collapse
Affiliation(s)
- Manman Zhou
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Kang Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Pu Wang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Huimin Zhou
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Shan Jin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China.
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
16
|
Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics. Nat Chem 2023; 15:230-239. [PMID: 36357788 DOI: 10.1038/s41557-022-01079-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 09/27/2022] [Indexed: 11/12/2022]
Abstract
The controllable packing of functional nanoparticles (NPs) into crystalline lattices is of interest in the development of NP-based materials. Here we demonstrate that the size, morphology and symmetry of such supercrystals can be tailored by adjusting the surface dynamics of their constituent NPs. In the presence of excess tetraethylammonium cations, atomically precise [Au25(SR)18]- NPs (where SR is a thiolate ligand) can be crystallized into micrometre-sized hexagonal rod-like supercrystals, rather than as face-centred-cubic superlattices otherwise. Experimental characterization supported by theoretical modelling shows that the rod-like crystals consist of polymeric chains in which Au25 NPs are held together by a linear SR-[Au(I)-SR]4 interparticle linker. This linker is formed by conjugation of two dynamically detached SR-[Au(I)-SR]2 protecting motifs from adjacent Au25 particles, and is stabilized by a combination of CH⋯π and ion-pairing interactions between tetraethylammonium cations and SR ligands. The symmetry, morphology and size of the resulting supercrystals can be systematically tuned by changing the concentration and type of the tetraalkylammonium cations.
Collapse
|
17
|
Tang L, Wang B, Wang R, Wang S. Alloying and dealloying of Au 18Cu 32 nanoclusters at precise locations via controlling the electronegativity of substituent groups on thiol ligands. NANOSCALE 2023; 15:1602-1608. [PMID: 36601973 DOI: 10.1039/d2nr05401a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The doping site of metals in an alloy nanocluster plays a key role in determining the cluster properties. Herein, we found that alloying engineering was achieved by replacing Cu at specific positions in the second layer Cu20 shell of the [Au18Cu32(SR-O)36]2- or [Au18Cu32(SR-F)36]3- (SR-O = -S-PhOMe; SR-F = -SC6H33,4F2) nanocluster with Au to generate a core-shell [Au20.31Cu29.69(SR-O)36]2- protected by mercaptan ligands with electron-donating substituents, which could be stable obtained compared with the alloyed nanocluster with electron-withdrawing substituent ligands. Moreover, dealloying engineering was accomplished by an electron-withdrawing substituent ligand exchange strategy (i.e., [Au18Cu32(SR-F)36]2-). The abovementioned reaction was analyzed using single-crystal X-ray crystallography, electrospray ionization mass spectrometry, and X-ray photoelectron spectroscopy and monitored via time-dependent ultraviolet-visible absorption spectroscopy. This reversible and precise location of alloying and dealloying provides the possibility for studying the relationship between the structure and properties of nanoclusters at the atomic level.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Bin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Ru Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
18
|
Wang S, Tan Y, Li T, Zhou Q, Li P, Yang S, Yu H, Zhu M. Insight into the Role of Copper in the Transformation of a [Ag 25(2,5-DMBT) 16(DPPF) 3] + Nanocluster: Doping or Oxidation. Inorg Chem 2022; 61:18450-18457. [DOI: 10.1021/acs.inorgchem.2c02655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Silan Wang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Yesen Tan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Tianrong Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Qi Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Peng Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
19
|
Luo XM, Huang S, Luo P, Ma K, Wang ZY, Dong XY, Zang SQ. Snapshots of key intermediates unveiling the growth from silver ions to Ag 70 nanoclusters. Chem Sci 2022; 13:11110-11118. [PMID: 36320462 PMCID: PMC9516886 DOI: 10.1039/d2sc04204e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/26/2022] [Indexed: 11/26/2022] Open
Abstract
Nanoclusters (NCs) are considered as initial states of condensed matter, and unveiling their formation mechanism is of great importance for directional synthesis of nanomaterials. Here, we initiate the reaction of Ag(i) ions under weak reducing conditions. The prolonged reaction period provides a unique opportunity for revealing the five stages of the growth mechanism of 20-electron superatomic Ag70 NCs by a time-dependent mass technique, that is, aggregate (I) → reduction (II) → decomposition and recombination (III) → fusion (IV) → surface recombination and motif enrichment (V), which is different from the formation process applicable to the gold clusters. More importantly, the key intermediates, Ag14 without free electrons (0e) in the first (stage I) and Ag24 (4e) in the second (stage II), were crystallized and structurally resolved, and the later transformation rate towards Ag70 was further controlled by modulating solvents for easy identification of more intermediates. In a word, we establish a reasonable path of gradual expansion in size and electrons from Ag(i) ions to medium-sized 20e Ag70. This work provides new insights into the formation and evolution of silver NCs, and unveils the corresponding optical properties along with the process.
Collapse
Affiliation(s)
- Xi-Ming Luo
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Shuo Huang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Peng Luo
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Jiaozuo 454003 People's Republic of China
| | - Kai Ma
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Xi-Yan Dong
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 People's Republic of China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University Jiaozuo 454003 People's Republic of China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, College of Chemistry, Zhengzhou University Zhengzhou 450001 People's Republic of China
| |
Collapse
|
20
|
Chen Z, Zhao J, Jin C, Liu J. Butterfly Effect of Electron Donor from Monoatomic Cobalt in Few-Atom Platinum Clusters: Boosting Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37727-37737. [PMID: 35943902 DOI: 10.1021/acsami.2c08959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Few-atom metal clusters feature an extremely large surface area and abundant active sites, which are particularly important for electrocatalysis. Herein, we report a monoatomic cobalt tailoring strategy to boost the performance of platinum clusters (ca. <1 nm) via hetero-charge-trapping chemistry by ultraviolet light reducing Pt-based anions anchored on target Co cations. The created Co1Ptx clusters exhibit a mass activity of 2.27 A mgPt-1, which is about 1621% higher than that obtained by state-of-the-art Pt/C (2 nm) for the oxygen reduction reaction (ORR). This can be attributed to the butterfly effect of electron donor from monoatomic cobalt in the platinum clusters. Moreover, the improved stability results from the Co located at the bottom position of the Pt host, possessing high resistance to Co leaching. Therefore, this offers a general strategy to optimize the high performance of platinum group metal (PGM) clusters for electrocatalysis.
Collapse
Affiliation(s)
- Zhiguo Chen
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Zhao
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chun Jin
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingjun Liu
- Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
21
|
Cai X, Li G, Hu W, Zhu Y. Catalytic Conversion of CO 2 over Atomically Precise Gold-Based Cluster Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Guangjun Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Weigang Hu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
22
|
Xu J, Xiong L, Cai X, Tang S, Tang A, Liu X, Pei Y, Zhu Y. Evolution from superatomic Au 24Ag 20 monomers into molecular-like Au 43Ag 38 dimeric nanoclusters. Chem Sci 2022; 13:2778-2782. [PMID: 35356678 PMCID: PMC8890245 DOI: 10.1039/d1sc07178e] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/06/2022] [Indexed: 11/22/2022] Open
Abstract
Hierarchical assembly of nanoparticles has been attracting wide interest, as advanced functionalities can be achieved. However, the ability to manipulate structural evolution of artificial nanoparticles into assemblies with atomic precision has been largely unsuccessful. Here we report the evolution from monomeric Au24Au20 into dimeric Au43Ag38 nanoclusters: Au43Ag38 inherits the kernel frameworks from parent Au24Ag20 but exhibits distinct surface motifs; Au24Ag20 is racemic, while Au43Ag38 is mesomeric. Importantly, the evolution from monomers to dimers opens up exciting opportunities exploring currently unknown properties of monomeric and dimeric alloy nanoclusters. The Au24Ag20 clusters show superatomic electronic configurations, while Au43Ag38 clusters have molecular-like characteristics. Furthermore, monomeric Au24Ag20 catalysts readily outperform dimeric Au43Ag38 catalysts in the catalytic reduction of CO2. The work shows the evolution from monomeric Au24Au20 into dimeric Au43Ag38 nanoclusters and provides exciting opportunities for atomic manufacturing on metal nanoclusters to construct structures and functionality.![]()
Collapse
Affiliation(s)
- Jiayu Xu
- School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Lin Xiong
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University Xiangtan 411105 China
| | - Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Shisi Tang
- School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Ancheng Tang
- School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Xu Liu
- School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University Xiangtan 411105 China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 China
| |
Collapse
|
23
|
Zhang Y, Tang A, Cai X, Xu J, Liu X, Zhu Y. Manipulating the organic-inorganic interface of atomically precise Au 36(SR) 24 catalysts for CO oxidation. Chem Commun (Camb) 2022; 58:3003-3006. [PMID: 35147620 DOI: 10.1039/d1cc07268d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we report a series of atomically precise Au36 nanoclusters protected by thiol ligands to explore the influence of organic-inorganic interfaces, that is, the local environment around heterogeneous catalysts, on catalytic oxidation of CO. Our studies give molecular-level insights into the relationship between the catalytic reactivity and the metal-ligand surface bonding, which tunes access to the active sites, thereby precisely tailoring the activity of the Au36 catalysts for CO oxidation.
Collapse
Affiliation(s)
- Yuying Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Ancheng Tang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Jiayu Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Xu Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
24
|
Lin X, Zhang J, Tang J, Yang Y, Liu C, Huang J. Atomically precise structures of Pt 2(S-Adam) 4(PPh 3) 2 complexes and catalytic application in propane dehydrogenation. NANOSCALE 2022; 14:2482-2489. [PMID: 35103280 DOI: 10.1039/d1nr07286b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a bridge between single metal atoms and metal nanoclusters, atomically precise metal complexes are of great significance for controlled synthesis and catalytic applications at the atomic level. Herein, novel Pt2(S-Adam)4(PPh3)2 complexes were prepared via the conventional synthetic methods of metal nanoclusters. The atomically precise crystal structures of the binuclear Pt complexes with three kinds of packing modes in a unit cell were determined by X-ray crystallography. The two Pt atoms are bridged by two S atoms of thiolates, constructing a rhombus on a plane. Moreover, the ultraviolet visible absorption spectra of Pt2(S-Adam)4(PPh3)2 complexes show an apparent absorption peak centered at 454 nm. Furthermore, the Pt complexes were used as precursors to prepare catalysts for non-oxidative propane dehydrogenation. The as-prepared Pt-based catalysts with a particle size of approximately 1 nm demonstrated a propane conversion of about 18% and significantly enhanced selectivity for propylene, up to 93%. Our work will be beneficial to the basic understanding of platinum complexes, as well as the improvement of the catalytic dehydrogenation of propane.
Collapse
Affiliation(s)
- Xinzhang Lin
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junying Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jie Tang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Jiahui Huang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
25
|
Peng SK, Yang H, Luo D, Xie M, Tang WJ, Ning GH, Li D. Enhancing photoluminescence efficiency of atomically precise copper(I) nanoclusters through solvent-induced structural transformation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01427k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomically precise copper(I) nanoclusters (CuNCs) with high photoluminescence (PL) efficiency and relatively short lifetime could be promising non-precious metal-based phosphorescent emitters for organic light-emitting diodes (OLEDs), but the synthesis of...
Collapse
|
26
|
Wei P, Zheng J, Li Q, Qin Y, Guan H, Tan D, Song L. The modulation mechanism of geometric and electronic structures of bimetallic catalysts: Pd 13−mAg m ( m=0–13) clusters for acetylene semi-hydrogenation. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01222g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The modulation mechanism of the second metal in bimetallic catalysts is examined by taking acetylene semi-hydrogenation over Pd13−mAgm clusters, in which a metastable Pd6Ag7 structure exhibits excellent activity/selectivity to ethylene.
Collapse
Affiliation(s)
- Panpeng Wei
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Jian Zheng
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
| | - Qiang Li
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| | - Huimin Guan
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| | - Duping Tan
- Lanzhou Petrochemical Research Center, Petrochemical Research Institute, Petrochina, Lanzhou 730060, China
| | - Lijuan Song
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao, Shandong 266580, China
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Petrochemical University, Fushun, Liaoning 113001, China
| |
Collapse
|
27
|
Banach E, Bürgi T. Metal Nanoclusters as Versatile Building Blocks for Hierarchical Structures. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ewa Banach
- Department of Physical Chemistry University of Geneva 30 Quai Ernest Ansermet CH-1211 Geneva 4 Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry University of Geneva 30 Quai Ernest Ansermet CH-1211 Geneva 4 Switzerland
| |
Collapse
|
28
|
Chen T, Yang S, Li Q, Song Y, Li G, Chai J, Zhu M. A double helical 4H assembly pattern with secondary hierarchical complexity in an Ag 70 nanocluster crystal. NANOSCALE HORIZONS 2021; 6:913-917. [PMID: 34486633 DOI: 10.1039/d1nh00332a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hierarchical assemblies of well-defined structural nanoclusters can help to better understand those of biologically important molecules such as DNA and proteins. Herein, we disclose the synthesis and characterization of a new silver nanocluster, that is Ag70(SR)42(PPh3)5 (Ag70-TPP). Directed by the ligands, Ag70-TPP nanoclusters undergo self-hierarchical assembly into a highly space-efficient complex secondary structure of a double helical 4H (DH4H) close packing pattern. The chirality of Ag70-TPP, and the van der Waals forces interactions between the ligands are believed to drive its DH4H arrangement, and the observed interlocking of the phosphine ligands of adjacent Ag70-TPP nanoclusters also contributed. Overall, this work has yielded important and unprecedented insights into the internal structure and crystallographic arrangement of nanoclusters.
Collapse
Affiliation(s)
- Tao Chen
- School of Physics and Materials Science, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Sha Yang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China.
| | - Qinzhen Li
- School of Physics and Materials Science, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Yongbo Song
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| | - Guang Li
- School of Physics and Materials Science, Institute of Physical Science and Information Technology, Anhui Key Laboratory of Information Materials and Devices, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China.
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, China.
| |
Collapse
|
29
|
Cai X, Sun Y, Xu J, Zhu Y. Contributions of Internal Atoms of Atomically Precise Metal Nanoclusters to Catalytic Performances. Chemistry 2021; 27:11539-11547. [PMID: 34096132 DOI: 10.1002/chem.202101310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 12/28/2022]
Abstract
Every atom of a heterogeneous catalyst can play a direct or indirect role in its overall catalytic properties. However, it is extremely challenging to determine explicitly which atom(s) of a catalyst can contribute most to its catalytic performance because the observed performance usually reflects an average of all the atoms in the catalyst. The emergence of atomically precise metal nanoclusters brings unprecedented opportunities to address these central issues, as the crystal structures of such nanoclusters have been solved, and hence very fundamental understanding of nanocatalysis can be attained at an atomic level. This minireview focuses on recent efforts to reveal the contributions of the internal atoms or vacancies of nanocluster catalysts to the catalytic processes, including how the catalytic activity can be dramatically changed by the central doping of a foreign atom, how catalytic activation and inactivation can be reversibly switched by shuttling the central atom into and out of nanoclusters, and how evolution in catalytic activity can be driven by structural periodicity in the inner kernels of the nanoclusters. We anticipate that progress in this research area could represent a novel conceptual framework for understanding the crucial roles of internal atoms of the catalysts in tuning the catalytic properties.
Collapse
Affiliation(s)
- Xiao Cai
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yongnan Sun
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Jiayu Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yan Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
30
|
Neumaier M, Baksi A, Weis P, Schneider EK, Chakraborty P, Hahn H, Pradeep T, Kappes MM. Kinetics of Intercluster Reactions between Atomically Precise Noble Metal Clusters [Ag 25(DMBT) 18] - and [Au 25(PET) 18] - in Room Temperature Solutions. J Am Chem Soc 2021; 143:6969-6980. [PMID: 33913724 DOI: 10.1021/jacs.1c01140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The kinetics of intercluster metal atom exchange reactions between solvated [Ag25(DMBT)18]- and [Au25(PET)18]- (DMBT and PET are 2,4-dimethylbenzenethiol and 2-phenylethanethiol, respectively, both C8H10S) were probed by electrospray ionization mass spectrometry and computer-based modeling. Anion mass spectra and collision induced dissociation (CID) measurements show that both cluster monomers and dimers are involved in the reactions. We have modeled the corresponding kinetics assuming a reaction mechanism in which metal atom exchange occurs through transient dimers. Our kinetic model contains three types of generic reactions: dimerization of monomers, metal atom exchange in the transient dimers, and dissociation of the dimers to monomers. There are correspondingly 377 discrete species connected by in total 1302 reactions (i.e., dimerization, dissociation and atom exchange reactions) leading to the entire series of monomeric and dimeric products [AgmAu25-m]- (m = 1-24) and [AgmAu50-m]2- (m = 0-50), respectively. The rate constants of the corresponding reactions were fitted to the experimental data, and good agreement was obtained with exchange rate constants which scale with the probability of finding a silver or gold atom in the respective monomeric subunit of the dimer, i.e., reflecting an entropic driving force for alloying. Allowing the dimerization rate constant to scale with increasing gold composition of the respective reactants improves the agreement further. The rate constants obtained are physically plausible, thus strongly supporting dimer-mediated metal atom exchange in this intercluster reaction system.
Collapse
Affiliation(s)
- Marco Neumaier
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ananya Baksi
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Patrick Weis
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Erik K Schneider
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Papri Chakraborty
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Horst Hahn
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Indian Institute of Technology Madras, 600 036 Chennai, India
| | - Manfred M Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany.,Institute of Physical Chemistry, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| |
Collapse
|
31
|
Tang L, Kang X, Wang X, Zhang X, Yuan X, Wang S. Dynamic Metal Exchange between a Metalloid Silver Cluster and Silver(I) Thiolate. Inorg Chem 2021; 60:3037-3045. [PMID: 33576224 DOI: 10.1021/acs.inorgchem.0c03269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although a homometallic (isotopic metal) exchange reaction has been reported, the in-depth understanding of the interaction between a metalloid cluster and the homometal (representing the same metal element as the metalloid cluster) thiolate is quite limited, especially at the atomic level. Herein, based on Ag44(SR)30 (where SR represents 4-mercaptobenzoic acid), we report a facile approach for investigating the metalloid cluster-homometal thiolate interaction at the atomic level, i.e., isotopic exchange in the Ag metalloid cluster. Since such a reaction takes no account of the enthalpy change-related heterometal (representing a different metal element) exchange, the intrinsic metalloid cluster-homometal thiolate interaction can be thoroughly investigated. Through analyzing the ESI-MS (electrospray ionization mass spectrometry) and MS/MS (mass/mass spectrometry) results of the reversible conversion between 107Ag44(SR)30 and 109Ag44(SR)30, we observed that all Ag atoms are exchangeable in the Ag44(SR)30 template. In addition, through analyzing the ESI-MS results of the interconversion between 107Ag29(BDT)12(TPP)4 and 109Ag29(BDT)12(TPP)4, we demonstrated that the metal exchange in the Ag29(BDT)12(TPP)4 metalloid cluster should be a shell → kernel metal transfer process. Our results provide new insights into the metalloid cluster reactivity in the homometal thiolate environment, which will guide the future preparation of metalloid clusters with customized structures and properties.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.,Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiangyu Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xianhui Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xun Yuan
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
32
|
Walsh AG, Zhang P. Thiolate-Protected Bimetallic Nanoclusters: Understanding the Relationship between Electronic and Catalytic Properties. J Phys Chem Lett 2021; 12:257-275. [PMID: 33332974 DOI: 10.1021/acs.jpclett.0c03252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Thiolate-protected metal nanoclusters, which are smaller than 2 nm and have a specific number of metal atoms, have been greatly investigated in areas such as catalysis, sensing, and energy conversion because of their unique chemical, optical, structural, and electronic properties. Doping monometallic nanoclusters with another metal offers the opportunity to enhance these properties even further. The atomic structure of thiolate-protected bimetallic nanoclusters has been thoroughly studied using various X-ray methods, but the electronic structures of these complexes are often under-discussed. This Perspective summarizes works examining the electronic properties (charge states and energy levels) of these materials using density functional theory, square-wave voltammetry, UV-vis spectroscopy, and X-ray photoelectron spectroscopy. This information is then related to the catalytic activities of these complexes in various representative reactions (e.g., carbon-carbon coupling, hydrogenation, and oxidation). The significance of the structure-property relationship between the electronic properties and the catalytic performance of thiolate-protected bimetallic nanoclusters is demonstrated.
Collapse
Affiliation(s)
- Andrew G Walsh
- Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4R2
| | - Peng Zhang
- Department of Chemistry, Dalhousie University, Halifax, NS, Canada B3H 4R2
| |
Collapse
|
33
|
Bonacchi S, Antonello S, Dainese T, Maran F. Atomically Precise Metal Nanoclusters: Novel Building Blocks for Hierarchical Structures. Chemistry 2021; 27:30-38. [PMID: 32794586 DOI: 10.1002/chem.202003155] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/03/2020] [Indexed: 11/08/2022]
Abstract
Atomically precise ligand-protected nanoclusters (NCs) constitute an important class of compounds that exhibit well-defined structures and, when sufficiently small, evident molecular properties. NCs provide versatile building blocks to fabricate hierarchical superstructures. The assembly of NCs indeed offers opportunities to devise new materials with given structures and able to carry out specific functions. In this Concept article, we highlight the possibilities offered by NCs in which the physicochemical properties are controlled by the introduction of foreign metal atoms and/or modification of the composition of the capping monolayer with functional ligands. Different approaches to assemble NCs into dimers and higher hierarchy structures and the corresponding changes in physicochemical properties are also described.
Collapse
Affiliation(s)
- Sara Bonacchi
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Sabrina Antonello
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Tiziano Dainese
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Flavio Maran
- Department of Chemistry, University of Padova, Via Marzolo 1, 35131, Padova, Italy.,Department of Chemistry, University of Connecticut, 55 North Eagleville Road, Storrs, 06269, Connecticut, USA
| |
Collapse
|
34
|
Wu X, Lv Y, Bai Y, Yu H, Zhu M. The pivotal alkyne group in the mutual size-conversion of Au9 with Au10 nanoclusters. Dalton Trans 2021; 50:10113-10118. [PMID: 34251382 DOI: 10.1039/d1dt01586a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Herein, density functional theory (DFT) calculations were performed to elucidate the mechanism of the reversible single atom size conversion between [Au10(DMPP)4(C6H11C[triple bond, length as m-dash]C)]3+ and [Au9(DMPP)4]3+ (DMPP is 2,2'-bis-(dimethylphosphino)-1,1'-biphenyl, the simplified, theoretical model of the experimentally used 2,2'-bis-(diphenylphosphino)-1,1'-binaphthyl). The presence of a unique alkyne group is pivotal to the nucleophilic attack of the phosphine ligand on the electron-deficient Au10 core. After that, a formal ligand exchange and facile 1,2-P (of the diphosphine ligand) transfer occur to generate the Au9 cluster product. By contrast, the absence of the alkyne group results in a relatively electron-rich Au9 core, and thus an electrophilic attack of the Au(alkyne) complex on the most electron-rich metal sites occurs first. After that, the Au(alkyne) migration on the cluster surface, 1,2-P transfer and core-reconstruction occur successively to generate the thermodynamically highly stable Au10 cluster product.
Collapse
Affiliation(s)
- Xiaohang Wu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P. R. China.
| | - Ying Lv
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P. R. China.
| | - Yuyuan Bai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P. R. China.
| | - Haizhu Yu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P. R. China. and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601 P. R. China
| | - Manzhou Zhu
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601 P. R. China. and Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601 P. R. China
| |
Collapse
|
35
|
Xu L, Li Q, Li T, Chai J, Yang S, Zhu M. Construction of a new Au 27Cd 1(SAdm) 14(DPPF)Cl nanocluster by surface engineering and insight into its structure–property correlation. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01015h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Surface engineering with a functional DPPF ligand and Cd atom is employed on a Au38 nanocluster to obtain a Au–Cd alloy nanocluster, that is, Au27Cd1. The difference in properties between Au38 and Au27Cd1 indicates the importance of the surface structure.
Collapse
Affiliation(s)
- Liyun Xu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Qinzhen Li
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Tianrong Li
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jinsong Chai
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Sha Yang
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
36
|
Yao Q, Wu Z, Liu Z, Lin Y, Yuan X, Xie J. Molecular reactivity of thiolate-protected noble metal nanoclusters: synthesis, self-assembly, and applications. Chem Sci 2020; 12:99-127. [PMID: 34163584 PMCID: PMC8178751 DOI: 10.1039/d0sc04620e] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
Thiolate-protected noble metal (e.g., Au and Ag) nanoclusters (NCs) are ultra-small particles with a core size of less than 3 nm. Due to the strong quantum confinement effects and diverse atomic packing modes in this ultra-small size regime, noble metal NCs exhibit numerous molecule-like optical, magnetic, and electronic properties, making them an emerging family of "metallic molecules". Based on such molecule-like structures and properties, an individual noble metal NC behaves as a molecular entity in many chemical reactions, and exhibits structurally sensitive molecular reactivity to various ions, molecules, and other metal NCs. Although this molecular reactivity determines the application of NCs in various fields such as sensors, biomedicine, and catalysis, there is still a lack of systematic summary of the molecular interaction/reaction fundamentals of noble metal NCs at the molecular and atomic levels in the current literature. Here, we discuss the latest progress in understanding and exploiting the molecular interactions/reactions of noble metal NCs in their synthesis, self-assembly and application scenarios, based on the typical M(0)@M(i)-SR core-shell structure scheme, where M and SR are the metal atom and thiolate ligand, respectively. In particular, the continuous development of synthesis and characterization techniques has enabled noble metal NCs to be produced with molecular purity and atomically precise structural resolution. Such molecular purity and atomically precise structure, coupled with the great help of theoretical calculations, have revealed the active sites in various structural hierarchies of noble metal NCs (e.g., M(0) core, M-S interface, and SR ligand) for their molecular interactions/reactions. The anatomy of such molecular interactions/reactions of noble metal NCs in synthesis, self-assembly, and applications (e.g., sensors, biomedicine, and catalysis) constitutes another center of our discussion. The basis and practicality of the molecular interactions/reactions of noble metal NCs exemplified in this Review may increase the acceptance of metal NCs in various fields.
Collapse
Affiliation(s)
- Qiaofeng Yao
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Zhennan Wu
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
| | - Zhihe Liu
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou China 350207
| | - Yingzheng Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou China 350207
| | - Xun Yuan
- College of Materials Science and Engineering, Qingdao University of Science and Technology Qingdao China 266042
| | - Jianping Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4 Singapore 117585
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University Binhai New City Fuzhou China 350207
| |
Collapse
|
37
|
He L, He X, Wang J, Qu Y, Su X, Zheng J, Zhao X. The positional isomerism in bimetal nanoclusters. CrystEngComm 2020. [DOI: 10.1039/d0ce01334j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enriching the variety of isomerism in the nanocluster field is exciting but challenging.
Collapse
Affiliation(s)
- Lizhong He
- School of Materials Science and Engineering
- Xi'an Polytechnic University
- Xi'an
- PR China
| | - Xinhai He
- School of Materials Science and Engineering
- Xi'an Polytechnic University
- Xi'an
- PR China
| | - Junbo Wang
- School of Materials Science and Engineering
- Xi'an Polytechnic University
- Xi'an
- PR China
| | - Yinhu Qu
- School of Materials Science and Engineering
- Xi'an Polytechnic University
- Xi'an
- PR China
| | - Xiaolei Su
- School of Materials Science and Engineering
- Xi'an Polytechnic University
- Xi'an
- PR China
| | - Jiaojiao Zheng
- School of Materials Science and Engineering
- Xi'an Polytechnic University
- Xi'an
- PR China
| | - Xiaoliang Zhao
- School of Materials Science and Engineering
- Xi'an Polytechnic University
- Xi'an
- PR China
| |
Collapse
|