1
|
Liu Y, An L, Wang X, Dai Y, Zhang C, Wen Q, Zhang X. Engineering a controllable and reversible switch for CAR-based cellular immunotherapies via a genetic code expansion system. J Hematol Oncol 2024; 17:122. [PMID: 39696585 DOI: 10.1186/s13045-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND As one of the most promising adoptive cell therapies, CAR-T cell therapy has achieved notable clinical effects in patients with hematological tumors. However, several treatment-related obstacles remain in CAR-T therapy, such as cytokine release syndrome, neurotoxicity, and high-frequency recurrence, which severely limit the long-term effects and can potentially be fatal. Therefore, strategies to increase the controllability and safety of CAR-T therapy are urgently needed. METHODS In this study, we engineered a genetic code expansion-based therapeutic system to achieve rapid CAR protein expression and regulation in response to cognate unnatural amino acids at the translational level. When the unnatural amino acid N-ε-((tert-butoxy) carbonyl)-l-lysine (BOCK) is absent, the CAR protein cannot be completely translated, and CAR-T is "closed". When BOCK is present, complete translation of the CAR protein is induced, and CAR-T is "open". Therefore, we investigated whether the BOCK-induced device can control CAR protein expression and regulate CAR-T cell function using a series of in vitro and in vivo experiments. RESULTS First, we verified that the BOCK-induced genetic code expansion system enables the regulation of protein expression as a controllable switch. We subsequently demonstrated that when the system was combined with CAR-T cells, BOCK could effectively and precisely control CAR protein expression and induce CAR signaling activation. When incubated with tumor cells, BOCK regulated CAR-T cells cytotoxicity in a dose-dependent manner. Our results revealed that the presence of BOCK enables the activation of CAR-T cells with strong anti-tumor cytotoxicity in a NOG mouse model. Furthermore, we verified that the BOCK-induced CAR device provided NK cells with controllable anti-tumor activity, which confirmed the universality of this device. CONCLUSIONS Our study systematically demonstrated that the BOCK-induced genetic code expansion system effectively and precisely regulates CAR protein expression and controls CAR-T cell anti-tumor effects in vitro and in vivo. We conclude that this controllable and reversible switch has the potential for more effective, secure, and clinically available CAR-based cellular immunotherapies.
Collapse
Affiliation(s)
- Yue Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Lingna An
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Yueyu Dai
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
2
|
Serniuck NJ, Kapcan E, Moogk D, Moore AE, Lake BP, Denisova G, Hammill JA, Bramson JL, Rullo AF. Electrophilic proximity-inducing synthetic adapters enhance universal T cell function by covalently enforcing immune receptor signaling. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200842. [PMID: 39045028 PMCID: PMC11264187 DOI: 10.1016/j.omton.2024.200842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Abstract
Proximity-induction of cell-cell interactions via small molecules represents an emerging field in basic and translational sciences. Covalent anchoring of these small molecules represents a useful chemical strategy to enforce proximity; however, it remains largely unexplored for driving cell-cell interactions. In immunotherapeutic applications, bifunctional small molecules are attractive tools for inducing proximity between immune effector cells like T cells and tumor cells to induce tumoricidal function. We describe a two-component system composed of electrophilic bifunctional small molecules and paired synthetic antigen receptors (SARs) that elicit T cell activation. The molecules, termed covalent immune recruiters (CIRs), were designed to affinity label and covalently engage SARs. We evaluated the utility of CIRs to direct anti-tumor function of human T cells engineered with three biologically distinct classes of SAR. Irrespective of the electrophilic chemistry, tumor-targeting moiety, or SAR design, CIRs outperformed equivalent non-covalent bifunctional adapters, establishing a key role for covalency in maximizing functionality. We determined that covalent linkage enforced early T cell activation events in a manner that was dependent upon each SARs biology and signaling threshold. These results provide a platform to optimize universal SAR-T cell functionality and more broadly reveal new insights into how covalent adapters modulate cell-cell proximity-induction.
Collapse
Affiliation(s)
- Nickolas J. Serniuck
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Eden Kapcan
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Duane Moogk
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Allyson E. Moore
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Benjamin P.M. Lake
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Galina Denisova
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
| | - Joanne A. Hammill
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Jonathan L. Bramson
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Anthony F. Rullo
- Centre for Discovery in Cancer Research, McMaster University, Hamilton, ON, Canada
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
3
|
Hou R, Zhang X, Wang X, Zhao X, Li S, Guan Z, Cao J, Liu D, Zheng J, Shi M. In vivo manufacture and manipulation of CAR-T cells for better druggability. Cancer Metastasis Rev 2024; 43:1075-1093. [PMID: 38592427 DOI: 10.1007/s10555-024-10185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
The current CAR-T cell therapy products have been hampered in their druggability due to the personalized preparation required, unclear pharmacokinetic characteristics, and unpredictable adverse reactions. Enabling standardized manufacturing and having clear efficacy and pharmacokinetic characteristics are prerequisites for ensuring the effective practicality of CAR-T cell therapy drugs. This review provides a broad overview of the different approaches for controlling behaviors of CAR-T cells in vivo. The utilization of genetically modified vectors enables in vivo production of CAR-T cells, thereby abbreviating or skipping the lengthy in vitro expansion process. By equipping CAR-T cells with intricately designed control elements, using molecule switches or small-molecule inhibitors, the control of CAR-T cell activity can be achieved. Moreover, the on-off control of CAR-T cell activity would yield potential gains in phenotypic remodeling. These methods provide beneficial references for the future development of safe, controllable, convenient, and suitable for standardized production of CAR-T cell therapy products.
Collapse
Affiliation(s)
- Rui Hou
- College of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoxue Zhang
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xuan Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Sijin Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhangchun Guan
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiang Cao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Dan Liu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Ming Shi
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
4
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
5
|
Lin H, Li C, Zhang W, Wu B, Wang Y, Wang S, Wang D, Li X, Huang H. Synthetic Cells and Molecules in Cellular Immunotherapy. Int J Biol Sci 2024; 20:2833-2859. [PMID: 38904025 PMCID: PMC11186374 DOI: 10.7150/ijbs.94346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/25/2024] [Indexed: 06/22/2024] Open
Abstract
Cellular immunotherapy has emerged as an exciting strategy for cancer treatment, as it aims to enhance the body's immune response to tumor cells by engineering immune cells and designing synthetic molecules from scratch. Because of the cytotoxic nature, abundance in peripheral blood, and maturation of genetic engineering techniques, T cells have become the most commonly engineered immune cells to date. Represented by chimeric antigen receptor (CAR)-T therapy, T cell-based immunotherapy has revolutionized the clinical treatment of hematological malignancies. However, serious side effects and limited efficacy in solid tumors have hindered the clinical application of cellular immunotherapy. To address these limitations, various innovative strategies regarding synthetic cells and molecules have been developed. On one hand, some cytotoxic immune cells other than T cells have been engineered to explore the potential of targeted elimination of tumor cells, while some adjuvant cells have also been engineered to enhance the therapeutic effect. On the other hand, diverse synthetic cellular components and molecules are added to engineered immune cells to regulate their functions, promoting cytotoxic activity and restricting side effects. Moreover, novel bioactive materials such as hydrogels facilitating the delivery of therapeutic immune cells have also been applied to improve the efficacy of cellular immunotherapy. This review summarizes the innovative strategies of synthetic cells and molecules currently available in cellular immunotherapies, discusses the limitations, and provides insights into the next generation of cellular immunotherapies.
Collapse
Affiliation(s)
- Haikun Lin
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Chentao Li
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Wanying Zhang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - Boxiang Wu
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Yanan Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - Shimin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongrui Wang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - Xia Li
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| | - He Huang
- Bone Marrow Transplantation Center of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine
- Institute of Hematology, Zhejiang University, Haining, China
- Zhejiang Province Engineering Research Center for Stem Cell and Immunity Therapy, Haining, China
| |
Collapse
|
6
|
Stepanov AV, Xie J, Zhu Q, Shen Z, Su W, Kuai L, Soll R, Rader C, Shaver G, Douthit L, Zhang D, Kalinin R, Fu X, Zhao Y, Qin T, Baran PS, Gabibov AG, Bushnell D, Neri D, Kornberg RD, Lerner RA. Control of the antitumour activity and specificity of CAR T cells via organic adapters covalently tethering the CAR to tumour cells. Nat Biomed Eng 2024; 8:529-543. [PMID: 37798444 DOI: 10.1038/s41551-023-01102-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 08/25/2023] [Indexed: 10/07/2023]
Abstract
On-target off-tumour toxicity limits the anticancer applicability of chimaeric antigen receptor (CAR) T cells. Here we show that the tumour-targeting specificity and activity of T cells with a CAR consisting of an antibody with a lysine residue that catalytically forms a reversible covalent bond with a 1,3-diketone hapten can be regulated by the concentration of a small-molecule adapter. This adapter selectively binds to the hapten and to a chosen tumour antigen via a small-molecule binder identified via a DNA-encoded library. The adapter therefore controls the formation of a covalent bond between the catalytic antibody and the hapten, as well as the tethering of the CAR T cells to the tumour cells, and hence the cytotoxicity and specificity of the cytotoxic T cells, as we show in vitro and in mice with prostate cancer xenografts. Such small-molecule switches of T-cell cytotoxicity and specificity via an antigen-independent 'universal' CAR may enhance the control and safety profile of CAR-based cellular immunotherapies.
Collapse
Affiliation(s)
- Alexey V Stepanov
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| | - Jia Xie
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | - Wenji Su
- WuXi AppTec Co., Ltd, Shanghai, China
| | | | | | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, USA
| | - Geramie Shaver
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Lacey Douthit
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ding Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Roman Kalinin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - Xiang Fu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Yingying Zhao
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Tian Qin
- The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Phil S Baran
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Alexander G Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| | - David Bushnell
- Structural Biology, School of Medicine, Stanford University, Stanford, CA, USA
| | - Dario Neri
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Roger D Kornberg
- Structural Biology, School of Medicine, Stanford University, Stanford, CA, USA.
| | - Richard A Lerner
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
7
|
Zhang Q, Wu L, Zhang Y, Wang D, Sima Y, Wang Z, Yin Z, Wu H, Zhuo Y, Zhang Y, Wang L, Chen Y, Liu Y, Qiu L, Tan W. Aptamer-Based Nongenetic Reprogramming of CARs Enables Flexible Modulation of T Cell-Mediated Tumor Immunotherapy. ACS CENTRAL SCIENCE 2024; 10:813-822. [PMID: 38680567 PMCID: PMC11046454 DOI: 10.1021/acscentsci.3c01511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024]
Abstract
Innovating the design of chimeric antigen receptors (CARs) beyond conventional structures would be necessary to address the challenges of efficacy, safety, and applicability in T cell-based cancer therapy, whereas excessive genetic modification might complicate CAR design and manufacturing, and increase gene editing risks. In this work, we used aptamers as the antigen-recognition unit to develop a nongenetic CAR engineering strategy for programming the antitumor activity and specificity of CAR T cells. Our results demonstrated that aptamer-functionalized CAR (Apt-CAR) T cells could be directly activated by recognizing target antigens on cancer cells, and then impart a cytotoxic effect for cancer elimination in vitro and in vivo. The designable antigen recognition capability of Apt-CAR T cells allows for easy modulation of their efficacy and specificity. Additionally, multiple features, e.g., tunable antigen-binding avidity and the tumor microenvironment responsiveness, could be readily integrated into Apt-CAR design without T cell re-engineering, offering a new paradigm for developing adaptable immunotherapeutics.
Collapse
Affiliation(s)
- Qiang Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Limei Wu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yue Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Dan Wang
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Yingyu Sima
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhimin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Zhiwei Yin
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Hui Wu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yuting Zhuo
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yutong Zhang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Linlin Wang
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Yong Chen
- NHC
Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha 410000, P. R. China
| | - Yanlan Liu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical
Engineering, College of Biology, Aptamer Engineering Center of Hunan
Province, Hunan University, Changsha, Hunan 410082, P. R. China
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
| | - Weihong Tan
- The
Key Laboratory of Zhejiang Province for Aptamers and Theranostics,
Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, P. R. China
- Institute
of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University
School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
8
|
Teng F, Cui T, Zhou L, Gao Q, Zhou Q, Li W. Programmable synthetic receptors: the next-generation of cell and gene therapies. Signal Transduct Target Ther 2024; 9:7. [PMID: 38167329 PMCID: PMC10761793 DOI: 10.1038/s41392-023-01680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/22/2023] [Accepted: 10/11/2023] [Indexed: 01/05/2024] Open
Abstract
Cell and gene therapies hold tremendous promise for treating a range of difficult-to-treat diseases. However, concerns over the safety and efficacy require to be further addressed in order to realize their full potential. Synthetic receptors, a synthetic biology tool that can precisely control the function of therapeutic cells and genetic modules, have been rapidly developed and applied as a powerful solution. Delicately designed and engineered, they can be applied to finetune the therapeutic activities, i.e., to regulate production of dosed, bioactive payloads by sensing and processing user-defined signals or biomarkers. This review provides an overview of diverse synthetic receptor systems being used to reprogram therapeutic cells and their wide applications in biomedical research. With a special focus on four synthetic receptor systems at the forefront, including chimeric antigen receptors (CARs) and synthetic Notch (synNotch) receptors, we address the generalized strategies to design, construct and improve synthetic receptors. Meanwhile, we also highlight the expanding landscape of therapeutic applications of the synthetic receptor systems as well as current challenges in their clinical translation.
Collapse
Affiliation(s)
- Fei Teng
- University of Chinese Academy of Sciences, Beijing, 101408, China.
| | - Tongtong Cui
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qingqin Gao
- University of Chinese Academy of Sciences, Beijing, 101408, China
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, 101408, China.
- State Key Laboratory of Stem Cell and Regenerative Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
9
|
Li H, Huang Q, Zhang Y. A bibliometric and knowledge-map study of CAR-T cell-related cytokine release syndrome (CRS) from 2012 to 2023. Hum Vaccin Immunother 2023; 19:2291900. [PMID: 38112002 PMCID: PMC10732679 DOI: 10.1080/21645515.2023.2291900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
CAR-T cell therapy has demonstrated efficacy in treating certain hematological malignancies. However, the administration of CAR-T cells is accompanied by the occurrence of adverse events. Among these, cytokine release syndrome (CRS) has garnered significant attention. In this descriptive study, we set the search criteria to retrieve and obtain articles regarding CAR-T cell-related CRS from the Web of Science Core Collection (WoSCC). The bibliometric and knowledge-map analysis of these documents was conducted using Microsoft Excel 2019, GraphPad Prism 8, CtieSpace, and VOSviewer. 6,623 authors from 295 institutions in 49 countries coauthored a total of 1,001 publications. The leading country in this field was the United States. The most productive institution was the University of Pennsylvania. Carl H. June had the most citations, while Daniel W. Lee had the most co-citations. Research hotspots primarily concentrated on the pathogenesis, serum biomarkers, management, and therapeutic drugs of CRS, alongside neurotoxicity. Emerging topics within this discipline encompassed the following: a. Drugs for effective treatment and intervention of CRS; b. Conducting pertinent clinical trials to acquire real-world data; c. Management of toxicity (CRS and neurotoxicity) associated with CAR-T cell therapy; d. The study of BCMA-CAR-T cells in multiple myeloma (MM); e. Optimizing the CAR framework structure to enhance the effectiveness and safety of CAR-T cells. A bibliometric and scientific knowledge-map analysis provided a unique and objective perspective for exploring the field of CAR-T cell-related CRS, and may provide some new clues and valuable references for researchers.
Collapse
Affiliation(s)
- Huimin Li
- Department of Hematology, The Fifth Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Qing Huang
- Department of Hematology, The Fifth Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Yuan Zhang
- Department of Hematology, The Fifth Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
10
|
Bangayan NJ, Wang L, Burton Sojo G, Noguchi M, Cheng D, Ta L, Gunn D, Mao Z, Liu S, Yin Q, Riedinger M, Li K, Wu AM, Stoyanova T, Witte ON. Dual-inhibitory domain iCARs improve the efficiency of the AND-NOT gate CAR T strategy. Proc Natl Acad Sci U S A 2023; 120:e2312374120. [PMID: 37963244 PMCID: PMC10666036 DOI: 10.1073/pnas.2312374120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
CAR (chimeric antigen receptor) T cell therapy has shown clinical success in treating hematological malignancies, but its treatment of solid tumors has been limited. One major challenge is on-target, off-tumor toxicity, where CAR T cells also damage normal tissues that express the targeted antigen. To reduce this detrimental side-effect, Boolean-logic gates like AND-NOT gates have utilized an inhibitory CAR (iCAR) to specifically curb CAR T cell activity at selected nonmalignant tissue sites. However, the strategy seems inefficient, requiring high levels of iCAR and its target antigen for inhibition. Using a TROP2-targeting iCAR with a single PD1 inhibitory domain to inhibit a CEACAM5-targeting CAR (CEACAR), we observed that the inefficiency was due to a kinetic delay in iCAR inhibition of cytotoxicity. To improve iCAR efficiency, we modified three features of the iCAR-the avidity, the affinity, and the intracellular signaling domains. Increasing the avidity but not the affinity of the iCAR led to significant reductions in the delay. iCARs containing twelve different inhibitory signaling domains were screened for improved inhibition, and three domains (BTLA, LAIR-1, and SIGLEC-9) each suppressed CAR T function but did not enhance inhibitory kinetics. When inhibitory domains of LAIR-1 or SIGLEC-9 were combined with PD-1 into a single dual-inhibitory domain iCAR (DiCARs) and tested with the CEACAR, inhibition efficiency improved as evidenced by a significant reduction in the inhibitory delay. These data indicate that a delicate balance between CAR and iCAR signaling strength and kinetics must be achieved to regulate AND-NOT gate CAR T cell selectivity.
Collapse
Affiliation(s)
- Nathanael J. Bangayan
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Liang Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Giselle Burton Sojo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Miyako Noguchi
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Donghui Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Lisa Ta
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Donny Gunn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Zhiyuan Mao
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Shiqin Liu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Qingqing Yin
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Mireille Riedinger
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
| | - Keyu Li
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
| | - Anna M. Wu
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA91010
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, David Geffen School of Medicine at University of California - Los Angeles, Los Angeles, CA90095
- Department of Radiation Oncology, City of Hope, Duarte, CA91010
| | - Tanya Stoyanova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Department of Urology, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
| | - Owen N. Witte
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA90095
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA90095
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA90095
- Molecular Biology Institute, University of California, Los Angeles, CA90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA90095
- Parker Institute for Cancer Immunotherapy, University of California, Los Angeles, CA90095
| |
Collapse
|
11
|
Wang H, Tang L, Kong Y, Liu W, Zhu X, You Y. Strategies for Reducing Toxicity and Enhancing Efficacy of Chimeric Antigen Receptor T Cell Therapy in Hematological Malignancies. Int J Mol Sci 2023; 24:ijms24119115. [PMID: 37298069 DOI: 10.3390/ijms24119115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy in hematologic malignancies has made great progress, but there are still some problems. First, T cells from tumor patients show an exhaustion phenotype; thus, the persistence and function of the CAR-Ts are poor, and achieving a satisfactory curative effect is difficult. Second, some patients initially respond well but quickly develop antigen-negative tumor recurrence. Thirdly, CAR-T treatment is not effective in some patients and is accompanied by severe side effects, such as cytokine release syndrome (CRS) and neurotoxicity. The solution to these problems is to reduce the toxicity and enhance the efficacy of CAR-T therapy. In this paper, we describe various strategies for reducing the toxicity and enhancing the efficacy of CAR-T therapy in hematological malignancies. In the first section, strategies for modifying CAR-Ts using gene-editing technologies or combining them with other anti-tumor drugs to enhance the efficacy of CAR-T therapy are introduced. The second section describes some methods in which the design and construction of CAR-Ts differ from the conventional process. The aim of these methods is to enhance the anti-tumor activity of CAR-Ts and prevent tumor recurrence. The third section describes modifying the CAR structure or installing safety switches to radically reduce CAR-T toxicity or regulating inflammatory cytokines to control the symptoms of CAR-T-associated toxicity. Together, the knowledge summarized herein will aid in designing better-suited and safer CAR-T treatment strategies.
Collapse
Affiliation(s)
- Haobing Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingjie Kong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Liu
- Department of Pain Treatment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
12
|
Celichowski P, Turi M, Charvátová S, Radhakrishnan D, Feizi N, Chyra Z, Šimíček M, Jelínek T, Bago JR, Hájek R, Hrdinka M. Tuning CARs: recent advances in modulating chimeric antigen receptor (CAR) T cell activity for improved safety, efficacy, and flexibility. J Transl Med 2023; 21:197. [PMID: 36922828 PMCID: PMC10015723 DOI: 10.1186/s12967-023-04041-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
Cancer immunotherapies utilizing genetically engineered T cells have emerged as powerful personalized therapeutic agents showing dramatic preclinical and clinical results, particularly in hematological malignancies. Ectopically expressed chimeric antigen receptors (CARs) reprogram immune cells to target and eliminate cancer. However, CAR T cell therapy's success depends on the balance between effective anti-tumor activity and minimizing harmful side effects. To improve CAR T cell therapy outcomes and mitigate associated toxicities, scientists from different fields are cooperating in developing next-generation products using the latest molecular cell biology and synthetic biology tools and technologies. The immunotherapy field is rapidly evolving, with new approaches and strategies being reported at a fast pace. This comprehensive literature review aims to provide an up-to-date overview of the latest developments in controlling CAR T cell activity for improved safety, efficacy, and flexibility.
Collapse
Affiliation(s)
- Piotr Celichowski
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Marcello Turi
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Sandra Charvátová
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Dhwani Radhakrishnan
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
- Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Neda Feizi
- Department of Internal Clinical Sciences, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Zuzana Chyra
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Michal Šimíček
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Tomáš Jelínek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Juli Rodriguez Bago
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Roman Hájek
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Matouš Hrdinka
- Department of Haematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.
- Department of Haematooncology, University Hospital Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
13
|
Aigbogun OP, Phenix CP, Krol ES, Price EW. The Chemistry of Creating Chemically Programmed Antibodies (cPAbs): Site-Specific Bioconjugation of Small Molecules. Mol Pharm 2023; 20:853-874. [PMID: 36696533 DOI: 10.1021/acs.molpharmaceut.2c00821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small-molecule drugs have been employed for years as therapeutics in the pharmaceutical industry. However, small-molecule drugs typically have short in vivo half-lives which is one of the largest impediments to the success of many potentially valuable pharmacologically active small molecules. The undesirable pharmacokinetics and pharmacology associated with some small molecules have led to the development of a new class of bioconjugates known as chemically programmed antibodies (cPAbs). cPAbs are bioconjugates in which antibodies are used to augment small molecules with effector functions and prolonged pharmacokinetic profiles, where the pharmacophore of the small molecule is harnessed for target binding and therefore biological targeting. Many different small molecules can be conjugated to large proteins such as full monoclonal antibodies (IgG), fragment crystallizable regions (Fc), or fragment antigen binding regions (Fab). In order to successfully and site-specifically conjugate small molecules to any class of antibodies (IgG, Fc, or Fab), the molecules must be derivatized with a functional group for ease of conjugation without altering the pharmacology of the small molecules. In this Review, we summarize the different synthetic or biological methods that have been employed to produce cPAbs. These unique chemistries have potential to be applied to other fields of antibody modification such as antibody drug conjugates, radioimmunoconjugates, and fluorophore-tagged antibodies.
Collapse
Affiliation(s)
- Omozojie P Aigbogun
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Christopher P Phenix
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Ed S Krol
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, S7N-5E5 Saskatchewan, Canada
| | - Eric W Price
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| |
Collapse
|
14
|
CAR-NK as a Rapidly Developed and Efficient Immunotherapeutic Strategy against Cancer. Cancers (Basel) 2022; 15:cancers15010117. [PMID: 36612114 PMCID: PMC9817948 DOI: 10.3390/cancers15010117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chimeric antigen receptor (CAR)-modified T cell therapy has been rapidly developing in recent years, ultimately revolutionizing immunotherapeutic strategies and providing significant anti-tumor potency, mainly in treating hematological neoplasms. However, graft-versus-host disease (GVHD) and other adverse effects, such as cytokine release syndromes (CRS) and neurotoxicity associated with CAR-T cell infusion, have raised some concerns about the broad application of this therapy. Natural killer (NK) cells have been identified as promising alternative platforms for CAR-based therapies because of their unique features, such as a lack of human leukocyte antigen (HLA)-matching restriction, superior safety, and better anti-tumor activity when compared with CAR-T cells. The lack of CRS, neurotoxicity, or GVHD, in the case of CAR-NK therapy, in addition to the possibility of using allogeneic NK cells as a CAR platform for "off-the-shelf" therapy, opens new windows for strategic opportunities. This review underlines recent design achievements in CAR constructs and summarizes preclinical studies' results regarding CAR-NK therapies' safety and anti-tumor potency. Additionally, new approaches in CAR-NK technology are briefly described, and currently registered clinical trials are listed.
Collapse
|
15
|
Cyr MG, Mhibik M, Qi J, Peng H, Chang J, Gaglione EM, Eik D, Herrick J, Venables T, Novick SJ, Courouble VV, Griffin PR, Wiestner A, Rader C. Patient-derived Siglec-6-targeting antibodies engineered for T-cell recruitment have potential therapeutic utility in chronic lymphocytic leukemia. J Immunother Cancer 2022; 10:e004850. [PMID: 36442911 PMCID: PMC9710465 DOI: 10.1136/jitc-2022-004850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Despite numerous therapeutic options, safe and curative therapy is unavailable for most patients with chronic lymphocytic leukemia (CLL). A drawback of current therapies such as the anti-CD20 monoclonal antibody (mAb) rituximab is the elimination of all healthy B cells, resulting in impaired humoral immunity. We previously reported the identification of a patient-derived, CLL-binding mAb, JML-1, and identified sialic acid-binding immunoglobulin-like lectin-6 (Siglec-6) as the target of JML-1. Although little is known about Siglec-6, it appears to be an attractive target for cancer immunotherapy due to its absence on most healthy cells and tissues. METHODS We used a target-specific approach to mine for additional patient-derived anti-Siglec-6 mAbs. To assess the therapeutic utility of targeting Siglec-6 in the context of CLL, T cell-recruiting bispecific antibodies (T-biAbs) that bind to Siglec-6 and CD3 were engineered into single-chain variable fragment-Fc and dual-affinity retargeting (DART)-Fc constructs. T-biAbs were evaluated for their activity in vitro, ex vivo, and in vivo. RESULTS We discovered the anti-Siglec-6 mAbs RC-1 and RC-2, which bind with higher affinity than JML-1 yet maintain similar specificity. Both JML-1 and RC-1 T-biAbs were effective at activating T cells and killing Siglec-6+ target cells. The RC-1 clone in the DART-Fc format was the most potent T-biAb tested and was the only anti-Siglec-6 T-biAb that eliminated Siglec-6+ primary CLL cells via autologous T cells at pathological T-to-CLL cell ratios. Tested at healthy T-to-B cell ratios, it also eliminated a Siglec-6+ fraction of primary B cells from healthy donors. The subpicomolar potency of the DART-Fc format was attributed to the reduction in the length and flexibility of the cytolytic synapse. Furthermore, the RC-1 T-biAb was effective at clearing MEC1 CLL cells in vivo and demonstrated a circulatory half-life of over 7 days. CONCLUSION Siglec-6-targeting T-biAbs are highly potent and specific for eliminating Siglec-6+ leukemic and healthy B cells while sparing Siglec-6- healthy B cells, suggesting a unique treatment strategy for CLL with diminished suppression of humoral immunity. Our data corroborate reports that T-biAb efficacy is dependent on synapse geometry and reveal that synapse architecture can be tuned via antibody engineering. Our fully human anti-Siglec-6 antibodies and T-biAbs have potential for cancer immunotherapy. TRIAL REGISTRATION NUMBER NCT00923507.
Collapse
Affiliation(s)
- Matthew G Cyr
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA
| | - Maissa Mhibik
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Junpeng Qi
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Haiyong Peng
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Jing Chang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Erika M Gaglione
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David Eik
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - John Herrick
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas Venables
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Scott J Novick
- Department of Molecular Medicine, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Valentine V Courouble
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA
- Department of Molecular Medicine, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Patrick R Griffin
- Department of Molecular Medicine, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
| | - Adrian Wiestner
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, Florida, USA
- Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
16
|
Burke, Jr TR. Meet the Editorial Board Member. Curr Med Chem 2022. [DOI: 10.2174/092986732932220816152125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Peng H, Nerreter T, Mestermann K, Wachter J, Chang J, Hudecek M, Rader C. ROR1-targeting switchable CAR-T cells for cancer therapy. Oncogene 2022; 41:4104-4114. [PMID: 35859167 PMCID: PMC9398970 DOI: 10.1038/s41388-022-02416-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/03/2023]
Abstract
The success of chimeric antigen receptor T cell (CAR-T) therapy in the treatment of hematologic malignancies has prompted the development of numerous CAR-T technologies, including switchable CAR-T (sCAR-T) systems that combine a universal CAR-T with bispecific adapter proteins. Owing to their controllability and versatility, sCAR-Ts have received considerable attention. To explore the therapeutic utility of sCAR-Ts targeting the receptor tyrosine kinase ROR1, which is expressed in hematologic and solid malignancies, and to identify bispecific adaptor proteins that efficiently mediate universal CAR-T engagement, a panel of switches based on ROR1-targeting Fabs with different epitopes and affinities was compared in in vitro and in vivo models of ROR1-expressing cancers. For switches targeting overlapping or identical epitopes, potency correlated with affinity. Surprisingly, however, we identified a switch targeting a unique epitope with low affinity but mediating potent and selective antitumor activity in vitro and in vivo. Converted to a conventional CAR-T, the same anti-ROR1 mAb (324) outperformed a clinically investigated conventional CAR-T that is based on an anti-ROR1 mAb (R12) with ~200-fold higher affinity. Thus, demonstrating therapeutic utility on their own, sCAR-Ts also facilitate higher throughput screening for the identification of conventional CAR-T candidates for preclinical and clinical studies.
Collapse
Affiliation(s)
- Haiyong Peng
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Katrin Mestermann
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Jakob Wachter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Jing Chang
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Oberdürrbacher Strasse 6, 97080, Würzburg, Germany
| | - Christoph Rader
- Department of Immunology and Microbiology, UF Scripps Biomedical Research, University of Florida, Jupiter, FL, 33458, USA.
| |
Collapse
|
18
|
Kandra P, Nandigama R, Eul B, Huber M, Kobold S, Seeger W, Grimminger F, Savai R. Utility and Drawbacks of Chimeric Antigen Receptor T Cell (CAR-T) Therapy in Lung Cancer. Front Immunol 2022; 13:903562. [PMID: 35720364 PMCID: PMC9201083 DOI: 10.3389/fimmu.2022.903562] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
The present treatments for lung cancer include surgical resection, radiation, chemotherapy, targeted therapy, and immunotherapy. Despite advances in therapies, the prognosis of lung cancer has not been substantially improved in recent years. Chimeric antigen receptor (CAR)-T cell immunotherapy has attracted growing interest in the treatment of various malignancies. Despite CAR-T cell therapy emerging as a novel potential therapeutic option with promising results in refractory and relapsed leukemia, many challenges limit its therapeutic efficacy in solid tumors including lung cancer. In this landscape, studies have identified several obstacles to the effective use of CAR-T cell therapy including antigen heterogeneity, the immunosuppressive tumor microenvironment, and tumor penetration by CAR-T cells. Here, we review CAR-T cell design; present the results of CAR-T cell therapies in preclinical and clinical studies in lung cancer; describe existing challenges and toxicities; and discuss strategies to improve therapeutic efficacy of CAR-T cells.
Collapse
Affiliation(s)
- Prameela Kandra
- Department of Biotechnology, Gandhi Institute of Technology and Management (GITAM) Institute of Technology, Gandhi Institute of Technology and Management (GITAM) Deemed to be University, Visakhapatnam, India
| | - Rajender Nandigama
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Bastian Eul
- Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany
| | - Magdalena Huber
- Institute for Medical Microbiology and Hygiene, Philipps-University Marburg, Marburg, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Member of the Deutsches Zentrum für Lungenforschung (DZL), University Hospital Munich, Munich, Germany.,German Cancer Consortium Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner site Munich, Munich, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Friedrich Grimminger
- Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research Deutsches Zentrum für Lungenforschung (DZL), Member of the Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.,Department of Internal Medicine, Member of the Deutsches Zentrum für Lungenforschung (DZL), Member of Cardio-Pulmonary Institute (CPI), Justus Liebig University, Giessen, Germany.,Institute for Lung Health (ILH), Justus Liebig University, Giessen, Germany
| |
Collapse
|
19
|
Kobayashi A, Nobili A, Neier SC, Sadiki A, Distel R, Zhou ZS, Novina CD. Light-Controllable Binary Switch Activation of CAR T Cells. ChemMedChem 2022; 17:e202100722. [PMID: 35146940 PMCID: PMC9304291 DOI: 10.1002/cmdc.202100722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/05/2022] [Indexed: 11/29/2022]
Abstract
Major challenges to chimeric antigen receptor (CAR) T cell therapies include uncontrolled immune activity, off-tumor toxicities and tumor heterogeneity. To overcome these challenges, we engineered CARs directed against small molecules. By conjugating the same small molecule to distinct tumor-targeting antibodies, we show that small molecule specific-CAR T cells can be redirected to different tumor antigens. Such binary switches allow control over the degree of CAR T cell activity and enables simultaneous targeting of multiple tumor-associated antigens. We also demonstrate that ultraviolet light-sensitive caging of small molecules blocks CAR T cell activation. Exposure to ultraviolet light, uncaged small molecules and restored CAR T cell-mediated killing. Together, our data demonstrate that a light-sensitive caging system enables an additional level of control over tumor cell killing, which could improve the therapeutic index of CAR T cell therapies.
Collapse
Affiliation(s)
- Aya Kobayashi
- Department of Cancer Immunology and VirologyDana-Farber Cancer InstituteBostonMA 02215USA
- Department of MedicineHarvard Medical SchoolBostonMA 02115USA
- Broad Institute of Harvard and MITCambridgeMA 02142USA
| | - Alberto Nobili
- Department of Cancer Immunology and VirologyDana-Farber Cancer InstituteBostonMA 02215USA
- Department of MedicineHarvard Medical SchoolBostonMA 02115USA
- Broad Institute of Harvard and MITCambridgeMA 02142USA
- Dynamic Cell Therapies, Inc.127 Western Ave.AllstonMA 02134USA
| | - Steven C. Neier
- Department of Cancer Immunology and VirologyDana-Farber Cancer InstituteBostonMA 02215USA
- Department of MedicineHarvard Medical SchoolBostonMA 02115USA
- Broad Institute of Harvard and MITCambridgeMA 02142USA
- Binney Street CapitalBostonMA 02215USA
| | - Amissi Sadiki
- Department of Cancer Immunology and VirologyDana-Farber Cancer InstituteBostonMA 02215USA
- Department of MedicineHarvard Medical SchoolBostonMA 02115USA
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMA 02115USA
- Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMA 02115USA
| | - Robert Distel
- Department of Cancer Immunology and VirologyDana-Farber Cancer InstituteBostonMA 02215USA
- Department of MedicineHarvard Medical SchoolBostonMA 02115USA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMA 02115USA
- Barnett Institute of Chemical and Biological AnalysisNortheastern UniversityBostonMA 02115USA
| | - Carl D. Novina
- Department of Cancer Immunology and VirologyDana-Farber Cancer InstituteBostonMA 02215USA
- Department of MedicineHarvard Medical SchoolBostonMA 02115USA
- Broad Institute of Harvard and MITCambridgeMA 02142USA
| |
Collapse
|
20
|
Application and Design of Switches Used in CAR. Cells 2022; 11:cells11121910. [PMID: 35741039 PMCID: PMC9221702 DOI: 10.3390/cells11121910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022] Open
Abstract
Among the many oncology therapies, few have generated as much excitement as CAR-T. The success of CAR therapy would not have been possible without the many discoveries that preceded it, most notably, the Nobel Prize-winning breakthroughs in cellular immunity. However, despite the fact that CAR-T already offers not only hope for development, but measurable results in the treatment of hematological malignancies, CAR-T still cannot be safely applied to solid tumors. The reason for this is, among other things, the lack of tumor-specific antigens which, in therapy, threatens to cause a lethal attack of lymphocytes on healthy cells. In the case of hematological malignancies, dangerous complications such as cytokine release syndrome may occur. Scientists have responded to these clinical challenges with molecular switches. They make it possible to remotely control CAR lymphocytes after they have already been administered to the patient. Moreover, they offer many additional capabilities. For example, they can be used to switch CAR antigenic specificity, create logic gates, or produce local activation under heat or light. They can also be coupled with costimulatory domains, used for the regulation of interleukin secretion, or to prevent CAR exhaustion. More complex modifications will probably require a combination of reprogramming (iPSc) technology with genome editing (CRISPR) and allogenic (off the shelf) CAR-T production.
Collapse
|
21
|
Kuo YC, Kuo CF, Jenkins K, Hung AFH, Chang WC, Park M, Aguilar B, Starr R, Hibbard J, Brown C, Williams JC. Antibody-based redirection of universal Fabrack-CAR T cells selectively kill antigen bearing tumor cells. J Immunother Cancer 2022; 10:jitc-2021-003752. [PMID: 35728874 PMCID: PMC9214433 DOI: 10.1136/jitc-2021-003752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2022] [Indexed: 11/07/2022] Open
Abstract
Background Chimeric antigen receptor (CAR) T cells engineered to recognize and target tumor associated antigens have made a profound impact on the quality of life for many patients with cancer. However, tumor heterogeneity and intratumoral immune suppression reduce the efficacy of this approach, allowing for tumor cells devoid of the target antigen to seed disease recurrence. Here, we address the complexity of tumor heterogeneity by developing a universal CAR. Method We constructed a universal Fabrack-CAR with an extracellular domain composed of the non-tumor targeted, cyclic, twelve residue meditope peptide that binds specifically to an engineered binding pocket within the Fab arm of monoclonal antibodies (mAbs). As this site is readily grafted onto therapeutic mAbs, the antigen specificity of these universal Fabrack-CAR T cells is simply conferred by administering mAbs with specificity to the heterogeneous tumor. Results Using in vitro and in vivo studies with multiple meditope-engineered mAbs, we show the feasibility, specificity, and robustness of this approach. These studies demonstrate antigen- and antibody-specific T cell activation, proliferation, and IFNγ production, selective killing of target cells in a mixed population, and tumor regression in animal models. Conclusion Collectively, these findings support the feasibility of this universal Fabrack-CAR T cell approach and provide the rationale for future clinical use in cancer immunotherapy.
Collapse
Affiliation(s)
- Yi-Chiu Kuo
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Cheng-Fu Kuo
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA.,Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, California, USA
| | - Kurt Jenkins
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA.,Irell and Manella Graduate School of Biological Sciences, City of Hope National Medical Center, Duarte, California, USA
| | - Alfur Fu-Hsin Hung
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Wen-Chung Chang
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Miso Park
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| | - Brenda Aguilar
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Renate Starr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Jonathan Hibbard
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - Christine Brown
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, California, USA
| | - John C Williams
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
22
|
Xu C, Ju D, Zhang X. Chimeric antigen receptor T cell therapy: challenges and opportunities in lung cancer. Antib Ther 2022; 5:73-83. [PMID: 35372786 PMCID: PMC8972219 DOI: 10.1093/abt/tbac006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/23/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the paradigm in hematological malignancies treatment, driving an ever-expanding number of basic research and clinical trials of genetically engineering T cells to treat solid tumors. CAR T-cell therapies based on the antibodies targeting Mesothelin, CEA, EGFR, EGFR, MUC1, DLL3, and emerging novel targets provide promising efficacy for lung cancer patients. However, clinical application of CAR T-cell therapy against lung cancer remains limited on account of physical and immune barriers, antigen escape and heterogeneity, on-target off-tumor toxicity, and many other reasons. Understanding the evolution of CAR structure and the generalizable requirements for manufacturing CAR T cells as well as the interplay between lung tumor immunology and CAR T cells will improve clinical translation of this therapeutic modality in lung cancer. In this review, we systematically summarize the latest advances in CAR T-cell therapy in lung cancer, focusing on the CAR structure, target antigens, challenges, and corresponding new strategies.
Collapse
Affiliation(s)
- Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
23
|
Cao W, Geng ZZ, Wang N, Pan Q, Guo S, Xu S, Zhou J, Liu WR. A Reversible Chemogenetic Switch for Chimeric Antigen Receptor T Cells**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202109550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wenyue Cao
- Department of Hematology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Zhi Zachary Geng
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Na Wang
- Department of Hematology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Quan Pan
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Shaodong Guo
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Shiqing Xu
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Jianfeng Zhou
- Department of Hematology Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei China
| | - Wenshe Ray Liu
- The Texas A&M Drug Discovery Laboratory Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences College of Medicine Texas A&M University Houston TX 77030 USA
- Department of Biochemistry and Biophysics Texas A&M University Houston TX 77843 USA
- Department of Molecular and Cellular Medicine College of Medicine Texas A&M University Houston TX 77843 USA
| |
Collapse
|
24
|
Nobili A, Kobayashi A, Gedeon PC, Novina CD. Clutch Control: Changing the Speed and Direction of CAR-T Cell Therapy. JOURNAL OF CANCER IMMUNOLOGY 2022; 4:52-59. [PMID: 36531912 PMCID: PMC9754302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Alberto Nobili
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA,Current Address: Dynamic Cell Therapies, Inc., 127 Western Ave., Allston, MA 02134, USA
| | - Aya Kobayashi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Patrick C. Gedeon
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Surgery, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Carl D. Novina
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA,Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA,Correspondence should be addressed to Carl D. Novina,
| |
Collapse
|
25
|
Liu W, Cao W, Geng ZZ, Wang N, Pan Q, Guo S, Zhou J, Xu S. A Recurring Chemogenetic Switch for Chimeric Antigen Receptor T Cells. Angew Chem Int Ed Engl 2021; 61:e202109550. [PMID: 34783141 DOI: 10.1002/anie.202109550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/08/2021] [Indexed: 11/11/2022]
Abstract
As a revolutionary cancer treatment, the chimeric antigen receptor (CAR) T cell therapy suffers from complications such as cytokine release syndromes and T cell exhaustion. Their mitigation desires controllable activation of CAR-T cells that is achievable through regulatory display of CARs. By embedding the hepatitis C virus NS3 protease (HCV-NS3) between the single-chain variable fragment (scFv) and the hinge domain, we showed that the display of anti-CD19 scFv on CAR-T cells was positively correlated to the presence of a clinical HCV-NS3 inhibitor asunaprevir (ASV). This novel CAR design that allows the display of anti-CD19 scFv in the presence of ASV and its removal in the absence of ASV creates a practically recurring chemical switch. We demonstrated that the intact CAR on T cells can be repeatedly turned on and off by controlling the presence of ASV in a dose dependent manner both in vitro and in vivo, which enables delicate modulation of CAR-T activation during cancer treatment.
Collapse
Affiliation(s)
- Wenshe Liu
- Texas A&M University, Department of Chemistry, Corner of Ross and Spence Streets, 77845, College Station, UNITED STATES
| | - Wenyue Cao
- Tongji Medical College of Huazhong University of Science and Technology: Huazhong University of Science and Technology Tongji Medical College, Hemotology, CHINA
| | - Zhi Z Geng
- Texas A&M University, Chemistry, Department of Chemistry, Corner of Spence and Ross Streets, 77843-3255, United States, College Station, UNITED STATES
| | - Na Wang
- Tongji Medical College of Huazhong University of Science and Technology: Huazhong University of Science and Technology Tongji Medical College, Hemotology, UNITED STATES
| | - Quan Pan
- Texas A&M University, Nutrition and food science, UNITED STATES
| | - Shaodong Guo
- Texas A&M University, Nutrition and food science, UNITED STATES
| | - Jianfeng Zhou
- Tongji Medical College of Huazhong University of Science and Technology: Huazhong University of Science and Technology Tongji Medical College, Hemotology, CHINA
| | - Shiqing Xu
- Texas A&M University, Chemistry, UNITED STATES
| |
Collapse
|
26
|
Kang MS, Kong TWS, Khoo JYX, Loh TP. Recent developments in chemical conjugation strategies targeting native amino acids in proteins and their applications in antibody-drug conjugates. Chem Sci 2021; 12:13613-13647. [PMID: 34760149 PMCID: PMC8549674 DOI: 10.1039/d1sc02973h] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Many fields in chemical biology and synthetic biology require effective bioconjugation methods to achieve their desired functions and activities. Among such biomolecule conjugates, antibody-drug conjugates (ADCs) need a linker that provides a stable linkage between cytotoxic drugs and antibodies, whilst conjugating in a biologically benign, fast and selective fashion. This review focuses on how the development of novel organic synthesis can solve the problems of traditional linker technology. The review shall introduce and analyse the current developments in the modification of native amino acids on peptides or proteins and their applicability to ADC linker. Thereafter, the review shall discuss in detail each endogenous amino acid's intrinsic reactivity and selectivity aspects, and address the research effort to construct an ADC using each conjugation method.
Collapse
Affiliation(s)
- Min Sun Kang
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Theresa Wai See Kong
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Joycelyn Yi Xin Khoo
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Teck-Peng Loh
- Division of Chemistry & Biological Chemistry, School of Physical & Mathematical Sciences, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
27
|
Abken H. Building on Synthetic Immunology and T Cell Engineering: A Brief Journey Through the History of Chimeric Antigen Receptors. Hum Gene Ther 2021; 32:1011-1028. [PMID: 34405686 PMCID: PMC10112879 DOI: 10.1089/hum.2021.165] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Advancement in our understanding of immune cell recognition and emerging cellular engineering technologies during the last decades made active manipulation of the T cell response possible. Synthetic immunology is providing us with an expanding set of composite receptor molecules capable to reprogram immune cell function in a predefined fashion. Since the first prototypes in the late 1980s, the design of chimeric antigen receptors (CARs; T-bodies, immunoreceptors), has followed a clear line of stepwise improvements from antigen-redirected targeting to designed "living factories" delivering transgenic products on demand. Building on basic research and creative clinical exploration, CAR T cell therapy has been achieving spectacular success in the treatment of hematologic malignancies, now beginning to improve the outcome of cancer patients. In this study, we briefly review the history of CARs and outline how the progress in the basic understanding of T cell recognition and of cell engineering technologies made novel therapies possible.
Collapse
Affiliation(s)
- Hinrich Abken
- Department of Genetic Immunotherapy, Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
| |
Collapse
|
28
|
Zheng Y, Nandakumar KS, Cheng K. Optimization of CAR-T Cell-Based Therapies Using Small-Molecule-Based Safety Switches. J Med Chem 2021; 64:9577-9591. [PMID: 34191515 DOI: 10.1021/acs.jmedchem.0c02054] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chimeric antigen receptor T cell therapy has demonstrated antileukemia efficacy. However, this therapeutic approach is hampered by severe cytokine release syndrome, which is a major impediment to its widespread application in the clinic. The safety of this approach can be improved by engineering a rapid and reversible "off" or "on" safety switch for CAR-T cells. Cutting-edge investigations combining the advantages of genetic engineering and chemical technology have led to the invention of small-molecule-based safety switches for CAR-T cells. Small molecules such as FITC, folate, rimiducid, rapamycin, proteolysis-targeting chimera (PROTAC) compounds, and dasatinib are being investigated to design such safety switches. Optimized CAR-T cells may have enhanced therapeutic efficiency with fewer adverse effects. Herein we summarize and classify current novel small-molecule-based safety switches for CAR-T cells that aim to provide pharmacological control over the activities and toxicities associated with CAR-T cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Yanjun Zheng
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kutty Selva Nandakumar
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kui Cheng
- Guangdong Provincial Key Laboratory of New Drug Screening and Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
29
|
Gong N, Sheppard NC, Billingsley MM, June CH, Mitchell MJ. Nanomaterials for T-cell cancer immunotherapy. NATURE NANOTECHNOLOGY 2021; 16:25-36. [PMID: 33437036 DOI: 10.1038/s41565-020-00822-y] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
T-cell-based immunotherapies hold promise for the treatment of many types of cancer, with three approved products for B-cell malignancies and a large pipeline of treatments in clinical trials. However, there are several challenges to their broad implementation. These include insufficient expansion of adoptively transferred T cells, inefficient trafficking of T cells into solid tumours, decreased T-cell activity due to a hostile tumour microenvironment and the loss of target antigen expression. Together, these factors restrict the number of therapeutically active T cells engaging with tumours. Nanomaterials are uniquely suited to overcome these challenges, as they can be rationally designed to enhance T-cell expansion, navigate complex physical barriers and modulate tumour microenvironments. Here, we present an overview of nanomaterials that have been used to overcome clinical barriers to T-cell-based immunotherapies and provide our outlook of this emerging field at the interface of cancer immunotherapy and nanomaterial design.
Collapse
Affiliation(s)
- Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Neil C Sheppard
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Carl H June
- Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Qi J, Rader C. Redirecting cytotoxic T cells with chemically programmed antibodies. Bioorg Med Chem 2020; 28:115834. [PMID: 33166926 DOI: 10.1016/j.bmc.2020.115834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 11/30/2022]
Abstract
T-cell engaging bispecific antibodies (T-biAbs) mediate potent and selective cytotoxicity by combining specificities for target and effector cells in one molecule. Chemically programmed T-biAbs (cp-T-biAbs) are precisely assembled compositions of (i) small molecules that govern cancer cell surface targeting with high affinity and specificity and (ii) antibodies that recruit and activate T cells and equip the small molecule with confined biodistribution and longer circulatory half-life. Conceptually similar to cp-T-biAbs, switchable chimeric antigen receptor T cells (sCAR-Ts) can also be put under the control of small molecules by using a chemically programmed antibody as a bispecific adaptor molecule. As such, cp-T-biAbs and cp-sCAR-Ts can endow small molecules with the power of cancer immunotherapy. We here review the concept of chemically programmed antibodies for recruiting and activating T cells as a promising strategy for broadening the utility of small molecules in cancer therapy.
Collapse
Affiliation(s)
- Junpeng Qi
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA.
| |
Collapse
|
31
|
Hong M, Clubb JD, Chen YY. Engineering CAR-T Cells for Next-Generation Cancer Therapy. Cancer Cell 2020; 38:473-488. [PMID: 32735779 DOI: 10.1016/j.ccell.2020.07.005] [Citation(s) in RCA: 386] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/27/2020] [Accepted: 06/28/2020] [Indexed: 02/07/2023]
Abstract
T cells engineered to express chimeric antigen receptors (CARs) with tumor specificity have shown remarkable success in treating patients with hematologic malignancies and revitalized the field of adoptive cell therapy. However, realizing broader therapeutic applications of CAR-T cells necessitates engineering approaches on multiple levels to enhance efficacy and safety. Particularly, solid tumors present unique challenges due to the biological complexity of the solid-tumor microenvironment (TME). In this review, we highlight recent strategies to improve CAR-T cell therapy by engineering (1) the CAR protein, (2) T cells, and (3) the interaction between T cells and other components in the TME.
Collapse
Affiliation(s)
- Mihe Hong
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Justin D Clubb
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California-Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA; Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
32
|
Chen R, Jing J, Siwko S, Huang Y, Zhou Y. Intelligent cell-based therapies for cancer and autoimmune disorders. Curr Opin Biotechnol 2020; 66:207-216. [PMID: 32956902 DOI: 10.1016/j.copbio.2020.08.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022]
Abstract
Synthetic biology, when combined with immunoengineering (designated synthetic immunology), has enabled the invention of an arsenal of genetically encoded synthetic devices and systems to reprogram cells for therapeutic purposes. The engineered intelligent cells can serve as 'living' drugs to treat a wide range of human diseases including cancer, disorders of the immune system, and infectious diseases. As the most successful example, cells of the immune system engineered with chimeric antigen receptors (CARs) have shown curative potentials for the treatment of hematological malignancies. We present herein emerging approaches of designing smart CARs to improve their safety, specificity and efficacy in cellular immunotherapy, and describe latest advances in applying CAR-engineered immune cells to target cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Rui Chen
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Ji Jing
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Stefan Siwko
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030, USA; Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Jiang S, Huang K, Qu J, Lin J, Huang P. Cancer nanotheranostics in the second near‐infrared window. VIEW 2020. [DOI: 10.1002/viw.20200075] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Shanshan Jiang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen China
| | - Kai Huang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Optoelectronic Engineering Shenzhen University Shenzhen China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering International Cancer Center Laboratory of Evolutionary Theranostics (LET) School of Biomedical Engineering Shenzhen University Health Science Center Shenzhen China
| |
Collapse
|
34
|
Dal Corso A. Targeted Small‐Molecule Conjugates: The Future is Now. Chembiochem 2020; 21:3321-3322. [DOI: 10.1002/cbic.202000507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Alberto Dal Corso
- Dipartimento di Chimica Università degli Studi di Milano via C. Golgi, 19 20133 Milan Italy
| |
Collapse
|