1
|
Wang Y, Wang Q, Tan C, Chen C. Synthesis of Polar-functionalized Isotactic Polypropylenes Using Commercial Heterogeneous Ziegler-Natta Catalyst. J Am Chem Soc 2024; 146:6837-6845. [PMID: 38426800 DOI: 10.1021/jacs.3c13723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The efficient synthesis of polar-functionalized polypropylenes with high molecular weight and high stereoregularity represents a challenging task. This challenge becomes even more daunting when pursuing an industrially preferred heterogeneous process. This study demonstrated the realization of these goals through the use of commercial heterogeneous Ziegler-Natta catalysts in the copolymerization of propylene with ionic cluster polar monomers. The results revealed high copolymerization activity (∼1.1 × 107 g mol-1 h-1), moderate polar monomer incorporation ratios (∼4.9 mol %), high copolymer molecular weight (Mw > 105 g mol-1), high stereoregularity ([mmmm] ∼ 96%), and high melting temperature range (150-162 °C). The utilization of ionic cluster polar monomers improved the thermal stability as well as stereoselectivity of the catalyst. Moreover, the Ziegler-Natta catalyst can homopolymerize ionic cluster polar monomers with high activities (>104 g mol-1 h-1). The resulting polar-functionalized isotactic polypropylenes (iPP) exhibited superior tensile strength, impact strength, creep resistance, transparency, and crystallinity compared with nonpolar iPP. This enhancement was attributable to the dual roles of the ionic cluster polar monomer unit, serving as both a transparent nucleating agent and a dynamic cross-linking functionality. Furthermore, the polar-functionalized iPP exhibited improved compatibility with polar materials, offering benefits for applications in composites, recycling of mixed plastic wastes, 3D printing, and other fields. This study offered a comprehensive solution for the future industrial production of polar-functionalized iPP via copolymerization, bridging the gap between an efficient and practical copolymerization process from a synthetic chemistry perspective and enhanced material properties from an application perspective.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Quan Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, Anhui 230601, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Zhang N, Xue Z, Shi L, Luo G. Unveiling the Detailed Mechanism and Origins of Chemo-, Regio-, and Stereoselectivity of Rare-Earth Catalyzed Alternating Copolymerization of Polar and Nonpolar Olefins. Inorg Chem 2024; 63:3544-3559. [PMID: 38308632 DOI: 10.1021/acs.inorgchem.3c04428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
The direct copolymerization of polar and nonpolar olefins is of great interest and significance, as it is the most atom-economical and straightforward strategy for the synthesis of functional polyolefin materials. Despite considerable efforts, the precise control of monomer-sequence and their regio- and stereochemistry is full of challenges, and the related mechanistic origins are still in their infancy to date. Herein, the mechanistic studies on the model reaction of Sc-catalyzed co-syndiospecific alternating copolymerization of anisylpropylene (AP) and styrene were performed by DFT calculations. The results suggest that the subtle balance between electronic and steric factors plays an important role during monomer insertions, and a new amino-dissociated mechanism was proposed for AP insertion at chain initiation. AP insertion follows the 2,1-si-insertion pattern, which is mainly controlled by steric factors caused by the restricted MeO···Sc interaction. As for styrene insertion, it prefers the 2,1-re-insertion manner and its regio- and stereoselectivities are influenced by steric repulsions between the inserting styrene and the polymer chain or the ligand. More interestingly, it is found that the alternating monomer-sequence is mainly determined by the "steric matching" principle, which is quantitatively expressed by the buried volume of the metal center of the preinserted species. The concept of steric pocket has been successfully applied to explain the different performances of several catalysts and other alternating copolymerization reactions. The insightful mechanistic findings and the quantitative steric pocket model present here are expected to promote rational design of new rare-earth catalysts for developing regio-, stereo-, and sequence-controlled copolymerization of specific polar and nonpolar olefins.
Collapse
Affiliation(s)
- Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| |
Collapse
|
3
|
Scott SS, Kaur B, Zheng CHM, Brant P, Gilmour DJ, Schafer LL. Amine-Functionalized Polybutadiene Synthesis by Tunable Postpolymerization Hydroaminoalkylation. J Am Chem Soc 2023; 145:22871-22877. [PMID: 37819801 DOI: 10.1021/jacs.3c07564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Early transition metal-catalyzed hydroaminoalkylation is a powerful single-step method to selectively add amines to polybutadienes, offering an efficient strategy to access amine-functionalized polyolefins. Aryl and alkyl secondary amines were used with a tantalum catalyst to functionalize both 28 wt% (PBD13) and 70 wt% (PBD50) 1,2-polybutadiene polymers. The degree of amination was controlled by modifying amine and catalyst loading in both small- and multigram-scale reactions. The vinyl groups of 1,2-polybutadiene were aminated with ease, and unexpectedly the hydroaminoalkylation of challenging internal alkenes of the 1,4-polybutadiene unit was observed. This unanticipated reactivity was proposed to be due to a directing group effect. This hypothesis was supported with small-molecule model substrates, which also showed directed internal alkene amination. Increasing degrees of amination resulted in materials with dramatically higher and tunable glass transition temperature (Tg) values, due to the dynamic cross-linking accessible to hydrogen-bonding, amine-containing materials. Primary amine-functionalized polybutadiene was also prepared, demonstrating that a broad new class of amine-containing polyolefins can be accessed by postpolymerization hydroaminoalkylation.
Collapse
Affiliation(s)
- Sabrina S Scott
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Brahmjot Kaur
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- A2O Advanced Materials Inc., University P.O. Box 78552, 5754 University Blvd, Vancouver, BC V6T 1K0, Canada
| | - Cameron H M Zheng
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
| | - Patrick Brant
- A2O Advanced Materials Inc., University P.O. Box 78552, 5754 University Blvd, Vancouver, BC V6T 1K0, Canada
| | - Damon J Gilmour
- A2O Advanced Materials Inc., University P.O. Box 78552, 5754 University Blvd, Vancouver, BC V6T 1K0, Canada
| | - Laurel L Schafer
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada
- A2O Advanced Materials Inc., University P.O. Box 78552, 5754 University Blvd, Vancouver, BC V6T 1K0, Canada
| |
Collapse
|
4
|
Sun H, Fan H, Zhu C, Zou W, Dai S. Direct Synthesis of Partially Chain-Straightened Propylene Oligomers and P-MA Co-Oligomers Using Axially Flexible Shielded Iminopyridyl Palladium Complexes. Polymers (Basel) 2022; 15:111. [PMID: 36616461 PMCID: PMC9823751 DOI: 10.3390/polym15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022] Open
Abstract
In this study, a series of partially chain-straightened propylene oligomers and functional propylene−methyl acrylate (P-MA) co-oligomers were synthesized with 8-alkyl-iminopyridyl Pd(II) catalysts. The molecular weight and polar monomer incorporation ratio could be tuned by using Pd(II) catalysts with various 8-alkyl-naphthyl substituents (8-alkyl: H, Me, and n-Bu). In propylene oligomerization, all the 8-alkyl-iminopyridyl Pd(II) catalysts convert propylene to partially chain-straightened (119−136/1000 C) oligomers with low molecular weights (0.3−1.5 kg/mol). Among the catalysts, Pd1 with non-substituent (H) on the ligand showed the highest activity of 5.4 × 104 g/((mol of Pd) h), generating oligomers with the lowest molecular weight (Mn: 0.3 kg/mol). Moreover, polar-functionalized propylene-MA co-oligomers with very high incorporation ratios (22.8−36.5 mol %) could be obtained in the copolymerization using these 8-alkyl-iminopyridyl Pd(II) catalysts. Additionally, Pd1 exhibited the best performance in propylene-MA copolymerization as it displayed the highest MA incorporation ratio of up to 36.5 mol%. All the three catalysts are capable of generating partially chain-straightened P-MA co-oligomers and the activities decrease gradually while the molecular weight increases with the increasing steric hindrance of the alkyl substituent (H < Me < n-Bu). Compared to Pd4 with the rigid 8-aryl substituent, the flexible 8-alkyl-iminopyridyl Pd(II) catalysts (Pd1-3) not only showed much higher activities in the propylene oligomerization, but also yielded P-MA co-oligomers with significantly higher incorporation ratios in the propylene co-oligomerization.
Collapse
Affiliation(s)
- Huayin Sun
- School of Chemical and Materials Engineering, Huainan Normal University, Huainan 232038, China
| | - Huijun Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
| | - Chuangao Zhu
- School of Chemical and Materials Engineering, Huainan Normal University, Huainan 232038, China
| | - Wenping Zou
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Jasinska-Walc L, Bouyahyi M, Duchateau R. Potential of Functionalized Polyolefins in a Sustainable Polymer Economy: Synthetic Strategies and Applications. Acc Chem Res 2022; 55:1985-1996. [PMID: 35849758 DOI: 10.1021/acs.accounts.2c00195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
ConspectusPolymers play a crucial role in our modern life as no other material exists that is so versatile, moldable, and lightweight. Consequently, the demand for polymers will continue to grow with the human population, modernization, and technological developments. However, depleted fossil resources, increasing plastic waste production, ocean pollution, and related growing emission of greenhouse gases has led to a change in the way we think about the use of polymers. Although polymers were never designed to be recycled, it is clear that a linear polymers economy is no longer sustainable. The design for recycling and reuse and life-cycle analyses will become increasingly important factors when deciding on which polymer to choose for a certain application. Of all polymers, polyolefins have the lowest life-cycle environmental impact and even outperform renewable polymers. However, polyolefins are chemically inert and reveal a low surface energy. Combining their excellent mechanical properties with the ability to adhere to other materials or create self-assembled or nanostructured materials would widen the application window of polyolefins even more.This Account covers part of our personal account in the field of functionalized polyolefin synthesis and their application development. We start with addressing the challenge of finding suitable catalysts that tolerate nucleophilic functionalities, which tends to poison most electrophilic catalysts even when passivated with, for example, an aluminum alkyl. We argued that lowering of the oxidation state of a titanium-based catalyst might lower the electrophilicity of the metal center. Indeed, this simple approach resulted in an unprecedentedly high tolerance toward aluminum alkyl-passivated alkenols during their copolymerization with ethylene. Interestingly, catalyst deactivation was much less pronounced during the copolymerization of propylene and aluminum-passivated alkenols, clearly demonstrating the protective effect of the methyl branch in the growing polymer. Because the use of randomly functionalized polypropylenes is rather underdeveloped, as compared to the corresponding randomly functionalized polyethylenes, we focused on potential applications of the former material. Atactic or low-crystalline hydroxyl- and carboxylic acid-functionalized propylene-based co- and terpolymers form elastomers with interesting properties that can be influenced by enhancing the hydrogen bonding within the system or by creating ionomers. The polar functionalities cluster together in domains that can host small polar molecules such as, for example, a pH indicator, thus affording useful sensors. The functionalized polyolefins can also be used as precursors for amphiphilic graft copolymers, undergoing self-assembly and therefore being suitable for nanoporous membrane preparation. The graft copolymers also proved to be effective compatibilizers in various polymer blends.
Collapse
Affiliation(s)
- Lidia Jasinska-Walc
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, 6160 AH Geleen, The Netherlands
| | - Miloud Bouyahyi
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, 6160 AH Geleen, The Netherlands
| | - Rob Duchateau
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, 6160 AH Geleen, The Netherlands.,Chemical Product Engineering, Department of Chemical Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
6
|
Fan H, Liao Y, Dai S. Propylene polymerization and copolymerization with polar monomers facilitated by flexible cycloalkyl substituents in α-diimine systems. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Rana AK, Thakur MK, Saini AK, Mokhta SK, Moradi O, Rydzkowski T, Alsanie WF, Wang Q, Grammatikos S, Thakur VK. Recent developments in microbial degradation of polypropylene: Integrated approaches towards a sustainable environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154056. [PMID: 35231525 DOI: 10.1016/j.scitotenv.2022.154056] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Fossil-fuel-based plastics have many enticing properties, but their production has resulted in significant environmental issues that require immediate attention. Despite the fact that these polymers are manmade, some bacteria can degrade and metabolise them, suggesting that biotechnologies based on the principle of plastic biodegradation could be beneficial. Among different types of plastics, polypropylene (PP), either having low or high density, is one of the most consumed plastics (18.85%). Their debasement under natural conditions is somewhat tricky. Still, their debasement under natural conditions is rather difficult slightly. However, different scientists have still made efforts by employing other microbes such as bacteria, fungi, and guts bacteria of larvae of insects to bio-deteriorate the PP plastic. Pre-irradiation techniques (ultraviolet and gamma irradiations), compatibilizers, and bio-additives (natural fibers, starch, and polylactic acid) have been found to impact percent bio-deterioration of different PP derivatives stronglythe various. The fungal and bacterial study showed that PP macro/microplastic might serve as an energy source and sole carbon during bio-degradation. Generally, gravimetric method or physical characterization techniques such as FTIR, XRD, SEM, etc., are utilized to affirm the bio-degradation of PP plastics-based materials. However, these techniques are not enough to warrant the bio-deterioration of PP. In this regard, a new technique approach that measures the amount of carbon dioxide emitted during bacterial or fungus degradation has also been discussed. In addition, further exploration is needed on novel isolates from plastisphere environments, sub-atomic strategies to describe plastic-debasing microorganisms and improve enzymatic action strategies, and omics-based innovations to speed up plastic waste bio-deterioration.
Collapse
Affiliation(s)
| | - Manju Kumari Thakur
- Department of Chemistry, Govt. Degree College Sarkaghat, Himachal Pradesh University, Shimla 171005, India
| | - Adesh Kumar Saini
- Department of Biotechnology, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Sudesh Kumar Mokhta
- Department of Environment, Science & Technology, Government of Himachal Pradesh, 171001, India
| | - Omid Moradi
- Faculty of Science, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran.
| | - Tomasz Rydzkowski
- Department of Mechanical Engineering, Koszalin University of Technology, Raclawicka Str. 15-17, 75-620 Koszalin, Poland.
| | - Walaa F Alsanie
- Department of Clinical Laboratories Sciences, The Faculty of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Sotirios Grammatikos
- Laboratory of Advanced & Sustainable Engineering Materials (ASEMlab), Group of Sustainable Composites, Department of Manufacturing and Civil Engineering, Norwegian University of Science and Technology, Gjøvik 2815, Norway
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Edinburgh, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, India.
| |
Collapse
|
8
|
Chen M, Chen C. Nickel catalysts for the preparation of functionalized polyolefin materials. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2021-1187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Bouyahyi M, Jasinska-Walc L, Duchateau R, Akhtar MN, Jaseer EA, Theravalappil R, Garcia N. In-Reactor Polypropylene Functionalization─The Influence of Catalyst Structures and Reaction Conditions on the Catalytic Performance. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miloud Bouyahyi
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
| | - Lidia Jasinska-Walc
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Department of Chemistry and Technology of Functional Materials, Chemical Faculty, Gdansk University of Technology, G. Narutowicza Str. 11/12, 80-233 Gdansk, Poland
| | - Rob Duchateau
- SABIC Technology & Innovation, STC Geleen, Urmonderbaan 22, 6167 RD Geleen, The Netherlands
- Engineering and Technology Institute Groningen, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Muhammad Naseem Akhtar
- Center for Refining and Advanced Chemicals, Research Institute, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - E. A. Jaseer
- Center for Refining and Advanced Chemicals, Research Institute, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Rajesh Theravalappil
- Center for Refining and Advanced Chemicals, Research Institute, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| | - Nestor Garcia
- Center for Refining and Advanced Chemicals, Research Institute, King Fahd University of Petroleum & Minerals, 31261 Dhahran, Saudi Arabia
| |
Collapse
|
10
|
Nie J, Ren F, Li Z, Tian K, Zou H, Hou X. Design and synthesis of binuclear vanadium catalysts for copolymerization of ethylene and polar monomers. Polym Chem 2022. [DOI: 10.1039/d2py00402j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Binuclear vanadium complexes exhibited higher activity than monometallic complexes in ethylene polymerization and afforded UHMWPE. The binuclear catalysts also showed moderate activity in copolymerization with 10-undecen-1-ol and methyl 10-undecenoate.
Collapse
Affiliation(s)
- Jinxin Nie
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Feiyang Ren
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Zhen Li
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Kun Tian
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Hui Zou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Xiaohua Hou
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| |
Collapse
|
11
|
Yang Y, Wang H, Huang L, Nishiura M, Higaki Y, Hou Z. Terpolymerization of Ethylene and Two Different Methoxyaryl‐Substituted Propylenes by Scandium Catalyst Makes Tough and Fast Self‐Healing Elastomers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111161] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yang Yang
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Haobing Wang
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Lin Huang
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yuji Higaki
- Department of Integrated Science and Technology Faculty of Science and Technology Oita University 700 Dannoharu Oita 870-1192 Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Organometallic Chemistry Laboratory RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| |
Collapse
|
12
|
Yang Y, Wang H, Huang L, Nishiura M, Higaki Y, Hou Z. Terpolymerization of Ethylene and Two Different Methoxyaryl-Substituted Propylenes by Scandium Catalyst Makes Tough and Fast Self-Healing Elastomers. Angew Chem Int Ed Engl 2021; 60:26192-26198. [PMID: 34751988 DOI: 10.1002/anie.202111161] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/24/2021] [Indexed: 12/13/2022]
Abstract
The terpolymerization of a non-polar olefin (such as ethylene) and two different polar functional olefins in a controlled fashion is of great interest and importance but has hardly been explored to date. We report for the first time the terpolymerization of ethylene (E) and two different methoxyaryl-substituted propylenes (AR1 P=hexylanisyl propylene; AR2 P=methoxynaphthyl propylene or methoxypyrenyl propylene) by a half-sandwich scandium catalyst. The terpolymerization took place in a sequence-controlled fashion, affording unique multi-block copolymers composed of two different ethylene-alt-methoxyarylpropylene sequences E-alt-AR1 P (soft segments) and E-alt-AR2 P (hard segments) and relatively short ethylene-ethylene (EE) blocks (crystalline segments). The terpolymers exhibited excellent elasticity and unprecedented self-healing as a result of microphase separation of nanodomains of the crystalline EE segments and the hard amorphous E-alt-AR2 P segments from a very flexible E-alt-AR1 P matrix, demonstrating unique synergy of the three different components.
Collapse
Affiliation(s)
- Yang Yang
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Haobing Wang
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Lin Huang
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Masayoshi Nishiura
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuji Higaki
- Department of Integrated Science and Technology, Faculty of Science and Technology, Oita University, 700 Dannoharu, Oita, 870-1192, Japan
| | - Zhaomin Hou
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
13
|
Hu X, Zhang Y, Li B, Jian Z. Horizontally and Vertically Concerted Steric Strategy in
α‐Diimine
Nickel Promoted Ethylene (Co)Polymerization
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100312] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Xiaoqiang Hu
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Renmin Street 5625, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| | - Yixin Zhang
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Renmin Street 5625, Changchun Jilin 130022 China
| | - Baixiang Li
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Renmin Street 5625, Changchun Jilin 130022 China
| | - Zhongbao Jian
- State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Renmin Street 5625, Changchun Jilin 130022 China
- University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
14
|
Sampson J, Bruening M, Akhtar MN, Jaseer EA, Theravalappil R, Garcia N, Agapie T. Copolymerization of Ethylene and Long-Chain Functional α-Olefins by Dinuclear Zirconium Catalysts. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00126] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica Sampson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - Meaghan Bruening
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| | - Muhammed Naseem Akhtar
- Center for Refining and Petrochemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - E. A. Jaseer
- Center for Refining and Petrochemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Rajesh Theravalappil
- Center for Refining and Petrochemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Nestor Garcia
- Center for Refining and Petrochemicals, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Theodor Agapie
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd., Pasadena, California 91125, United States
| |
Collapse
|
15
|
Yang SS, Ding MQ, He L, Zhang CH, Li QX, Xing DF, Cao GL, Zhao L, Ding J, Ren NQ, Wu WM. Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144087. [PMID: 33280873 DOI: 10.1016/j.scitotenv.2020.144087] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Polypropylene (PP), a fossil-based polyolefin plastics widely used worldwide, is non-hydrolyzable and resistant to biodegradation as a major source of plastic pollutants in environment. This study focused on feasibility of PP biodegradation in the larvae of two species of darkling beetles (Coleoptera: Tenebrionidae) i.e., yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) using PP foam with number-, weight-, and size-average molecular weights (Mn, Mw, and Mz) of 109.8, 356.2, and 765.0 kDa, respectively. The tests were conducted in duplicates with respective larvae (300 T. molitor and 200 Z. atratus each incubator) at 25 °C and 65% humidity for over a 35-day period. The larvae of T. molitor and Z. atratus fed with PP foam as sole diet consumed PP at 1.0 ± 0.4 and 3.1 ± 0.4 mg 100 larvae-1 days-1, respectively; when fed the PP foam plus wheat bran, the consumption rates were enhanced by 68.11% and 39.70%, respectively. Gel permeation chromatography analyses of the frass of T. molitor and Z. atratus larvae fed PP only indicated that Mw was decreased by 20.4 ± 0.8% and 9.0 ± 0.4%; Mn was increased by 12.1 ± 0.4% and 61.5 ± 2.5%; Mz was decreased by 33.8 ± 1.5% and 32.0 ± 1.1%, indicating limited extent depolymerization. Oxidation and biodegradation of PP was confirmed through analysis of the residual PP in frass. Depression of gut microbes with the antibiotic gentamicin inhibited PP depolymerization in both T. molitor and Z. atratus larvae. High throughput 16S rRNA sequencing revealed that Citrobacter sp. and Enterobacter sp. were associated with PP diets in the gut microbiome of Z. atratus larvae while Kluyvera was predominant in the T. molitor larvae. The results indicated that PP can be biodegraded in both T. molitor and Z. atratus larvae via gut microbe-dependent depolymerization with diversified microbiomes.
Collapse
Affiliation(s)
- Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Meng-Qi Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chun-Hong Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qing-Xiang Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guang-Li Cao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei-Min Wu
- Department of Civil and Environmental Engineering, Department of Chemistry, William & Cloy Codiga Resource Recovery Center, Center for Sustainable Development & Global Competitiveness, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
16
|
Tanaka R, Fujii H, Kida T, Nakayama Y, Shiono T. Incorporation of Boronic Acid Functionality into Isotactic Polypropylene and Its Application as a Cross-Linking Point. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Ryo Tanaka
- Graduate School of Advanced Science and Technology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Hiroya Fujii
- Graduate School of Advanced Science and Technology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Takumitsu Kida
- Graduate School of Advanced Science and Technology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yuushou Nakayama
- Graduate School of Advanced Science and Technology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Takeshi Shiono
- Graduate School of Advanced Science and Technology, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| |
Collapse
|
17
|
Abstract
Polyolefins are produced in vast amounts and are found in so many consumer products that the two most commonly produced forms, polyethylene (PE) and polypropylene (PP), fall into the rather sparse category of molecules that are likely to be known by people worldwide, regardless of their occupation. Although widespread, the further upgrading of their properties (mechanical, physical, aesthetic, etc.) through the formation of composites with other materials, such as polar polymers, fibers, or talc, is of huge interest to manufacturers. To improve the affinity of polyolefins toward these materials, the inclusion of polar functionalities into the polymer chain is essential. The incorporation of a functional group to trigger controlled polymer degradation is also an emerging area of interest. Currently practiced methods for the incorporation of polar functionalities, such as post-polymerization functionalization, are limited by the number of compatible polar monomers: for example, grafting maleic anhydride is currently the sole method for practical functionalization of PP. In contrast, the incorporation of fundamental polar comonomers into PE and PP chains via coordination insertion polymerization offers good control, making it a highly sought-after process. Early transition metal catalysts (which are commonly used for the production of PE and PP) display poor tolerance toward the functional groups within polar comonomers, limiting their use to less-practical derivatives. As late transition metal catalysts are less-oxophilic and thus more tolerant to polar functionalities, they are ideal candidates for these reactions. This Account focuses on the copolymerization of propylene with polar comonomers, which remains underdeveloped as compared to the corresponding reaction using ethylene. We begin with the challenges associated with the regio- and stereoselective insertion of propylene, which is a particular problem for late transition metal systems because of their propensity to undergo chain walking processes. To overcome this issue, we have investigated a range of metal/ligand combinations. We first discuss attempts with group 4 and 8 metal catalysts and their limitations as background, and then focus on the copolymerization of propylene with methyl acrylate (MA) using Pd/imidazolidine-quinolinolate (IzQO) and Pd/phosphine-sulfonate (PS) precatalysts. Each generated regioregular polymer, but while the system featuring an IzQO ligand did not display any stereocontrol, that using the chiral PS ligand did. A further difference was found in the insertion mode of MA: the Pd/IzQO system inserted in a 1,2 fashion, while in the Pd/PS system a 2,1 insertion was observed. We then move onto recent results from our lab using Pd/PS and Pd/bisphosphine monoxide (BPMO) precatalysts for the copolymerization of propylene with allyl comonomers. These P-stereogeneic precatalysts generated the highest isotacticity values reported to date using late transition metal catalysts. This section closes with our work using Earth-abundant nickel catalysts for the reaction, which would be especially desired for industrial applications: a Ni/phosphine phenolate (PO) precatalyst yielded regioregular polypropylene with the incorporation of some allyl monomers into the main polymer chain. The installation of a chiral menthyl substituent on the phosphine allowed for moderate stereoselectivity to be achieved, though the applicable polar monomers currently remain limited. The Account concludes with a discussion of the factors that affect the insertion mode of propylene and polar comonomers in copolymerization reactions, beginning with our recent computational study, and finishing with work from ourselves and others covering both comonomer and precatalyst steric and electronic profiles with reference to the observed regioselectivity.
Collapse
Affiliation(s)
- Stephen L. J. Luckham
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| | - Kyoko Nozaki
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-8656 Tokyo, Japan
| |
Collapse
|
18
|
Lu Z, Wang H, Li S, Dai S. Direct synthesis of various polar functionalized polypropylene materials with tunable molecular weights and high incorporation ratios. Polym Chem 2021. [DOI: 10.1039/d1py01064f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As compared with the classical α-diimine catalyst, iminopyridyl catalysts were observed to be highly efficient for the direct synthesis of polar functionalized polypropylene with tunable molecular weights and high incorporation ratios.
Collapse
Affiliation(s)
- Zhou Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Hui Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Shuaikang Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Shengyu Dai
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|