1
|
Rossetti M, Srisomwat C, Urban M, Rosati G, Maroli G, Yaman Akbay HG, Chailapakul O, Merkoçi A. Unleashing inkjet-printed nanostructured electrodes and battery-free potentiostat for the DNA-based multiplexed detection of SARS-CoV-2 genes. Biosens Bioelectron 2024; 250:116079. [PMID: 38295580 DOI: 10.1016/j.bios.2024.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/02/2024]
Abstract
Following the global COVID-19 pandemic triggered by SARS-CoV-2, the need for rapid, specific and cost-effective point-of-care diagnostic solutions remains paramount. Even though COVID-19 is no longer a public health emergency, the disease still poses a global threat leading to deaths, and it continues to change with the risk of new variants emerging causing a new surge in cases and deaths. Here, we address the urgent need for rapid, cost-effective and point-of-care diagnostic solutions for SARS-CoV-2. We propose a multiplexed DNA-based sensing platform that utilizes inkjet-printed nanostructured gold electrodes and an inkjet-printed battery-free near-field communication (NFC) potentiostat for the simultaneous quantitative detection of two SARS-CoV-2 genes, the ORF1ab and the N gene. The detection strategy based on the formation of an RNA-DNA sandwich structure leads to a highly specific electrochemical output. The inkjet-printed nanostructured gold electrodes providing a large surface area enable efficient binding and increase the sensitivity. The inkjet-printed battery-free NFC potentiostat enables rapid measurements and real-time data analysis via a smartphone application, making the platform accessible and portable. With the advantages of speed (5 min), simplicity, sensitivity (low pM range, ∼450% signal gain) and cost-effectiveness, the proposed platform is a promising alternative for point-of-care diagnostics and high-throughput analysis that complements the COVID-19 diagnostic toolkit.
Collapse
Affiliation(s)
- Marianna Rossetti
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain.
| | - Chawin Srisomwat
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Massimo Urban
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain; Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Barcelona, 08193, Spain
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain.
| | - Gabriel Maroli
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain; Universitat Autònoma de Barcelona, Campus de la UAB, Bellaterra, Barcelona, 08193, Spain; Instituto de Investigaciones en Ingeniería Eléctrica Alfredo Desages (IIIE), Universidad Nacional del Sur, CONICET, Avenida Colón 80 Bahía Blanca, Buenos Aires, Argentina
| | - Hatice Gödze Yaman Akbay
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence (EOSCE), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology, UAB Campus, 08193, Bellaterra, Barcelona, Spain; ICREA Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010, Barcelona, Spain.
| |
Collapse
|
2
|
Chamorro A, Rossetti M, Bagheri N, Porchetta A. Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:71-106. [PMID: 38273204 DOI: 10.1007/10_2023_235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.
Collapse
Affiliation(s)
| | - Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | - Neda Bagheri
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
3
|
Ranallo S, Bracaglia S, Sorrentino D, Ricci F. Synthetic Antigen-Conjugated DNA Systems for Antibody Detection and Characterization. ACS Sens 2023. [PMID: 37463359 PMCID: PMC10391708 DOI: 10.1021/acssensors.3c00564] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Antibodies are among the most relevant biomolecular targets for diagnostic and clinical applications. In this Perspective, we provide a critical overview of recent research efforts focused on the development and characterization of devices, switches, and reactions based on the use of synthetic antigen-conjugated DNA strands designed to be responsive to specific antibodies. These systems can find applications in sensing, drug-delivery, and antibody-antigen binding characterization. The examples described here demonstrate how the programmability and chemical versatility of synthetic nucleic acids can be used to create innovative analytical tools and target-responsive systems with promising potentials.
Collapse
Affiliation(s)
- Simona Ranallo
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Sara Bracaglia
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Daniela Sorrentino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Francesco Ricci
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133, Rome, Italy
| |
Collapse
|
4
|
Jamal RB, Vitasovic T, Gosewinkel U, Ferapontova EE. Detection of E.coli 23S rRNA by electrocatalytic "off-on" DNA beacon assay with femtomolar sensitivity. Biosens Bioelectron 2023; 228:115214. [PMID: 36906990 DOI: 10.1016/j.bios.2023.115214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Prevention of food spoilage, environmental bio-contamination, and pathogenic infections requires rapid and sensitive bacterial detection systems. Among microbial communities, the bacterial strain of Escherichia coli is most widespread, with pathogenic and non-pathogenic strains being biomarkers of bacterial contamination. Here, we have developed a fM-sensitive, simple, and robust electrocatalytically-amplified assay facilitating specific detection of E.coli 23S ribosomal rRNA, in the total RNA sample, after its site-specific cleavage by RNase H enzyme. Gold screen-printed electrodes (SPE) were electrochemically pre-treated to be productively modified with a methylene-blue (MB) - labelled hairpin DNA probes, which hybridization with the E. coli-specific DNA placed MB in the top region of the DNA duplex. The formed duplex acted as an electrical wire, mediating electron transfer from the gold electrode to the DNA-intercalated MB, and further to ferricyanide in solution, enabling its electrocatalytic reduction otherwise impeded on the hairpin-modified SPEs. The assay facilitated 20 min 1 fM detection of both synthetic E. coli DNA and 23S rRNA isolated from E.coli (equivalent to 15 CFU mL-1), and can be extended to fM analysis of nucleic acids isolated from any other bacteria.
Collapse
Affiliation(s)
- Rimsha B Jamal
- Interdisciplinary Nanoscience Center (iNANO) and Aarhus University Center for Water Technology (WATEC), Faculty of Science, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Toni Vitasovic
- Interdisciplinary Nanoscience Center (iNANO) and Aarhus University Center for Water Technology (WATEC), Faculty of Science, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Ulrich Gosewinkel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Elena E Ferapontova
- Interdisciplinary Nanoscience Center (iNANO) and Aarhus University Center for Water Technology (WATEC), Faculty of Science, Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| |
Collapse
|
5
|
Kesler V, Fu K, Chen Y, Park CH, Eisenstein M, Murmann B, Soh HT. Tailoring electrode surface charge to achieve discrimination and quantification of chemically similar small molecules with electrochemical aptamers. ADVANCED FUNCTIONAL MATERIALS 2023; 33:2208534. [PMID: 36819738 PMCID: PMC9937077 DOI: 10.1002/adfm.202208534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Indexed: 06/18/2023]
Abstract
Electrochemical biosensors based on structure-switching aptamers offer many advantages because they can operate directly in complex samples and offer the potential to integrate with miniaturized electronics. Unfortunately, these biosensors often suffer from cross-reactivity problems when measuring a target in samples containing other chemically similar molecules, such as precursors or metabolites. While some progress has been made in selecting highly specific aptamers, the discovery of these reagents remains slow and costly. In this work, we demonstrate a novel strategy to distinguish molecules with miniscule difference in chemical composition (such as a single hydroxyl group) - with cross reactive aptamer probes - by tuning the charge state of the surface on which the aptamer probes are immobilized. As an exemplar, we show that our strategy can distinguish between DOX and many structurally similar analytes, including its primary metabolite doxorubicinol (DOXol). We then demonstrate the ability to accurately quantify mixtures of these two molecules based on their differential response to sensors with different surface-charge properties. We believe this methodology is general and can be extended to a broad range of applications.
Collapse
Affiliation(s)
- Vladimir Kesler
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Kaiyu Fu
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Yihang Chen
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Chan Ho Park
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Michael Eisenstein
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Boris Murmann
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - H. Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Gómez-Arconada L, Díaz-Fernández A, Ferapontova EE. Ultrasensitive disposable apatasensor for reagentless electrocatalytic detection of thrombin: An O2-Dependent hemin-G4-aptamer assay on gold screen-printed electrodes. Talanta 2022; 245:123456. [DOI: 10.1016/j.talanta.2022.123456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/25/2022]
|
7
|
Wang L, Wang X, Chen Z, Liu S. Electrochemical DNA Scaffold-Based Sensing Platform for Multiple Modes of Protein Assay and a Keypad Lock System. Anal Chem 2022; 94:8317-8326. [PMID: 35649122 DOI: 10.1021/acs.analchem.2c00800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Development of a flexible, easy-to-use, and well-controllable DNA-based sensing platform would provide enormous opportunities to boost molecular diagnosis and signal transduction or information processing. Herein, a duplex DNA scaffold containing a bulge was deployed for the fabrication of a simple and general DNA-based electrochemical sensing platform. It could be harnessed for different signal output behaviors (one signal-off and two signal-on modes) toward a single-step analysis of the target protein. The detection limit toward the target protein could reach about 0.1 nM. Also, it could be used as a streamlined electrochemical workflow for the successive monitoring of protein binding. Furthermore, such an electrochemical sensing platform could be explored for the operation of the concatenated AND logic gates as a molecular keypad lock system. The current sensing platform based on only one duplex DNA scaffold presented features such as simple biosensor design and fabrication, flexible operation for different signal outputs, sensitive and selective protein detection, and expandable logic operation. It thus would pave a broad road toward the development of high-performance biosensors or logic devices to be applied for molecular diagnosis or computing.
Collapse
Affiliation(s)
- Li Wang
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| | - Xu Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Zhiqiang Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Shufeng Liu
- College of Chemistry and Chemical Engineering, Yantai University, 30 Qingquan Road, Yantai 264005, China
| |
Collapse
|
8
|
Electrochemical immunosensor for point-of-care quantitative detection of tumor markers based on personal glucometer. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Patino Diaz A, Bracaglia S, Ranallo S, Patino T, Porchetta A, Ricci F. Programmable Cell-Free Transcriptional Switches for Antibody Detection. J Am Chem Soc 2022; 144:5820-5826. [PMID: 35316049 PMCID: PMC8990998 DOI: 10.1021/jacs.1c11706] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
We report here the
development of a cell-free in vitro transcription
system for the detection of specific target antibodies.
The approach is based on the use of programmable antigen-conjugated
DNA-based conformational switches that, upon binding to a target antibody,
can trigger the cell-free transcription of a light-up fluorescence-activating
RNA aptamer. The system couples the unique programmability and responsiveness
of DNA-based systems with the specificity and sensitivity offered
by in vitro genetic circuitries and commercially
available transcription kits. We demonstrate that cell-free transcriptional
switches can efficiently measure antibody levels directly in blood
serum. Thanks to the programmable nature of the sensing platform,
the method can be adapted to different antibodies: we demonstrate
here the sensitive, rapid, and cost-effective detection of three different
antibodies and the possible use of this approach for the simultaneous
detection of two antibodies in the same solution.
Collapse
Affiliation(s)
- Aitor Patino Diaz
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Sara Bracaglia
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Simona Ranallo
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Tania Patino
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Alessandro Porchetta
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| | - Francesco Ricci
- Department of Chemistry, University of Rome, Tor Vergata, Via della Ricerca Scientifica, Rome 00133, Italy
| |
Collapse
|
10
|
Wang Z, Zhang Y, Wang X, Han L. Flow-homogeneous electrochemical sensing system based on 2D metal-organic framework nanozyme for successive microRNA assay. Biosens Bioelectron 2022; 206:114120. [PMID: 35240439 DOI: 10.1016/j.bios.2022.114120] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/26/2022]
Abstract
Considering DNA-based homogeneous electrochemical assay allows identification of targets to be carried out in a homogeneous solution, it would be of significance to develop the successive homogeneous assay system in dynamic solution for rapid disease diagnosis and high-throughput bioanalysis. In homogeneous assay, the work electrodes generally have capability of DNA capture but lack signal amplification, restricting its sensitivity. Here, a flow-homogeneous sensing system was proposed to realize the successive assay of microRNA, a model biomarker. Ultrathin 2D metal-organic framework (MOF) nanozymes with thickness of about 1 nm were facilely prepared by ultrasonic approach. Due to the excellent enzyme-like activity and adsorption capacity towards single-strand DNA (ssDNA), MOF nanozymes adsorbed on electrode simultaneously played two roles of ssDNA collector and signal-amplifier. To adapt the recoverable electrode to on-line monitoring, duplex-specific nuclease-assisted circle reaction was conducted to produce the turn-on amplified signal. Flow injection device was employed to realize the recycling of electrodes and the successive microRNA assay. The assay strategy showed low limit of detection (0.12 pM, S/N = 3) for microRNA, excellent renewability and acceptable reliability for real sample assay. The established system exerts the advantages of DNA-based homogeneous electrochemical sensing strategy. This work would not only expand homogeneous electrochemical assay to successive bioassay, but also provide the possibility for practical application of homogeneous sensing strategy.
Collapse
Affiliation(s)
- Zhen Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China
| | - Yucui Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China
| | - Xiuzhong Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China.
| | - Lei Han
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, 700 Changcheng Road, Qingdao, 266109, Shandong, China.
| |
Collapse
|
11
|
Kim G, Cho H, Nandhakumar P, Park JK, Kim KS, Yang H. Wash-Free, Sandwich-Type Protein Detection Using Direct Electron Transfer and Catalytic Signal Amplification of Multiple Redox Labels. Anal Chem 2022; 94:2163-2171. [PMID: 35043633 DOI: 10.1021/acs.analchem.1c04615] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Direct electron transfer (DET) between a redox label and an electrode has been used for sensitive and selective sandwich-type detection without a wash step. However, applying DET is still highly challenging in protein detection, and a single redox label per probe is insufficient to obtain a high electrochemical signal. Here, we report a wash-free, sandwich-type detection of thrombin using DET and catalytic signal amplification of multiple redox labels. The detection scheme is based on (i) the redox label-catalyzed oxidation of a reductant, (ii) the conjugation of multiple redox labels per probe using a poly-linker, (iii) the low nonspecific adsorption of the conjugated poly-linker due to uncharged, reduced redox labels, and (iv) a facile DET using long, flexible poly-linker and spacer DNA. Amine-reactive phenazine ethosulfate and NADH were used as the redox label and reductant, respectively. N3-terminated polylysine was used as the poly-linker for the conjugation between an aptamer probe and multiple redox labels. Approximately 11 redox labels per probe and rapid catalytic NADH oxidation enable high signal amplification. Thrombin in urine could be detected without a wash step with a detection limit of ∼50 pM, which is practically promising for point-of-care testing of proteins.
Collapse
Affiliation(s)
- Gyeongho Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Ponnusamy Nandhakumar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Jin Kyoon Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| | - Haesik Yang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea
| |
Collapse
|
12
|
Fu K, Seo J, Kesler V, Maganzini N, Wilson BD, Eisenstein M, Murmann B, Soh HT. Accelerated Electron Transfer in Nanostructured Electrodes Improves the Sensitivity of Electrochemical Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102495. [PMID: 34668339 PMCID: PMC8655170 DOI: 10.1002/advs.202102495] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/29/2021] [Indexed: 05/20/2023]
Abstract
Electrochemical biosensors hold the exciting potential to integrate molecular detection with signal processing and wireless communication in a miniaturized, low-cost system. However, as electrochemical biosensors are miniaturized to the micrometer scale, their signal-to-noise ratio degrades and reduces their utility for molecular diagnostics. Studies have reported that nanostructured electrodes can improve electrochemical biosensor signals, but since the underlying mechanism remains poorly understood, it remains difficult to fully exploit this phenomenon to improve biosensor performance. In this work, electrochemical aptamer biosensors on nanoporous electrode are optimized to achieve improved sensitivity by tuning pore size, probe density, and electrochemical measurement parameters. Further, a novel mechanism in which electron transfer is physically accelerated within nanostructured electrodes due to reduced charge screening, resulting in enhanced sensitivity is proposed and experimentally validated. In concert with the increased surface areas achieved with this platform, this newly identified effect can yield an up to 24-fold increase in signal level and nearly fourfold lower limit of detection relative to planar electrodes with the same footprint. Importantly, this strategy can be generalized to virtually any electrochemical aptamer sensor, enabling sensitive detection in applications where miniaturization is a necessity, and should likewise prove broadly applicable for improving electrochemical biosensor performance in general.
Collapse
Affiliation(s)
- Kaiyu Fu
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
- Department of RadiologyStanford UniversityStanfordCA94305USA
| | - Ji‐Won Seo
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
- Department of RadiologyStanford UniversityStanfordCA94305USA
| | - Vladimir Kesler
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
| | - Nicolo Maganzini
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
| | - Brandon D. Wilson
- Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | - Michael Eisenstein
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
- Department of RadiologyStanford UniversityStanfordCA94305USA
| | - Boris Murmann
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
| | - H. Tom Soh
- Department of Electrical EngineeringStanford UniversityStanfordCA94305USA
- Department of RadiologyStanford UniversityStanfordCA94305USA
- Chan Zuckerberg BiohubSan FranciscoCA94158USA
| |
Collapse
|
13
|
Mo T, Liu X, Luo Y, Zhong L, Zhang Z, Li T, Gan L, Liu X, Li L, Wang H, Sun X, Fan D, Qian Z, Wu P, Chen X. Aptamer-based biosensors and application in tumor theranostics. Cancer Sci 2021; 113:7-16. [PMID: 34747552 PMCID: PMC8748234 DOI: 10.1111/cas.15194] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 02/06/2023] Open
Abstract
An aptamer is a short oligonucleotide chain that can specifically recognize targeting analytes. Due to its high specificity, low cost, and good biocompatibility, aptamers as the targeting elements of biosensors have been applied widely in non-invasive tumor imaging and treatment in situ to replace traditional methods. In this review, we will summarize recent advances in using aptamer-based biosensors in tumor diagnosis. After a brief introduction of the advantage of aptamers compared with enzyme sensors and immune sensors, the different sensing designs and mechanisms based on 3 signal transduction modes will be reviewed to cover different kinds of analytical methods, including: electrochemistry analysis, colorimetry analysis, and fluorescence analysis. Finally, the prospective advantages of aptamer-based biosensors in tumor theranostics and post-treatment monitoring are also evaluated in this review.
Collapse
Affiliation(s)
- Tong Mo
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xiyu Liu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Yiqun Luo
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Liping Zhong
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhikun Zhang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Tong Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Lu Gan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xiuli Liu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Lan Li
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Huixue Wang
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xinjun Sun
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Dianfa Fan
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Zhangbo Qian
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Pan Wu
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Xiaoyuan Chen
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China.,Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Faculty of Engineering, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, Clinical Imaging Research Centre, Centre for Translational Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, Nanomedicine Translational Research Program, NUS Center for Nanomedicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Huang Q, Lin X, Chen D, Tong QX. Carbon Dots/α-Fe 2O 3-Fe 3O 4 nanocomposite: Efficient synthesis and application as a novel electrochemical aptasensor for the ultrasensitive determination of aflatoxin B1. Food Chem 2021; 373:131415. [PMID: 34710699 DOI: 10.1016/j.foodchem.2021.131415] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/20/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
Developing an effective method for the detection of aflatoxin B1 (AFB1) remains an arduous task due to the high toxicity of AFB1 to a health concern. In this study, a sensitive and reliable electrochemical aptasensor based on carbon dots/α-Fe2O3-Fe3O4 nanocomposite (CDs/α-Fe2O3-Fe3O4) is constructed for the determination of AFB1. The CDs have good electrical conductivity and large specific surface areas to improve the aptasensor's sensitivity. The α-Fe2O3-Fe3O4 can not only improve the catalytic performance of the aptasensor but also have magnetism, which can realize the recovery of CDs/α-Fe2O3-Fe3O4 to avoid material waste and environmental pollution. This electrochemical aptasensor can achieve a good linear (0.001-100.0 nM) and excellent detection limit (0.5 pM) for the determination of AFB1. In addition, the aptasensor was also applied to determine AFB1 in beer, rice, and peanuts, all results were in good agreement with HPLC, indicating that the electrochemical aptasensor has a broad application prospect.
Collapse
Affiliation(s)
- Qitong Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Scientific Research Center, School of Medical and Information Engineering, Gannan Medical University, Jiangxi 341000, PR China; Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Guangdong 515063, PR China
| | - Xiaofeng Lin
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Scientific Research Center, School of Medical and Information Engineering, Gannan Medical University, Jiangxi 341000, PR China; Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Guangdong 515063, PR China
| | - Dejian Chen
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian 361021, PR China
| | - Qing-Xiao Tong
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Material of Guangdong Province, Shantou University, Guangdong 515063, PR China.
| |
Collapse
|
15
|
Kang H, Wang X, Guo M, Dai C, Chen R, Yang L, Wu Y, Ying T, Zhu Z, Wei D, Liu Y, Wei D. Ultrasensitive Detection of SARS-CoV-2 Antibody by Graphene Field-Effect Transistors. NANO LETTERS 2021; 21:7897-7904. [PMID: 34581586 DOI: 10.1021/acs.nanolett.1c00837] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The fast spread of SARS-CoV-2 has severely threatened the public health. Establishing a sensitive method for SARS-CoV-2 detection is of great significance to contain the worldwide pandemic. Here, we develop a graphene field-effect transistor (g-FET) biosensor and realize ultrasensitive SARS-CoV-2 antibody detection with a limit of detection (LoD) down to 10-18 M (equivalent to 10-16 g mL-1) level. The g-FETs are modified with spike S1 proteins, and the SARS-CoV-2 antibody biorecognition events occur in the vicinity of the graphene surface, yielding an LoD of ∼150 antibodies in 100 μL full serum, which is the lowest LoD value of antibody detection. The diagnoses time is down to 2 min for detecting clinical serum samples. As such, the g-FETs leverage rapid and precise SARS-CoV-2 screening and also hold great promise in prevention and control of other epidemic outbreaks in the future.
Collapse
Affiliation(s)
- Hua Kang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Xuejun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Changhao Dai
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Renzhong Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Lei Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
| | - Yanling Wu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Zhaoqin Zhu
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Dapeng Wei
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| | - Yunqi Liu
- Institute of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
- Institute of Molecular Materials and Devices, Department of Material Science, Fudan University, Shanghai 200433, China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing 400714, China
| |
Collapse
|
16
|
Zhang YP, Wang HP, Dong RL, Li SY, Wang ZG, Liu SL, Pang DW. Proximity-induced exponential amplification reaction triggered by proteins and small molecules. Chem Commun (Camb) 2021; 57:4714-4717. [PMID: 33977980 DOI: 10.1039/d1cc00583a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We proposed a method to regulate nucleic acid polymerization by proximity and designed an ultrasensitive biosensor based on proximity-induced exponential amplification reaction for proximity assay of proteins (streptavidin) and small molecules (adenosine triphosphate), which allows us to detect a variety of interesting targets by simply changing the binding sites of DNA.
Collapse
Affiliation(s)
- Yu-Peng Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| | - Hong-Peng Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| | - Ruo-Lan Dong
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| | - Si-Yao Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China. and Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, and School of Medicine, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
17
|
Zanut A, Rossetti M, Marcaccio M, Ricci F, Paolucci F, Porchetta A, Valenti G. DNA-Based Nanoswitches: Insights into Electrochemiluminescence Signal Enhancement. Anal Chem 2021; 93:10397-10402. [PMID: 34213888 PMCID: PMC8382220 DOI: 10.1021/acs.analchem.1c01683] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Electrochemiluminescence (ECL) is a powerful transduction technique that has rapidly gained importance as a powerful analytical technique. Since ECL is a surface-confined process, a comprehensive understanding of the generation of ECL signal at a nanometric distance from the electrode could lead to several highly promising applications. In this work, we explored the mechanism underlying ECL signal generation on the nanoscale using luminophore-reporter-modified DNA-based nanoswitches (i.e., molecular beacon) with different stem stabilities. ECL is generated according to the "oxidative-reduction" strategy using tri-n-propylamine (TPrA) as a coreactant and Ru(bpy)32+ as a luminophore. Our findings suggest that by tuning the stem stability of DNA nanoswitches we can activate different ECL mechanisms (direct and remote) and, under specific conditions, a "digital-like" association curve, i.e., with an extremely steep transition after the addition of increasing concentrations of DNA target, a large signal variation, and low preliminary analytical performance (LOD 22 nM for 1GC DNA-nanoswtich and 16 nM for 5GC DNA-nanoswitch). In particular, we were able to achieve higher signal gain (i.e., 10 times) with respect to the standard "signal-off" electrochemical readout. We demonstrated the copresence of two different ECL generation mechanisms on the nanoscale that open the way for the design of customized DNA devices for highly efficient dual-signal-output ratiometric-like ECL systems.
Collapse
Affiliation(s)
- Alessandra Zanut
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Marianna Rossetti
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Massimo Marcaccio
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Francesco Ricci
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Francesco Paolucci
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Alessandro Porchetta
- Dipartimento di Scienze e Tecnologie Chimiche, University of Rome, Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Giovanni Valenti
- Department of Chemistry "G. Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
18
|
Bracaglia S, Ranallo S, Plaxco KW, Ricci F. Programmable, Multiplexed DNA Circuits Supporting Clinically Relevant, Electrochemical Antibody Detection. ACS Sens 2021; 6:2442-2448. [PMID: 34129321 PMCID: PMC8240086 DOI: 10.1021/acssensors.1c00790] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Current health emergencies have highlighted the need to have rapid, sensitive, and convenient platforms for the detection of specific antibodies. In response, we report here the design of an electrochemical DNA circuit that responds quantitatively to multiple specific antibodies. The approach employs synthetic antigen-conjugated nucleic acid strands that are rationally designed to induce a strand displacement reaction and release a redox reporter-modified strand upon the recognition of a specific target antibody. The approach is sensitive (low nanomolar detection limit), specific (no signal is observed in the presence of non-targeted antibodies), and selective (the platform can be employed in complex media, including 90% serum). The programmable nature of the strand displacement circuit makes it also versatile, and we demonstrate here the detection of five different antibodies, including three of which are clinically relevant. Using different redox reporters, we also show that the antibody-responsive circuit can be multiplexed and responds to different antibodies in the same solution without crosstalk.
Collapse
Affiliation(s)
- Sara Bracaglia
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy
| | - Simona Ranallo
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy
- Department of Chemistry and Biochemistry, University of California Santa Barbara, CA93106 Santa Barbara, California, United States
| | - Kevin W. Plaxco
- Department of Chemistry and Biochemistry, University of California Santa Barbara, CA93106 Santa Barbara, California, United States
| | - Francesco Ricci
- Department of Chemical Science and Technologies, University of Rome, Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
19
|
Bezerra AB, Kurian ASN, Easley CJ. Nucleic-Acid Driven Cooperative Bioassays Using Probe Proximity or Split-Probe Techniques. Anal Chem 2021; 93:198-214. [PMID: 33147015 PMCID: PMC7855502 DOI: 10.1021/acs.analchem.0c04364] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Dai Y, Xu W, Somoza RA, Welter JF, Caplan AI, Liu CC. An Integrated Multi‐Function Heterogeneous Biochemical Circuit for High‐Resolution Electrochemistry‐Based Genetic Analysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yifan Dai
- Electronics Design Center Case Western Reserve University Cleveland OH 44106 USA
- Department of Biomedical Engineering Duke University Durham NC 27708 USA
| | - Wei Xu
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
| | - Rodrigo A. Somoza
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage Department of Biology Case Western Reserve University Cleveland OH 44106 USA
| | - Jean F. Welter
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage Department of Biology Case Western Reserve University Cleveland OH 44106 USA
| | - Arnold I. Caplan
- Department of Biomedical Engineering Case Western Reserve University Cleveland OH 44106 USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage Department of Biology Case Western Reserve University Cleveland OH 44106 USA
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering Electronics Design Center Case Western Reserve University Cleveland OH 44106 USA
| |
Collapse
|
21
|
Dai Y, Xu W, Somoza RA, Welter JF, Caplan AI, Liu CC. An Integrated Multi-Function Heterogeneous Biochemical Circuit for High-Resolution Electrochemistry-Based Genetic Analysis. Angew Chem Int Ed Engl 2020; 59:20545-20551. [PMID: 32835412 PMCID: PMC9306392 DOI: 10.1002/anie.202010648] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 12/22/2022]
Abstract
Modular construction of an autonomous and programmable multi-functional heterogeneous biochemical circuit that can identify, transform, translate, and amplify biological signals into physicochemical signals based on logic design principles can be a powerful means for the development of a variety of biotechnologies. To explore the conceptual validity, we design a CRISPR-array-mediated primer-exchange-reaction-based biochemical circuit cascade, which probes a specific biomolecular input, transform the input into a structurally accessible form for circuit wiring, translate the input information into an arbitrary sequence, and finally amplify the prescribed sequence through autonomous formation of a signaling concatemer. This upstream biochemical circuit is further wired with a downstream electrochemical interface, delivering an integrated bioanalytical platform. We program this platform to directly analyze the genome of SARS-CoV-2 in human cell lysate, demonstrating the capability and the utility of this unique integrated system.
Collapse
Affiliation(s)
- Yifan Dai
- Electronics Design Center, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Wei Xu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rodrigo A Somoza
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Jean F Welter
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Arnold I Caplan
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
- Skeletal Research Center & Center for Multimodal Evaluation of Engineered Cartilage, Department of Biology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chung Chiun Liu
- Department of Chemical and Biomolecular Engineering, Electronics Design Center, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|