1
|
Su S, Guo Y, Parnitzke B, Poerio T, Derosa J. A Voltage-Controlled Strategy for Modular Shono-Type Amination. J Am Chem Soc 2024; 146:28663-28668. [PMID: 39401528 DOI: 10.1021/jacs.4c12520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Shono-type oxidation to generate functionalized heterocycles is a powerful method for late-stage diversification of relevant pharmacophores; however, development beyond oxygen-based nucleophiles remains underdeveloped. The limited scope can often be ascribed to constant current electrolysis resulting in potential drifts that oxidize a desired nucleophilic partner. Herein, we report a voltage-controlled strategy to selectively oxidize a broad scope of substrates, enabling modular C-N bond formation from protected amine nucleophiles. We implement an electroanalytically guided workflow using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) to identify oxidation potentials across a range of heterocyclic substrates. Controlled potential electrolysis (CPE) selectively generates α-functionalized C-N products in moderate to good yields using carbamate-, sulfonamide-, and benzamide-derived nucleophiles. The importance of voltage control is further exemplified through a systematic study comparing our developed CPE method to constant current electrolysis (CCE) protocols. Voltage-guided CCE and traditionally optimized CCE reveal the importance of maintaining voltage control for high yields and selectivity over a broad scope; a case study with a morpholine-derived substrate illustrates the negative impact of potential drifting under CCE. Sulfonamide drugs, which have significant oxidation potential overlap with model substrates, are rendered competent nucleophiles under CPE. Lastly, sequential voltage-controlled C-N and C-O functionalization of a model substrate generates difunctionalized pyrrolidines further broadening the utility of this reaction.
Collapse
Affiliation(s)
- Siyuan Su
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Yahui Guo
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Bryan Parnitzke
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Tegan Poerio
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Joseph Derosa
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Naulin E, Brion A, Biatuma D, Roulland E, Genta-Jouve G, Neuville L, Masson G. Stereoselective synthesis of fissoldhimine alkaloid analogues via sequential electrooxidation and heterodimerization of ureas. Chem Commun (Camb) 2024; 60:11560-11563. [PMID: 39314193 DOI: 10.1039/d4cc02616k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
This study develops a biogenetic synthesis strategy using electrooxidation and heterodimerization of N-substituted pyrrolidine-1-carboxamides to create diverse analogues of the fissoldhimine alkaloid core. Under acidic conditions, 2-alkoxypyrrolidine-1-carboxamides from Shono oxidation formed endo-heterodimers with high yields and diastereoselectivity. Enantioselective heterodimerization using chiral phosphoric acid catalysis produced exo-heterodimers with high enantioselectivity.
Collapse
Affiliation(s)
- Emma Naulin
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
| | - Aurélien Brion
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
| | - Didine Biatuma
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
| | - Emmanuel Roulland
- UMR 8038, CitCom, CNRS-Université Paris Cité, Faculté de Pharmacie 4, avenue de l'Observatoire, 75006 Paris, France
| | - Grégory Genta-Jouve
- UAR3456 CNRS LEEISA, Centre de Recherche de Montabo, IRD, 275 Route de Montabo, CEDEX BP 70620, 97334 Cayenne, France
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 78440 Porcheville, France
| | - Géraldine Masson
- Institut de Chimie des Substances Naturelles, CNRS, Univ. Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, Cedex, France.
- HitCat, Seqens-CNRS Joint Laboratory, Seqens'Lab, 78440 Porcheville, France
| |
Collapse
|
3
|
He JY, Zhu C, Duan WX, Kong LX, Wang NN, Wang YZ, Fan ZY, Qiao XY, Xu H. Bifunctional Chiral Electrocatalysts Enable Enantioselective α-Alkylation of Aldehydes. Angew Chem Int Ed Engl 2024; 63:e202401355. [PMID: 38967087 DOI: 10.1002/anie.202401355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Herein, we describe an innovative approach to the asymmetric electrochemical α-alkylation of aldehydes facilitated by a newly designed bifunctional chiral electrocatalyst. The highly efficient bifunctional chiral electrocatalyst combines a chiral aminocatalyst with a redox mediator. It plays a dual role as a redox mediator for electrooxidation, while simultaneously providing remarkable asymmetric induction for the stereoselective α-alkylation of aldehydes. Additionally, this novel catalyst exhibits enhanced catalytic activity and excellent stereoselective control comparable to conventional catalytic systems. As a result, this strategy provides a new avenue for versatile asymmetric electrochemistry. The electrooxidation of diverse phenols enables the C-H/C-H oxidative α-alkylation of aldehydes in a highly chemo- and stereoselective fashion. Detailed mechanistic studies by control experiments and cyclic voltammetry analysis demonstrate possible reaction pathways and the origin of enantio-induction.
Collapse
Affiliation(s)
- Jin-Yu He
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Cuiju Zhu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Wen-Xi Duan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Ling-Xuan Kong
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Na-Na Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Yan-Zhao Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Zhi-Yong Fan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Xin-Ying Qiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| | - Hao Xu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, State Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
4
|
Tao Y, Ma W, Sun R, Huang C, Lu Q. Asymmetric Paired Electrolysis: Enantioselective Alkylation of Sulfonylimines via C(sp 3)-H Functionalization. Angew Chem Int Ed Engl 2024; 63:e202409222. [PMID: 38958225 DOI: 10.1002/anie.202409222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/04/2024]
Abstract
Enantioselective transformation of ubiquitous C(sp3)-H bonds into three-dimensional chiral scaffolds is of longstanding interest to synthetic chemists. Herein, an asymmetric paired electrolysis enables a highly efficient and sustainable approach to the enantioselective alkylation of sulfonylimines via C(sp3)-H functionalization. In this protocol, anodic oxidation for benzylic radical formation and Lewis acid-catalyzed sulfonylimine reduction on the cathode were seamlessly cross-coupled (up to 88 % yield). Enantioenriched chiral amines containing a tetrasubstituted carbon stereocenter are accessed with high enantioselectivity (up to 96 % ee). Mechanistic studies suggest that the amine generated in situ could serve as a base to deprotonate phenols and decrease the oxidation potential of the reaction, allowing phenols with lower potentials to be preferentially oxidized.
Collapse
Affiliation(s)
- Yongsheng Tao
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Wan Ma
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Rui Sun
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Cheng Huang
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, P. R. China
- Wuhan University Shenzhen Research Institute, Shenzhen, 518000, P. R. China
| |
Collapse
|
5
|
Porras-Santos LF, Sandoval-Lira J, Hernández-Pérez JM, Quintero L, López-Mendoza P, Sartillo-Piscil F. Ferrier Glycosylation Mediated by the TEMPO Oxoammonium Cation. J Org Chem 2024; 89:11281-11292. [PMID: 39102649 PMCID: PMC11334189 DOI: 10.1021/acs.joc.4c00978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The TEMPO oxoammonium cation has been proven to be both an efficient oxidizing reagent and an electrophilic substrate frequently found in organic reactions. Here, we report that this versatile chemical reagent can also be used as an efficient promoter for C- and N-glycosylation reactions through a Ferrier rearrangement with moderate to high yields. This unprecedented reactivity is explained in terms of a Lewis acid activation of glycal by TEMPO+ forming a type of glycal-TEMPO+ mesomeric structure, which occurs through an extended vinylogous hyperconjugation toward the π*(O═N+) orbital [LP(O1) → π*(C1═C2), π*(C1═C2) → σ*(C3-O3), and LP(O6) → π*(O═N+)]. This enables the formation of the respective Ferrier glycosyl cation, which is trapped by various nucleophiles. The extended hyperconjugation (or double hyperconjugation) toward the π*(O═N+) orbital, which confers the Lewis acid character of the TEMPO cation, was supported by natural bond orbital analysis at the M06-2X/6-311+G** level of theory.
Collapse
Affiliation(s)
- Luis F Porras-Santos
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Jacinto Sandoval-Lira
- Departamento de Ciencias Básicas, TecNM campus Instituto Tecnológico Superior de San Martín Texmelucan, Camino a la Barranca de Pesos, San Martín Texmelucan 74120, Puebla, Mexico
| | - Julio M Hernández-Pérez
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Leticia Quintero
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Pedro López-Mendoza
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| | - Fernando Sartillo-Piscil
- Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel 72570, Puebla, Mexico
| |
Collapse
|
6
|
Sun Y, Yang T, Wang Q, Shi L, Song MP, Niu JL. Atroposelective N-N Axes Synthesis via Electrochemical Cobalt Catalysis. Org Lett 2024; 26:5063-5068. [PMID: 38864356 DOI: 10.1021/acs.orglett.4c01025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Here, we disclosed an unprecedented cobalt electrocatalyzed atroposelective C-H activation and annulation for the efficient construction of diversely functionalized N-N axes in an undivided cell. A broad range of allene substrates and benzamides bearing different functionalities are compatible with generating axially chiral products with good yields and excellent enantioselectivities (up to 92% yield and 99% ee). A series of synthetic applications and control experiments were also performed, which further expanded the practicality of this strategy.
Collapse
Affiliation(s)
- Yingjie Sun
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Taixin Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Qiuling Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Linlin Shi
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Mao-Ping Song
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| | - Jun-Long Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
7
|
Fang X, Zeng Y, Huang Y, Zhu Z, Lin S, Xu W, Zheng C, Hu X, Qiu Y, Ruan Z. Electrochemical synthesis of peptide aldehydes via C‒N bond cleavage of cyclic amines. Nat Commun 2024; 15:5181. [PMID: 38890290 PMCID: PMC11189564 DOI: 10.1038/s41467-024-49223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Peptide aldehydes are crucial biomolecules essential to various biological systems, driving a continuous demand for efficient synthesis methods. Herein, we develop a metal-free, facile, and biocompatible strategy for direct electrochemical synthesis of unnatural peptide aldehydes. This electro-oxidative approach enabled a step- and atom-economical ring-opening via C‒N bond cleavage, allowing for homoproline-specific peptide diversification and expansion of substrate scope to include amides, esters, and cyclic amines of various sizes. The remarkable efficacy of the electro-synthetic protocol set the stage for the efficient modification and assembly of linear and macrocyclic peptides using a concise synthetic sequence with racemization-free conditions. Moreover, the combination of experiments and density functional theory (DFT) calculations indicates that different N-acyl groups play a decisive role in the reaction activity.
Collapse
Affiliation(s)
- Xinyue Fang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yong Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yawen Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Zile Zhu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, PR China
| | - Shengsheng Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wenyan Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chengwei Zheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Xinwei Hu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Youai Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, PR China.
| | - Zhixiong Ruan
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
8
|
Zhang Q, Zhang J, Zhu W, Lu R, Guo C. Enantioselective nickel-catalyzed anodic oxidative dienylation and allylation reactions. Nat Commun 2024; 15:4477. [PMID: 38796470 PMCID: PMC11127924 DOI: 10.1038/s41467-024-48936-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024] Open
Abstract
Precision control of stereochemistry in radical reactions remains a formidable challenge due to the prevalence of incidental racemic background reactions resulting from undirected substrate oxidation in the absence of chiral induction. In this study, we devised an thoughtful approach-electricity-driven asymmetric Lewis acid catalysis-to circumvent this impediment. This methodology facilitates both asymmetric dienylation and allylation reactions, resulting in the formation of all-carbon quaternary stereocenters and demonstrating significant potential in the modular synthesis of functional and chiral benzoxazole-oxazoline (Boox) ligands. Notably, the involvement of chiral Lewis acids in both the electrochemical activation and stereoselectivity-defining radical stages offers innovative departures for designing single electron transfer-based reactions, significantly underscoring the relevance of this approach as a multifaceted and universally applicable strategy for various fields of study, including electrosynthesis, organic chemistry, and drug discovery.
Collapse
Affiliation(s)
- Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Wangjie Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Ruimin Lu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
9
|
Yin S, Weeks KN, Aponick A. Catalytic Enantioselective Alkyne Addition to Nitrones Enabled by Tunable Axially Chiral Imidazole-Based P,N-Ligands. J Am Chem Soc 2024; 146:7185-7190. [PMID: 38446821 PMCID: PMC10962052 DOI: 10.1021/jacs.4c00873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Although catalytic enantioselective alkyne addition is an established method for the synthesis of chiral propargylic alcohols and amines, addition to nitrones presents unique challenges, and no general chiral catalyst system has been developed. In this manuscript, we report the first Cu-catalyzed enantioselective alkyne addition to nitrones utilizing tunable axially chiral imidazole-based P,N-ligands. Our approach effectively overcomes difficulties in both reactivity and selectivity, resulting in a simple Cu-catalyzed protocol. The reaction accommodates a wide range of nitrones and alkynes, enabling the streamlined synthesis of chiral propargyl N-hydroxylamines via the enantioselective C-C bond formation. A diverse array of optically active nitrogen-containing compounds, including chiral hydroxylamines, can be accessed directly through facile transformations of the reaction products.
Collapse
Affiliation(s)
- Shengkang Yin
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Kendall N Weeks
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Aaron Aponick
- Florida Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Zhelavskyi O, Parikh S, Jhang YJ, Staples RJ, Zimmerman PM, Nagorny P. Green Light Promoted Iridium(III)/Copper(I)-Catalyzed Addition of Alkynes to Aziridinoquinoxalines Through the Intermediacy of Azomethine Ylides. Angew Chem Int Ed Engl 2024; 63:e202318876. [PMID: 38267370 PMCID: PMC10939844 DOI: 10.1002/anie.202318876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
This manuscript describes the development of alkyne addition to the aziridine moiety of aziridinoquinoxalines using dual Ir(III)/Cu(I) catalytic system under green light-emitting diode (LED) photolysis (λmax =525 nm). This mild method features high levels of chemo- and regioselectivity and was used to generate 30 highly functionalized substituted dihydroquinoxalines in 36-98 % yield. This transformation was also carried asymmetrically using phthalazinamine-based chiral ligand to provide 9 chiral addition products in 96 : 4 to 86 : 14 e.r. The experimental and quantum chemical explorations of this reaction suggest a mechanism that involves Ir(III)-catalyzed triplet energy transfer followed by a ring-opening reaction ultimately leading to the formation of azomethine ylide intermediates. These azomethine intermediates undergo sequential protonation/copper(I) acetylide addition to provide the products.
Collapse
Affiliation(s)
- Oleksii Zhelavskyi
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Seren Parikh
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Yin-Jia Jhang
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Richard J. Staples
- Department of Chemistry and Chemical Biology, Michigan State University, East Lansing, MI 48824
| | - Paul M. Zimmerman
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
11
|
Liu C, Liu Y, Yang S, Zheng B, Zhang Y. Electrochemical Lactonization Enabled by Unusual Shono-Type Oxidation from Functionalized Benzoic Acids. Org Lett 2024; 26:1936-1940. [PMID: 38407049 DOI: 10.1021/acs.orglett.4c00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
A novel method for electrochemical lactonization via C(sp3)-H functionalization was developed. This metal- and oxidant-free strategy enabled the efficient synthesis of various lactones. Gram-scale reaction and derivatization of the lactone product demonstrated the synthetic utility of this methodology. Mechanistic studies using control experiments and CV curves elucidated the proposed intramolecular HAT and the oxidative cyclization pathway. An unusual Shono-type oxidation was realized through this electrochemical approach, proceeding without a traditional nucleophilic addition process.
Collapse
Affiliation(s)
- Chen Liu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yunge Liu
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Shurui Yang
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Bing Zheng
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| | - Yunfei Zhang
- College of Science, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
12
|
Sun X, Zhang Y, Li T, Li K, Sun Q, Wang Z. Construction of Asymmetric C-S Bonds via an Electrochemical Catalysis. Org Lett 2024; 26:1566-1572. [PMID: 38364794 DOI: 10.1021/acs.orglett.3c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Construction of asymmetric C-S bonds was realized via electrochemical catalysis in the presence of a chiral nickel complex. The reaction can be carried out with excellent stereoselectivity and great functional group tolerance. The corresponding products provide crucial precursors for some functional materials and pharmaceutical drugs.
Collapse
Affiliation(s)
- Xiang Sun
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yan Zhang
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tong Li
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Kai Li
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Qi Sun
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhiyong Wang
- Hefei National Center for Physical Sciences at Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
13
|
Li T, Sun Z, Zhang S, Ma Q, Chen Y, Yuan Y, Jia X. Single-Electron Reduction of "Push-Pull" C-C Single Bond and Decyanation Using Tertiary Amines as the Organic Electron Donor. J Org Chem 2024; 89:2516-2524. [PMID: 38319086 DOI: 10.1021/acs.joc.3c02542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Using commercially available tertiary amines as an organic electron donor (OED), the reduction of "push-pull" C-C single bond and reductive decyanation of tetrahydroisoquinolines were realized. These reactions exhibited higher reaction efficiency and better functional group tolerance compared with those of metallic reductants, and the mechanistic study indicated that a radical intermediate was involved in the reduction of the C-C single bond, which provides a new way to the OED-enabled mild reduction.
Collapse
Affiliation(s)
- Tong Li
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Zheng Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
- Economic Development Bureau, Jiangsu Hangji Hi-tech Industrial Development Zone, Yangzhou 225111, Jiangsu, China
| | - Shuwei Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Qiyuan Ma
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Yuqin Chen
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Yu Yuan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| | - Xiaodong Jia
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
| |
Collapse
|
14
|
Wang S, Wu Z, Li J, Zhu Y, Zheng S, Jiang C, Lu H. Electrochemical decarboxylative alkylation of β-ketoacids with phenol derivatives. Chem Commun (Camb) 2024; 60:1329-1332. [PMID: 38197300 DOI: 10.1039/d3cc05489f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
An electrochemical method for the decarboxylative alkylation of β-ketoacids with phenol derivatives has been developed. The protocol was carried out in readily available unseparated cells at room temperature in the absence of catalysts and oxidants. The corresponding aryl ketones were obtained in satisfactory yields without additional electrolytes, and were easy to produce in gram-scale synthesis. Based on control experiments and cyclic voltammetry, a plausible reaction mechanism was proposed.
Collapse
Affiliation(s)
- Shan Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Zhaotian Wu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Junqiang Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Yujun Zhu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Shaojun Zheng
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Chunhui Jiang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| | - Hongfei Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212100, China.
| |
Collapse
|
15
|
Zhang J, Zhu W, Chen Z, Zhang Q, Guo C. Dual-Catalyzed Stereodivergent Electrooxidative Homocoupling of Benzoxazolyl Acetate. J Am Chem Soc 2024; 146:1522-1531. [PMID: 38166394 DOI: 10.1021/jacs.3c11429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The development of a reliable strategy for stereodivergent radical reactions that allows convenient access to all stereoisomers of homocoupling adducts with multiple stereogenic centers remains an unmet goal in organic synthesis. Herein, we describe a dual-catalyzed electrooxidative C(sp3)-H/C(sp3)-H homocoupling with complete absolute and relative stereocontrol for the synthesis of molecules with contiguous quaternary stereocenters in a general and predictable manner. The stereodivergent electrooxidative homocoupling reaction is achieved by synergistically utilizing two distinct chiral catalysts that convert identical racemic substrates into inherently distinctive reactive chiral intermediates, dictate enantioselective radical addition, and allow access to the full complement of stereoisomeric products via simple catalyst permutation. The successful execution of the dual-electrocatalytic strategy programmed via electrooxidative activation provides a significant conceptual advantage and will serve as a useful foundation for further research into cooperative stereocontrolled radical transformations and diversity-oriented synthesis.
Collapse
Affiliation(s)
- Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wangjie Zhu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Ziting Chen
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
16
|
Xie T, Huang J, Li J, Peng L, Song J, Guo C. Cu-catalyzed asymmetric regiodivergent electrosynthesis and its application in the enantioselective total synthesis of (-)-fumimycin. Nat Commun 2023; 14:6749. [PMID: 37875470 PMCID: PMC10598217 DOI: 10.1038/s41467-023-42603-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/16/2023] [Indexed: 10/26/2023] Open
Abstract
Quaternary amino acids are one of the essential building blocks and precursors of medicinally important compounds. Various synthetic strategies towards their synthesis have been reported. On the other hand, developing core-structure-oriented cross-dehydrogenative coupling (CDC) reactions, is a largely unsolved problem. Herein, we describe a copper-catalyzed regiodivergent electrochemical CDC reaction of Schiff bases and commercially available hydroquinones to obtain three classes of chiral quaternary amino acid derivatives for the efficient assembly of complex scaffolds with excellent stereocontrol. The electrochemical anodic oxidation process with slow releasing of quinones serves as an internal syringe pump and provides high levels of reaction efficiency and enantiomeric control. The utility of this strategy is highlighted through the synthetic utility in the asymmetric total synthesis of (-)-fumimycin.
Collapse
Affiliation(s)
- Tian Xie
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jianming Huang
- Institutes of Physical Science and Information Technology, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, China
| | - Juan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, China
| | - Lingzi Peng
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
17
|
Das A, Jonathan C, Saha R, Ahmed MI, Bhowmik S. Regioselective Decarboxylative Transformations of Tetrahydro-β-carboline-1-carboxylic Acid: Reagent Controlled Selectivity toward Alkynylated or Enaminone Products. Org Lett 2023; 25:7310-7315. [PMID: 37791996 DOI: 10.1021/acs.orglett.3c02636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
A one-pot, regioselective decarboxylative alkynylation of tetrahydro-β-carboline-1-carboxylic acid under peroxide-free condition is reported. The reaction is highly selective for the 1-position over the 3-position of tetrahydro-β-carboline. The reaction can afford alkynylated or enaminone products depending on the reagent. The reaction proceeds through sequential decarboxylative iminium ion formation followed by an alkynylation and oxidative rearrangement cascade.
Collapse
Affiliation(s)
- Arka Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, 168 Maniktala Main Road, Kolkata-700054, West Bengal, India
| | - Christine Jonathan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, 168 Maniktala Main Road, Kolkata-700054, West Bengal, India
| | - Rana Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, 168 Maniktala Main Road, Kolkata-700054, West Bengal, India
| | - Md Imran Ahmed
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, 168 Maniktala Main Road, Kolkata-700054, West Bengal, India
| | - Subhendu Bhowmik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, 168 Maniktala Main Road, Kolkata-700054, West Bengal, India
| |
Collapse
|
18
|
Weierbach SM, Reynolds RP, Stephens SM, Vlasakakis KV, Ritter RT, White OM, Patel NH, Hayes EC, Dunmire S, Lambert KM. Chemoselective Oxidation of Thiols with Oxoammonium Cations. J Org Chem 2023; 88:11392-11410. [PMID: 35926190 DOI: 10.1021/acs.joc.2c01097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidation of various aryl and aliphatic thiols with the commercially available and environmentally benign reagent Bobbitt's salt (1) has been investigated. The reaction affords the corresponding disulfide products in good to excellent yields (71-99%) and can be accomplished in water, methanol, or acetonitrile solvent. Moreover, the process is highly chemoselective, tolerating traditionally oxidation-labile groups such as free amines and alcohols. Combined experimental and computational studies reveal that the oxidation takes place via a polar two-electron process with concomitant and unexpected deoxygenation of the oxoammonium cation through homolysis of the weak N-O bond, differing from prototypical radical-based thiol couplings. This unusual consumption of the oxidant has significant implications for the development of new nitroxide-based radical traps for probing S-centered radicals, the advancement of new electrochemical or catalytic processes involving nitroxide/oxoammonium salt redox couples, and applications to biological systems.
Collapse
Affiliation(s)
- Shayne M Weierbach
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Robert P Reynolds
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Shannon M Stephens
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Kostantinos V Vlasakakis
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Ramsey T Ritter
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Olivia M White
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Nishi H Patel
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Eric C Hayes
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Sydney Dunmire
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| | - Kyle M Lambert
- Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, United States
| |
Collapse
|
19
|
Zhao WT, Shu W. Enantioselective Csp3-Csp3 formation by nickel-catalyzed enantioconvergent cross-electrophile alkyl-alkyl coupling of unactivated alkyl halides. SCIENCE ADVANCES 2023; 9:eadg9898. [PMID: 37418514 DOI: 10.1126/sciadv.adg9898] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/01/2023] [Indexed: 07/09/2023]
Abstract
The pervasive occurrence of saturated stereogenic carbon centers in pharmaceuticals, agrochemicals, functional organic materials, and natural products has stimulated great efforts toward the construction of such saturated carbon centers. We report a reaction mode for the enantioselective construction of alkyl-alkyl bond to access saturated stereogenic carbon centers by asymmetric reductive cross-coupling between different alkyl electrophiles in good yields with great levels of enantioselectivity. This reaction mode uses only alkyl electrophiles for enantioselective Csp3-Csp3 bond-formation, rendering reductive alkyl-alkyl cross-coupling as an alternative to traditional alkyl-alkyl cross-coupling reactions between alkyl nucleophiles and alkyl electrophiles to access saturated stereogenic carbon centers without the use of organometallic reagents. The reaction displays a broad scope for two alkyl electrophiles with good functional group tolerance. Mechanistic studies reveal that the reaction undergoes a single electron transfer that enabled the reductive coupling pathway to form the alkyl-alkyl bond.
Collapse
Affiliation(s)
- Wen-Tao Zhao
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
20
|
Lv H, Ma C, Zhu Z, Li QH, Chen S, Wang F, Li S. A light-sensitive metal-organic framework composite encapsulated by ion exchange for photocatalytic organic reaction. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
21
|
Zou CP, Ma T, Qiao XX, Wu XX, Li G, He Y, Zhao XJ. B(C 6F 5) 3-catalyzed β-C(sp 3)-H alkylation of tertiary amines with 2-aryl-3 H-indol-3-ones. Org Biomol Chem 2023; 21:4393-4397. [PMID: 37161837 DOI: 10.1039/d3ob00481c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The β-C-H functionalization of amines is one of the most powerful tools for the synthesis of saturated nitrogen-containing heterocycles in organic synthesis. However, the β-C-H functionalization of amines via redox-neutral addition with cyclic-ketimines is still unprecedented. Herein, the β-C-H functionalization of tertiary amines is described, providing the corresponding 1,3-diamines containing the indolin-3-one moiety in high yields via the B(C6F5)3-catalyzed borrowing hydrogen strategy. According to the experimental results, a possible catalytic cycle has been proposed to rationalize the process of this reaction. Notably, the β-C-H alkylation of amines is external oxidant- and transition-metal-free, which makes a significant contribution to promoting economical chemical synthesis.
Collapse
Affiliation(s)
- Chang-Peng Zou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Tao Ma
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xi-Xi Wu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China.
| |
Collapse
|
22
|
He Z, Liu HL, Wang ZH, Jiao KJ, Li ZM, Li ZJ, Fang P, Mei TS. C(sp 3)-H Aerobic Alkenylation of Tetrahydroisoquinolines via Organic Electrosynthesis. J Org Chem 2023; 88:6203-6208. [PMID: 37058587 DOI: 10.1021/acs.joc.3c00223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
A method for the C(sp3)-H alkenylation of N-aryl-tetrahydroisoquinoline (THIQ) has been developed by the combination of electrooxidation and a copper catalyst. The corresponding products were obtained with good to excellent yields under mild conditions. Besides, the addition of TEMPO as an electron mediator is crucial to this transformation, since the oxidative reaction could proceed under a low electrode potential. In addition, the catalytic asymmetric variant has also been demonstrated with good enantioselectivity.
Collapse
Affiliation(s)
- Zeng He
- College of Chemistry and Materials, Sichuan Normal University, Chengdu 610068, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Hui-Lin Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhen-Hua Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ke-Jing Jiao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zi-Meng Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhang-Jian Li
- College of Chemistry and Materials, Sichuan Normal University, Chengdu 610068, China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | | |
Collapse
|
23
|
Baroliya PK, Dhaker M, Panja S, Al-Thabaiti SA, Albukhari SM, Alsulami QA, Dutta A, Maiti D. Transition Metal-Catalyzed C-H Functionalization Through Electrocatalysis. CHEMSUSCHEM 2023:e202202201. [PMID: 36881013 DOI: 10.1002/cssc.202202201] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Electrochemically promoted transition metal-catalyzed C-H functionalization has emerged as a promising area of research over the last few decades. However, development in this field is still at an early stage compared to traditional functionalization reactions using chemical-based oxidizing agents. Recent reports have shown increased attention on electrochemically promoted metal-catalyzed C-H functionalization. From the standpoint of sustainability, environmental friendliness, and cost effectiveness, electrochemically promoted oxidation of a metal catalyst offers a mild, efficient, and atom-economical alternative to traditional chemical oxidants. This Review discusses advances in the field of transition metal-electrocatalyzed C-H functionalization over the past decade and describes how the unique features of electricity enable metal-catalyzed C-H functionalization in an economic and sustainable way.
Collapse
Affiliation(s)
- Prabhat Kumar Baroliya
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Mukesh Dhaker
- Department of Chemistry, Mohanlal Sukhadia University, Udaipur, 313001, India
| | - Subir Panja
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Shaeel Ahmed Al-Thabaiti
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Soha M Albukhari
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Qana A Alsulami
- Department of Chemistry, Faculty of Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
24
|
Liu HL, He Z, Wang NN, Xu H, Fang P, Mei TS. C(sp 3)-H Alkenylation of Tetrahydroisoquinolines via Merging Electrochemistry and Organocatalysis. Org Lett 2023; 25:608-613. [PMID: 36695740 DOI: 10.1021/acs.orglett.2c04136] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
C(sp3)-H alkenylation of tetrahydroisoquinoline by merging Shono oxidation and the Morita-Baylis-Hillman reaction is developed, employing 4-dimethylaminopyridine as an organocatalyst and TEMPO/NaBr as an electrocatalyst. The reaction proceeds via the interception of an iminium cation intermediate, which is generated in situ from anodic oxidation, leading to aza-Morita-Baylis-Hillman reaction products. Additionally, the use of TEMPO and NaBr as mediators is crucial to avoid the decomposition of products by lowering the oxidation potential of the reaction.
Collapse
Affiliation(s)
- Hui-Lin Liu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| | - Zeng He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| | - Na-Na Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China.,Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Hao Xu
- Key Laboratory of Pesticides & Chemical Biology Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, P.R. China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P.R. China
| |
Collapse
|
25
|
Long C, He Y, Guan Z. Emerging Strategies for Asymmetric Synthesis: Combining Enzyme Promiscuity and Photo‐/Electro‐redox Catalysis. ASIAN J ORG CHEM 2023. [DOI: 10.1002/ajoc.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Chao‐Jiu Long
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Yan‐Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
26
|
Tan X, Wang Q, Sun J. Electricity-driven asymmetric bromocyclization enabled by chiral phosphate anion phase-transfer catalysis. Nat Commun 2023; 14:357. [PMID: 36690612 PMCID: PMC9870882 DOI: 10.1038/s41467-023-36000-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Electricity-driven asymmetric catalysis is an emerging powerful tool in organic synthesis. However, asymmetric induction so far has mainly relied on forming strong bonds with a chiral catalyst. Asymmetry induced by weak interactions with a chiral catalyst in an electrochemical medium remains challenging due to compatibility issues related to solvent polarity, electrolyte interference, etc. Enabled by a properly designed phase-transfer strategy, here we have achieved two efficient electricity-driven catalytic asymmetric bromocyclization processes induced by weak ion-pairing interaction. The combined use of a phase-transfer catalyst and a chiral phosphate catalyst, together with NaBr as the bromine source, constitutes the key advantages over the conventional chemical oxidation approach. Synergy over multiple events, including anodic oxidation, ion exchange, phase transfer, asymmetric bromination, and inhibition of Br2 decomposition by NaHCO3, proved critical to the success.
Collapse
Affiliation(s)
- Xuefeng Tan
- grid.24515.370000 0004 1937 1450Department of Chemistry, Energy Institute, Institute for Advanced Study, and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR China ,grid.495521.eHKUST Shenzhen Research Institute, No. 9 Yuexing 1st Rd, 518057 Shenzhen, China
| | - Qingli Wang
- grid.24515.370000 0004 1937 1450Department of Chemistry, Energy Institute, Institute for Advanced Study, and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR China ,grid.510951.90000 0004 7775 6738Shenzhen Bay Laboratory, 518107 Shenzhen, China
| | - Jianwei Sun
- grid.24515.370000 0004 1937 1450Department of Chemistry, Energy Institute, Institute for Advanced Study, and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR China ,grid.495521.eHKUST Shenzhen Research Institute, No. 9 Yuexing 1st Rd, 518057 Shenzhen, China
| |
Collapse
|
27
|
Malakar CC, Dell'Amico L, Zhang W. Dual Catalysis in Organic Synthesis: Current Challenges and New Trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
28
|
TBAI/H2O-cooperative electrocatalytic decarboxylation coupling-annulation of quinoxalin-2(1H)-ones with N-arylglycines. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Study of the Electrochemical Behavior of N-Substituted-4-Piperidones Curcumin Analogs: A Combined Experimental and Theoretical Approach. Int J Mol Sci 2022; 23:ijms232315043. [PMID: 36499370 PMCID: PMC9736124 DOI: 10.3390/ijms232315043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
The electrochemical behavior of N-methyl- and N-benzyl-4-piperidone curcumin analogs were studied experimentally and theoretically. The studied compounds present different substituents at the para position in the phenyl rings (-H, -Br, -Cl, -CF3, and -OCH3). We assessed their electrochemical behavior by differential pulse and cyclic voltammetry, while we employed density functional theory (DFT) M06 and M06-2x functionals along with 6-311+G(d,p) basis set calculations to study them theoretically. The results showed that compounds suffer a two-electron irreversible oxidation in the range of 0.72 to 0.86 V, with surface concentrations ranging from 1.72 × 10-7 to 5.01 × 10-7 mol/cm2. The results also suggested that the process is diffusion-controlled for all compounds. M06 DFT calculations showed a better performance than M06-2x to obtain oxidation potentials. We found a good correlation between the experimental and theoretical oxidation potential for N-benzyl-4-piperidones (R2 = 0.9846), while the correlation was poor for N-methyl-4-piperidones (R2 = 0.3786), suggesting that the latter suffer a more complex oxidation process. Calculations of the BDEs for labile C-H bonds in the compounds suggested that neither of the two series of compounds has a different tendency for a proton-coupled electron transfer (PCET) oxidation process. It is proposed that irreversible behavior is due to possible dimerization of the compounds by Shono-type oxidation.
Collapse
|
30
|
Mondal A, van Gemmeren M. Silver-Free C-H Activation: Strategic Approaches towards Realizing the Full Potential of C-H Activation in Sustainable Organic Synthesis. Angew Chem Int Ed Engl 2022; 61:e202210825. [PMID: 36062882 PMCID: PMC9828228 DOI: 10.1002/anie.202210825] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Indexed: 01/12/2023]
Abstract
The activation of carbon-hydrogen bonds is considered as one of the most attractive techniques in synthetic organic chemistry because it bears the potential to shorten synthetic routes as well as to produce complementary product scopes compared to traditional synthetic strategies. However, many current methods employ silver salts as additives, leading to stoichiometric metal waste and thereby preventing the full potential of C-H activation to be exploited. Therefore, the development of silver-free protocols has recently received increasing attention. Mechanistically, silver can serve various roles in C-H activation and thus, avoiding the use of silver requires different approaches based on the role it serves in a given process. In this Review, we present the comparison of silver-based and silver-free methods. Focusing on the strategic approaches to develop silver-free C-H activation, we provide the reader with the means to develop sustainable methods for C-H activation.
Collapse
Affiliation(s)
- Arup Mondal
- Organisch-Chemisches InstitutWestfälische Wilhelms-Universität MünsterCorrensstraße 3648149MünsterGermany
| | - Manuel van Gemmeren
- Otto-Diels-Institut für Organische ChemieChristian-Albrechts-Universität zu KielOtto-Hahn-Platz 424118KielGermany
| |
Collapse
|
31
|
Liang K, Zhang Q, Guo C. Nickel-catalyzed switchable asymmetric electrochemical functionalization of alkenes. SCIENCE ADVANCES 2022; 8:eadd7134. [PMID: 36351023 PMCID: PMC9645727 DOI: 10.1126/sciadv.add7134] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The development of general electrocatalytic methods for the diversity-oriented regio- and stereoselective functionalization of alkenes remains a challenge in organic synthesis. We present a switchable electrocatalytic method based on anodic oxidative activation for the controlled liberation of chiral α-keto radical species toward stereoselective organic transformations. Electrogenerated α-keto radical species capture alkene partners, allowing switchable intermolecular alkene difunctionalization and alkenylation in a highly stereoselective manner. In addition to acting as proton donors to facilitate H2 evolution at the cathode, the unique properties of alcohol additives play an important role in determining the distinct outcomes for alkene functionalization under electrocatalytic conditions.
Collapse
|
32
|
Lai XL, Chen M, Wang Y, Song J, Xu HC. Photoelectrochemical Asymmetric Catalysis Enables Direct and Enantioselective Decarboxylative Cyanation. J Am Chem Soc 2022; 144:20201-20206. [DOI: 10.1021/jacs.2c09050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xiao-Li Lai
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Ming Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| | - Yuqi Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Jinshuai Song
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Hai-Chao Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, PR China
| |
Collapse
|
33
|
Qin G, Wang R, Cheng Z, Zhang Y, Wang B, Xia Y, Jin W, Liu C. Electrooxidative trifunctionalization of alkenes with N-chlorosuccinimide and ArSSAr/ArSH to α,β-dichloride arylsulfoxides. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
34
|
Zhang Q, Liang K, Guo C. Enantioselective Nickel‐Catalyzed Electrochemical Radical Allylation. Angew Chem Int Ed Engl 2022; 61:e202210632. [DOI: 10.1002/anie.202210632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Qinglin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Kang Liang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
35
|
Zhu J, Wang Y, Charlack AD, Wang YM. Enantioselective and Diastereodivergent Allylation of Propargylic C-H Bonds. J Am Chem Soc 2022; 144:15480-15487. [PMID: 35976157 PMCID: PMC9437123 DOI: 10.1021/jacs.2c07297] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An iridium-catalyzed stereoselective coupling of allylic ethers and alkynes to generate 3,4-substituted 1,5-enynes is reported. Under optimized conditions, the coupling products are formed with excellent regio-, diastereo-, and enantioselectivities, and the protocol is functional group tolerant. Moreover, we report conditions that allow the reaction to proceed with complete reversal of diastereoselectivity. Mechanistic studies are consistent with an unprecedented dual role for the iridium catalyst, enabling the propargylic deprotonation of the alkyne through π-coordination, as well as the generation of a π-allyl species from the allylic ether starting material.
Collapse
Affiliation(s)
- Jin Zhu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yidong Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu225002, China
| | - Aaron D Charlack
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| | - Yi-Ming Wang
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania15260, United States
| |
Collapse
|
36
|
Guo R, Xiao H, Li S, Luo Y, Bai J, Zhang M, Guo Y, Qi X, Zhang G. Photoinduced Copper‐Catalyzed Asymmetric C(sp
3
)−H Alkynylation of Cyclic Amines by Intramolecular 1,5‐Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2022; 61:e202208232. [DOI: 10.1002/anie.202208232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 01/22/2023]
Affiliation(s)
- Rui Guo
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Haijing Xiao
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Sijia Li
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Yixin Luo
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Mengzhen Zhang
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Guozhu Zhang
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
37
|
Li YN, Wang B, Huang YK, Hu JS, Sun JN. Recent advances in metal catalyst- and oxidant-free electrochemical C-H bond functionalization of nitrogen-containing heterocycles. Front Chem 2022; 10:967501. [PMID: 36059873 PMCID: PMC9437222 DOI: 10.3389/fchem.2022.967501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
The C-H functionalization of nitrogen-containing heterocycles has emerged as a powerful strategy for the construction of carbon-carbon (C-C) and carbon-heteroatom (C-X) bonds. In order to achieve efficient and selective C-H functionalization, electrochemical synthesis has attracted increasing attention. Because electrochemical anodic oxidation is ideal for replacing chemical reagents in C-H functionalization reactions. This mini-review summarizes the current knowledge and recent advances since 2017 in the synthetic utility of electrochemical transformations for the C-H functionalization of nitrogen-containing heterocycles.
Collapse
Affiliation(s)
- Ya-Nan Li
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
- *Correspondence: Ya-Nan Li, ; Jia-Nan Sun,
| | - Bin Wang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Ye-Kai Huang
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Jin-Song Hu
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, China
| | - Jia-Nan Sun
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, China
- *Correspondence: Ya-Nan Li, ; Jia-Nan Sun,
| |
Collapse
|
38
|
Li Y, Zhang S, Ma Q, Ding H, Sun Z, Yuan Y, Jia X. SbCl3 Initiated Aerobic Phosphorylation of sp3 C-H Bond: A Facile Approach to α-Phosphorylated Tetrahydroisoquinolines. Chem Asian J 2022; 17:e202200656. [PMID: 35946091 DOI: 10.1002/asia.202200656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/04/2022] [Indexed: 11/07/2022]
Abstract
An aerobic phosphorylation of N-aryltetrahydroisoquinolines was realized by SbCl 3 initiated sp 3 C-H bond functionalization, providing a series of α-aminophosphonates in high yields. This work reveals that SbCl 3 /O 2 is an efficient and facile catalyst system to enable the aerobic C-H functionalization, and antimony containing reagents might be potentially applied to more general transformations.
Collapse
Affiliation(s)
- Yuemei Li
- Yangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Shuwei Zhang
- Yangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Qiyuan Ma
- Yangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Han Ding
- Yangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Zheng Sun
- Yangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Yu Yuan
- Yangzhou University, School of Chemistry and Chemical Engineering, CHINA
| | - Xiaodong Jia
- Yangzhou University, School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, 225002, Yangzhou, CHINA
| |
Collapse
|
39
|
Zhang Q, Liang K, Guo C. Enantioselective Nickel‐Catalyzed Electrochemical Radical Allylation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qinglin Zhang
- USTC: University of Science and Technology of China HFNL CHINA
| | - Kang Liang
- USTC: University of Science and Technology of China HFNL CHINA
| | - Chang Guo
- University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale No.96, JinZhai Road Baohe District 230026 Hefei CHINA
| |
Collapse
|
40
|
Long C, Cao H, Zhao B, Tan Y, He Y, Huang C, Guan Z. Merging the Non‐Natural Catalytic Activity of Lipase and Electrosynthesis: Asymmetric Oxidative Cross‐Coupling of Secondary Amines with Ketones. Angew Chem Int Ed Engl 2022; 61:e202203666. [DOI: 10.1002/anie.202203666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Chao‐Jiu Long
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Huan Cao
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Ben‐Kun Zhao
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Yu‐Fang Tan
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Yan‐Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| | - Chu‐Sheng Huang
- College of Chemistry and Materials, Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University Nanning 530001 China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical Engineering Southwest University Chongqing 400715 China
| |
Collapse
|
41
|
Lin HS, Chen SJ, Huang JM. Electrosynthesis of (hetero)aryl nitriles from α-imino-oxy acids via oxidative decarboxylation/N-O cleavage. Chem Commun (Camb) 2022; 58:8974-8977. [PMID: 35861309 DOI: 10.1039/d2cc02986c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new method for the synthesis of (hetero)aryl nitriles via iminyl radicals has been developed through the electrochemical oxidative decarboxylation of α-imino-oxy acids. This protocol provides an efficient approach to nitriles with a broad range of functional-group tolerance under ambient conditions and can be applied for one-pot gram-scale synthesis.
Collapse
Affiliation(s)
- Hui-Shan Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Shu-Jun Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| | - Jing-Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China.
| |
Collapse
|
42
|
Guo R, Xiao H, Li S, Luo Y, Bai J, Zhang M, Qi X, Guo Y, Zhang G. Photoinduced Copper‐Catalyzed Asymmetric C(sp3)‐H Alkynylation of Cyclic Amines by Intramolecular 1,5‐Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Guo
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Haijing Xiao
- Central China Normal University Department of Chemistry CHINA
| | - Sijia Li
- Central China Normal University Department of Chemistry CHINA
| | - Yixin Luo
- Wuhan University Department of Chemistry CHINA
| | - Jiahui Bai
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Mengzhen Zhang
- Central China Normal University Department of Chemistry CHINA
| | - Xiaotian Qi
- Wuhan University Department of Chemistry CHINA
| | - Yinlong Guo
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Guozhu Zhang
- Shanghai Institute of Organic Chemistry Chemistry 345 Lingling Rd 200032 Shanghai CHINA
| |
Collapse
|
43
|
Lee W, Kim D, Seo S, Chang S. Photoinduced α-C-H Amination of Cyclic Amine Scaffolds Enabled by Polar-Radical Relay. Angew Chem Int Ed Engl 2022; 61:e202202971. [PMID: 35403797 DOI: 10.1002/anie.202202971] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/09/2022]
Abstract
Herein, we report a polar-radical relay strategy for α-C-H amination of cyclic amines with N-chloro-N-sodio-carbamates. The relay is initiated by in situ generation of cyclic iminium intermediate using N-iodosuccinimide (NIS) oxidant as an initiator, which then operates through a series of polar (addition and elimination) and radical (homolysis, hydrogen- and halogen atom transfer) reactions to enable the challenging C-N bond formation in a controlled manner. A broad range of α-amino cyclic amines were readily accessed with excellent regioselectivity, and the superb applicability was further demonstrated by functionalization of biologically relevant compounds.
Collapse
Affiliation(s)
- Wongyu Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Dongwook Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sangwon Seo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
44
|
Miller JL, Lawrence JMIA, Rodriguez Del Rey FO, Floreancig PE. Synthetic applications of hydride abstraction reactions by organic oxidants. Chem Soc Rev 2022; 51:5660-5690. [PMID: 35712818 DOI: 10.1039/d1cs01169c] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carbon-hydrogen bond functionalizations provide an attractive method for streamlining organic synthesis, and many strategies have been developed for conducting these transformations. Hydride-abstracting reactions have emerged as extremely effective methods for oxidative bond-forming processes due to their mild reaction conditions and high chemoselectivity. This review will predominantly focus on the mechanism, reaction development, natural product synthesis applications, approaches to catalysis, and use in enantioselective processes for hydride abstractions by quinone, oxoammonium ion, and carbocation oxidants. These are the most commonly employed hydride-abstracting agents, but recent efforts illustrate the potential for weaker ketone and triaryl borane oxidants, which will be covered at the end of the review.
Collapse
Affiliation(s)
- Jenna L Miller
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | - Jean-Marc I A Lawrence
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| | | | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA.
| |
Collapse
|
45
|
Sim J, Ryou B, Choi M, Lee C, Park CM. Electrochemical C(sp 3)-H Functionalization of γ-Lactams Based on Hydrogen Atom Transfer. Org Lett 2022; 24:4264-4269. [PMID: 35675591 DOI: 10.1021/acs.orglett.2c01528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the electrochemical α-amidoalkylation of γ-lactams based on transition-metal-free cross-coupling via hydrogen atom transfer. The highly selective hydrogen atom transfer process allows for a broad substrate scope including both inter- and intramolecular reactions. Also, the construction of quaternary centers was realized by a double hydrogen atom transfer protocol to afford spirocycles. Detailed mechanistic studies including experimental and computational studies are provided to support the reaction pathway.
Collapse
Affiliation(s)
| | | | | | | | - Cheol-Min Park
- Department of Chemistry, Ulsan National Institute of Science & Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
46
|
Long CJ, Cao H, Zhao BK, Tan YF, He YH, Huang CS, Guan Z. Merging the Non‐Natural Catalytic Activity of Lipase and Electrosynthesis: Asymmetric Oxidative Cross‐Coupling of Secondary Amines with Ketones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chao-Jiu Long
- Southwest University School of Chemistry and Chemical Engineering CHINA
| | - Huan Cao
- Southwest University School of Chemistry and Chemical Engineering CHINA
| | - Ben-Kun Zhao
- Southwest University School of Chemistry and Chemical Engineering CHINA
| | - Yu-Fang Tan
- Southwest University School of Chemistry and Chemical Engineering CHINA
| | - Yan-Hong He
- Southwest University School of Chemistry and Chemical Engineering CHINA
| | - Chu-Sheng Huang
- Guangxi Teachers Education University: Nanning Normal University School of Chemistry and Chemical Engineering CHINA
| | - Zhi Guan
- Southwest University School of Chemistry and Chemical Engineering No. 1, Tiansheng Rd. 400715 Chongqing CHINA
| |
Collapse
|
47
|
Lee W, Kim D, Seo S, Chang S. Photoinduced α‐C−H Amination of Cyclic Amine Scaffolds Enabled by Polar‐Radical Relay. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Wongyu Lee
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Dongwook Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sangwon Seo
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sukbok Chang
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
48
|
Lawrence JMIA, Floreancig PE. Kinetics-Based Approach to Developing Electrocatalytic Variants of Slow Oxidations: Application to Hydride Abstraction-Initiated Cyclization Reactions. Chemistry 2022; 28:e202200335. [PMID: 35254690 DOI: 10.1002/chem.202200335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 01/28/2023]
Abstract
Electrochemical oxidant regeneration is challenging in reactions that have a slow redox step because the steady-state concentration of the reduced oxidant is low, causing difficulties in maintaining sufficient current or preventing potential spikes. This work shows that applying an understanding of the relationship between intermediate cation stability, oxidant strength, overpotential, and concentration on reaction kinetics delivers a method for electrochemical oxoammonium ion regeneration in hydride abstraction-initiated cyclization reactions, resulting in the development of an electrocatalytic variant of a process that has a high oxidation transition state free energy. This approach should be applicable to expanding the scope of electrocatalysis to include additional slow redox processes.
Collapse
Affiliation(s)
| | - Paul E Floreancig
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260, USA
| |
Collapse
|
49
|
Feng T, Wang S, Qiu Y. Electrochemical C–H Functionalization of Cyclic Amines. Synlett 2022. [DOI: 10.1055/a-1828-1217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Functionalized cyclic amines are essential structural motifs in synthetic chemistry and pharmacy chemistry, and Shono-type oxidation is a well-developed electrochemical approach for the synthesis of α-functionalized amines. In sharp contrast, electrochemically driven direct β-C(sp3)–H functionalization of amines has been far proven elusive. Herein, we outline the recent advances in this field and highlight our group’s effort to achieve electrochemical β-C(sp3)–H functionalization assisted by ferrocene as molecular electrocatalyst under mild conditions.
1 Introduction
2 Case studies of α-functionalization (Shono-type oxidation)
3 Electrochemical β-C(sp3)–H acylation
4 Conclusion
Collapse
Affiliation(s)
- Tian Feng
- College of Chemistry, Nankai University, Tianjin, China
| | - Siyi Wang
- College of Chemistry, Nankai University, Tianjin, China
| | - Youai Qiu
- College of Chemistry, Nankai University, Tianjin, China
| |
Collapse
|
50
|
Organocatalytic atroposelective construction of axially chiral N, N- and N, S-1,2-azoles through novel ring formation approach. Nat Commun 2022; 13:1933. [PMID: 35410417 PMCID: PMC9001698 DOI: 10.1038/s41467-022-29557-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Abstract1,2-Azoles are privileged structures in ligand/catalyst design and widely exist in many important natural products and drugs. In this report, two types of axially chiral 1,2-azoles (naphthyl-isothiazole S-oxides with a stereogenic sulfur center and atropoisomeric naphthyl pyrazoles) are synthesized via modified vinylidene ortho-quinone methide intermediates. Diverse products are acquired in satisfying yields and good to excellent enantioselectivities. The vinylidene ortho-quinone methide intermediates bearing two hetero atoms at 5-position have been demonstrated as a platform molecule for the atroposelective synthesis of axially chiral 1,2-azoles. This finding not only enrich our knowledge of vinylidene ortho-quinone methide chemistry but also provide the easy preparation method for diverse atropisomeric heterobiaryls that were inaccessible by existing methodologies. The obtained chiral naphthyl-isothiazole S-oxides and naphthyl-pyrazoles have demonstrated their potential application in further synthetic transformations and therapeutic agents.
Collapse
|