1
|
Chen Y, Zhen Q, Meng FJ, Yu P, Xu C. Lone Pair-π Interactions in Organic Reactions. Chem Rev 2024; 124:13370-13396. [PMID: 39535080 DOI: 10.1021/acs.chemrev.4c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Noncovalent interactions between a lone pair of electrons and π systems can be categorized into two types based on the nature of π systems. Lone pair-π(C═O) interactions with π systems of unsaturated, polarized bonds are primarily attributed to orbital interactions, whereas lone pair-π(Ar) interactions with π systems of aromatic functional groups result from electrostatic attractions (for electron-deficient aryls) or dispersion attractions and Pauli repulsions (for electron-rich/neutral aryls). Unlike well-established noncovalent interactions, lone pair-π interactions have been comparatively underappreciated or less used to influence reaction outcomes. This review emphasizes experimental and computational studies aimed at integrating lone pair-π interactions into the design of catalytic systems and utilizing these interactions to regulate the reactivity and selectivity of chemical transformations. The role of lone pair-π interactions is highlighted in the stabilization or destabilization of transition states and ground-state binding. Examples influenced by lone pair-π interactions with both unsaturated, polarized bonds and aromatic rings as π systems are included. At variance with previous reviews, the present review is not structured according to the physical origin of particular classes of lone pair-π interactions but is divided into chapters according to ways in which lone pair-π interactions affect kinetics and/or selectivity of reactions.
Collapse
Affiliation(s)
- Yu Chen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qianqian Zhen
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fan-Jie Meng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chen Xu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Zhang B, Li J, Wang X, Zhang C, Yin W, Zhang B, Qin Y, Liu Y, Shi W. Improved ultrafiltration performance through dielectric barrier discharge/sulfite pretreatment: Effects of water matrices and mechanistic insights. WATER RESEARCH 2024; 268:122755. [PMID: 39522128 DOI: 10.1016/j.watres.2024.122755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
The feasibility of utilizing a dielectric barrier discharge (DBD)/sulfite-ultrafiltration system was investigated in various real water bodies, aiming to clarify the mechanism behind alleviating membrane fouling while synchronously degrading perfluorooctanoic acid (PFOA) during the treatment process of Yangtze River water. The results demonstrated that the DBD/sulfite pretreatment exhibited remarkable rates of membrane flux mitigation (>84.10 %) and efficient degradation rates of PFOA (>85.13 %), which decreased with increasing pH from 3.0 to 11.0. The presence of anions, cations, and natural organic matter slightly hindered the membrane fouling mitigation and PFOA degradation by quenching free radicals; however, the addition of SO42- had a negligible impact. The mitigation of membrane fouling was attributed to the significant involvement of various radicals, including hydroxyl radical (•OH), sulfate radical (SO4•-), electron (e-/eaq-), su-peroxide anion radicals (•O2-), and other radicals such as SO3•-, exhibiting respective contributions of 33.25 %, 28.49 %, 20.56 %, 11.32 %, and 6.39 % in a synergistic redox effect. The pretreatment effectively reduced standard blocking and cake filtration fouling mechanisms by creating a sparse fouling layer on the membrane surface while increasing its roughness. Additionally, the main active species that played a significant role in the degradation of PFOA were identified as SO4•-, •OH, and eaq-. These species contributed approximately 43.63 %, 24.39 %, and 20.65 % respectively to the degradation process. By employing mass spectrometry and density functional theory, a proposed pathway for PFOA degradation was established, effectively reducing the toxicity associated with its degradation byproducts. This study provides innovative insights into membrane-based water treatment technologies that effectively tackle both membrane fouling mitigation and PFOA degradation.
Collapse
Affiliation(s)
- Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing 409003, China
| | - Jianpeng Li
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China; Power China Huadong Engineering Co., Ltd., Hangzhou 311122, China
| | - Xiaoping Wang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Chi Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| | - Wenjie Yin
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Bing Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yu Qin
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
3
|
Zhu J, Tuo DH, Wang XD, Ao YF, Wang QQ, Wang DX. Anion-Carbonyl Interactions. Org Lett 2024; 26:5984-5988. [PMID: 38975861 DOI: 10.1021/acs.orglett.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Presented herein is the exploration of a novel non-covalent anion-carbonyl (X-···C═O) interaction using aromatic imides as receptors and halides as lone pair donors. Combined theoretical calculations and experimental methods including 13C NMR, IR, and crystallographic analyses were performed to provide the physical origin and experimental evidence of anion-carbonyl interactions. The EDA analysis (energy decomposition analysis) based on DFT calculation indicates that electrostatic terms are the dominant contributions for the binding energy while electron delocalization also significantly contributes alongside the electrostatic attraction. Orbital interaction (n → π*) involving the delocalization of halide lone pairs on the carbonyl antibonding orbitals was visualized with NBO (Natural Bond Orbital) analysis. 13C NMR and IR spectra demonstrated upfield chemical shifts and red-shift frequency of hosts upon the addition of halides, reflecting the effect of orbital overlap between the halide lone pairs and π* of carbonyl (n → π* contribution). The anion-carbonyl interactions were directly revealed by X-ray structural analysis of anion and benzene triimide complexes.
Collapse
Affiliation(s)
- Jun Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - De-Hui Tuo
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Esteve F, Rieu T, Lehn JM. Key structural features to favour imines over hydrates in water: pyridoxal phosphate as a muse. Chem Sci 2024; 15:10408-10415. [PMID: 38994419 PMCID: PMC11234862 DOI: 10.1039/d4sc02206h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 07/13/2024] Open
Abstract
Imination reactions in water represent a challenge not only because of the high propensity of imines to be hydrolysed but also as a result of the competing hydrate formation through H2O addition to the aldehyde. In the present work we report a successful approach that allows for favouring imitation reactions while silencing hydrate formation. Such remarkable reactivity and selectivity can be attained by fine-tuning the electronic and steric structural features of the ortho-substituents of the carbonyl groups. It resulted from studying the structure-reactivity relationships in a series of condensation reactions between different amines and aldehydes, comparing the results to the ones obtained in the presence of the biologically-relevant pyridoxal phosphate (PLP). The key role of negatively-charged and sterically-crowding units (i.e., sulfonate groups) in disfavouring hydrate formation was corroborated by DFT and steric-hindrance calculations. Furthermore, the best-performing aldehyde leads to higher imine yields, selectivity and stability than those of PLP itself, allowing for the inhibition of a PLP-dependent enzyme (transaminase) through dynamic aldimine exchange. These results will increase the applicability of imine-based dynamic covalent chemistry (DCvC) under physiological conditions and will pave the way for the design of new carbonyl derivatives that might be used in the dynamic modification of biomolecules.
Collapse
Affiliation(s)
- Ferran Esteve
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge Strasbourg 67000 France
| | - Tanguy Rieu
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge Strasbourg 67000 France
| | - Jean-Marie Lehn
- Laboratoire de Chimie Supramoléculaire, Institut de Science et d'Ingénierie Supramoléculaires (ISIS), Université de Strasbourg 8 allée Gaspard Monge Strasbourg 67000 France
| |
Collapse
|
5
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Yin C, Ye H, Hai Y, Zou H, You L. Aromatic-Carbonyl Interactions as an Emerging Type of Non-Covalent Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310337. [PMID: 38561959 PMCID: PMC11165483 DOI: 10.1002/advs.202310337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Aromatic-carbonyl (Ar···C═O) interactions, attractive interactions between the arene plane and the carbon atom of carbonyl, are in the infancy as one type of new supramolecular bonding forces. Here the study and functionalization of aromatic-carbonyl interactions in solution is reported. A combination of aromatic-carbonyl interactions and dynamic covalent chemistry provided a versatile avenue. The stabilizing role and mechanism of arene-aldehyde/imine interactions are elucidated through crystal structures, NMR studies, and computational evidence. The movement of imine exchange equilibria further allowed the quantification of the interplay between arene-aldehyde/imine interactions and dynamic imine chemistry, with solvent effects offering another handle and matching the electrostatic feature of the interactions. Moreover, arene-aldehyde/imine interactions enabled the reversal of kinetic and thermodynamic selectivity and sorting of dynamic covalent libraries. To show the functional utility diverse modulation of fluorescence signals is realized with arene-aldehyde/imine interactions. The results should find applications in many aspects, including molecular recognition, assemblies, catalysis, and intelligent materials.
Collapse
Affiliation(s)
- Chaowei Yin
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| | - Hebo Ye
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Yu Hai
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Hanxun Zou
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Lei You
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
- University of Chinese Academy of SciencesChinese Academy of SciencesBeijing100049China
| |
Collapse
|
7
|
Price J, Tallaie T, Eisler S. Pericyclic Cascade Reactions Affording Thienyl- and Benzo[ b]thienyl-Fused Architectures: A Synthetic and Density Functional Theory Analysis of Asynchronous Diels-Alder Reactions of Thioarylmaleimides. J Org Chem 2024; 89:1379-1388. [PMID: 38215402 DOI: 10.1021/acs.joc.3c01797] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
Herein, we report the synthesis and characterization of a series of thioarylmaleimides and their varied propensity toward highly selective domino Diels-Alder (D-A)/rearrangement, D-A/ene/elimination, and D-A/oxidation reactions to give three types of thienyl-fused architectures. Stereochemical assignment was achieved using a combination of nuclear magnetic resonance (NMR) studies, gauge independent atomic orbital (GIAO) NMR chemical shift calculations, and DP4+ analysis. Transition-state calculations support an asynchronous concerted mechanism and provide support for rationalizing the observed regio- and stereoselectivity.
Collapse
Affiliation(s)
- Jayden Price
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Tabassom Tallaie
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Sara Eisler
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
8
|
Gravillier LA, Cockroft SL. Context-Dependent Significance of London Dispersion. Acc Chem Res 2023; 56:3535-3544. [PMID: 37994023 DOI: 10.1021/acs.accounts.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
ConspectusLondon forces constitute an attractive component of van der Waals interactions and originate from transient correlated momentary dipoles in adjacent atoms. The in-depth investigation of London dispersion forces poses notable challenges, especially in solution, owing to their inherently weak and competing character. Our objective in this Account is to shed light on the context-dependent significance of London dispersion forces by contrasting our own experimental findings with those from other research endeavors. Specifically, we will explore how factors such as the choice of system and solvent can influence the apparent role of London dispersion forces in molecular recognition processes. We initiate our Account by scrutinizing the Wilcox balance, which has yielded diverse and occasionally contradictory results. Following that, we provide an overview of the role of London dispersion forces and their context-dependent variations, encompassing alkyl-alkyl, halogen-π, alkyl-π, and aromatic stacking interactions.Several experimental investigations have revealed how difficult it is to measure the significance of London dispersion in solution. Indeed, dispersion forces seldom act as the exclusive driving force in molecular recognition processes, and solvation energetics also strongly influence equilibria and kinetics. Molecular balances that bring apolar functional groups into contact have proven to be instrumental in the experimental measurement of dispersion. The intramolecular approach avoids the need to pay the entropic cost of bringing interacting groups into contact, while also enabling solvent screening. Such experimental studies have found dispersion interactions between functional groups to be very weak (<5 kJ mol-1), meaning that they frequently take backstage to electrostatic contributions and solvophobic effects and are readily damped by competitive dispersion interactions with the solvent. By using such approaches, competitive dispersion interactions with the solvent have been shown to be described by the bulk polarizability of the solvent (perfluoroalkanes have the lowest bulk polarizabilities, while carbon disulfide has one of the highest). Dispersion interactions are also strongly distance-dependent, which results in considerable context-dependent outcomes across different investigations. For example, we caution against the risk of attributing the stability of a "more sterically hindered" isomer as arising from intramolecular dispersion forces. The total energy of the system can reveal other contributions to stability, such as nonintuitive minimization of strain elsewhere in the molecule. Indeed, the delicate distance-dependent balance between sterics and London dispersion means that even subtle changes in size and geometry can lead to disparate behavior. Similarly, solvophobic effects also contribute to stabilizing contacts between bulky functional groups, which can be revealed if there is a correlation with the cohesive energy density of the solvent.
Collapse
Affiliation(s)
- Louis-Albin Gravillier
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Scott L Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
9
|
You L. Dual reactivity based dynamic covalent chemistry: mechanisms and applications. Chem Commun (Camb) 2023; 59:12943-12958. [PMID: 37772969 DOI: 10.1039/d3cc04022d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Dynamic covalent chemistry (DCC) focuses on the reversible formation, breakage, and exchange of covalent bonds and assemblies, setting a bridge between irreversible organic synthesis and supramolecular chemistry and finding wide utility. In order to enhance structural and functional diversity and complexity, different types of dynamic covalent reactions (DCRs) are placed in one vessel, encompassing orthogonal DCC without crosstalk and communicating DCC with a shared reactive functional group. As a means of adding tautomers, widespread in chemistry, to interconnected DCRs and combining the features of orthogonal and communicating DCRs, a concept of dual reactivity based DCC and underlying structural and mechanistic insights are summarized. The manipulation of the distinct reactivity of structurally diverse ring-chain tautomers allows selective activation and switching of reaction pathways and corresponding DCRs (C-N, C-O, and C-S) and assemblies. The coupling with photoswitches further enables light-mediated formation and scission of multiple types of reversible covalent bonds. To showcase the capability of dual reactivity based DCC, the versatile applications in dynamic polymers and luminescent materials are presented, paving the way for future functionalization studies.
Collapse
Affiliation(s)
- Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
10
|
Wang XD, Zhu J, Wang DX. Intermolecular n→π* Interactions in Supramolecular Chemistry and Catalysis. Chempluschem 2023; 88:e202300288. [PMID: 37609956 DOI: 10.1002/cplu.202300288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 08/24/2023]
Abstract
The n→π* interactions describing attractive force between lone pairs (lps) of nucleophile and carbonyl or polarized unsaturated bonds have recently attracted growing attentions in various disciplines. So far, such non-covalent driving force are mainly concentrated to intramolecular systems. Intermolecular n→π* interactions in principle could produce fascinated supramolecular systems or facilitate organic reactions, however, they remain largely underexplored due to the very weak energy of individual interaction. This review attempts to give an overview of the challenging intermolecular n→π* interactions, much efforts emphasize the supramolecular systems, catalytic processes and spectroscopic measurements.
Collapse
Affiliation(s)
- Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jun Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Liu M, Han X, Chen H, Peng Q, Huang H. A molecular descriptor of intramolecular noncovalent interaction for regulating optoelectronic properties of organic semiconductors. Nat Commun 2023; 14:2500. [PMID: 37127693 PMCID: PMC10151346 DOI: 10.1038/s41467-023-38078-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023] Open
Abstract
In recent years, intramolecular noncovalent interaction has become an important means to modulate the optoelectronic performances of organic/polymeric semiconductors. However, it lacks a deep understanding and a direct quantitative relationship among the molecular geometric structure, strength of noncovalent interaction, and optoelectronic properties in organic/polymeric semiconductors. Herein, upon systematical theoretical calculations on 56 molecules with and without noncovalent interactions (X···Y, X = O, S, Se, Te; Y = C, F, O, S, Cl), we reveal the essence of the interactions and the dependence of its strength on the molecular geometry. Importantly, a descriptor S is established as a function of several basic geometric parameters to well characterize the noncovalent interaction energy, which exhibits a good inverse correlation with the reorganization energies of the photo-excited states or electron-pumped charged states in organic/polymeric semiconductors. In particular, the experimental 1H, 77Se, and 125Te NMR, the optical absorption and emission spectra, and single crystal structures of eight compounds fully confirm the theoretical predictions. This work provides a simple descriptor to characterize the strength of noncovalent intramolecular interactions, which is significant for molecular design and property prediction.
Collapse
Affiliation(s)
- Meihui Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao Han
- College of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hao Chen
- College of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Hui Huang
- College of Materials Science and Opto-Electronic Technology & CAS Center for Excellence in Topological Quantum Computation & Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
12
|
Yin C, Lu H, Ye H, Feng Z, Zou H, Zhang M, You L. Double n→π* Interactions with One Electron Donor: Structural and Mechanistic Insights. Org Lett 2023; 25:1470-1475. [PMID: 36856609 DOI: 10.1021/acs.orglett.3c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Double n→π* interactions between one common electron donor of the carbonyl oxygen and two individual acceptor aldehyde/imine units are presented. The structural and mechanistic insights were revealed through a collection of experimental and computational evidence. The orientation and further energetic dependence of orbital interactions were facilely regulated by the size of cyclic urea scaffolds, the bulkiness of aldehydes/imines, and the flexibility of imine macrocycles.
Collapse
Affiliation(s)
- Chaowei Yin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zelin Feng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Meilan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Zhu J, Wang XD, Ao YF, Wang QQ, Wang DX. Intermolecular n→π* Interactions Based on a Tailored Multicarbonyl-Containing Macrocycle. Chemistry 2023; 29:e202203485. [PMID: 36445795 DOI: 10.1002/chem.202203485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 11/30/2022]
Abstract
Towards unexplored intermolecular n→π* interactions, presented herein are the synthesis, structure, self-assembly and function of a multicarbonyl-containing macrocycle calix[2]arene[2]barbiturate 1. X-ray single crystal diffraction reveals the presence of Cl⋅⋅⋅C=O interactions in CH2 Cl2 ⊂1 host-guest complex and multiple intermolecular C=O⋅⋅⋅C=O interactions between molecules 1 in crystalline state. The intermolecular C=O⋅⋅⋅C=O interactions as attractive driving force led to unprecedented self-assembly of nanotube with diameter around 1.4 nm and inner surface engineered by aromatic rings. SEM and TEM images of the self-assembly of 1 demonstrated temperature-dependent morphologies which allows the observation of spheres at 25 °C and rods at 0 °C, respectively. XRD analysis indicated consistent hexagonal patterns in the self-assembly and single crystal lattice, indicating the nanotubes driven by C=O⋅⋅⋅C=O interactions constitute the basic structural architectures of both aggregates. The nanoscopic tubes (pores) formed in the rodlike single crystal engendering the separation of moving dyes were preliminarily investigated by a single-crystal chromatography and crystal-packed column chromatography.
Collapse
Affiliation(s)
- Jun Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China)
| | - Xu-Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China)
| | - Qi-Qiang Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China)
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China)
| |
Collapse
|
14
|
Association Complexes of Calix[6]arenes with Amino Acids Explained by Energy-Partitioning Methods. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227938. [PMID: 36432040 PMCID: PMC9699162 DOI: 10.3390/molecules27227938] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022]
Abstract
Intermolecular complexes with calixarenes are intriguing because of multiple possibilities of noncovalent binding for both polar and nonpolar molecules, including docking in the calixarene cavity. In this contribution calix[6]arenes interacting with amino acids are studied with an additional aim to show that tools such as symmetry-adapted perturbation theory (SAPT), functional-group SAPT (F-SAPT), and systematic molecular fragmentation (SMF) methods may provide explanations for different numbers of noncovalent bonds and of their varying strength for various calixarene conformers and guest molecules. The partitioning of the interaction energy provides an easy way to identify hydrogen bonds, including those with unconventional hydrogen acceptors, as well as other noncovalent bonds, and to find repulsive destabilizing interactions between functional groups. Various other features can be explained by energy partitioning, such as the red shift of an IR stretching frequency for some hydroxy groups, which arises from their attraction to the phenyl ring of calixarene. Pairs of hydrogen bonds and other noncovalent bonds of similar magnitude found by F-SAPT explain an increase in the stability of both inclusion and outer complexes.
Collapse
|
15
|
Meredith NY, Borsley S, Smolyar IV, Nichol GS, Baker CM, Ling KB, Cockroft SL. Dissecting Solvent Effects on Hydrogen Bonding. Angew Chem Int Ed Engl 2022; 61:e202206604. [PMID: 35608961 PMCID: PMC9400978 DOI: 10.1002/anie.202206604] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 12/26/2022]
Abstract
The experimental isolation of H-bond energetics from the typically dominant influence of the solvent remains challenging. Here we use synthetic molecular balances to quantify amine/amide H-bonds in competitive solvents. Over 200 conformational free energy differences were determined using 24 H-bonding balances in 9 solvents spanning a wide polarity range. The correlations between experimental interaction energies and gas-phase computed energies exhibited wild solvent-dependent variation. However, excellent correlations were found between the same computed energies and the experimental data following empirical dissection of solvent effects using Hunter's α/β solvation model. In addition to facilitating the direct comparison of experimental and computational data, changes in the fitted donor and acceptor constants reveal the energetics of secondary local interactions such as competing H-bonds.
Collapse
Affiliation(s)
- Nicole Y. Meredith
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| | - Stefan Borsley
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| | - Ivan V. Smolyar
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| | - Gary S. Nichol
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| | - Christopher M. Baker
- SyngentaJealott's Hill International Research CentreBracknell, BerkshireRG42 6EYUK
| | - Kenneth B. Ling
- SyngentaJealott's Hill International Research CentreBracknell, BerkshireRG42 6EYUK
| | - Scott L. Cockroft
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black Building, David Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
16
|
Meredith NY, Borsley S, Smolyar IV, Nichol GS, Baker CM, Ling KB, Cockroft SL. Dissecting Solvent Effects on Hydrogen Bonding. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Nicole Y. Meredith
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Stefan Borsley
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Ivan V. Smolyar
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Gary S. Nichol
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| | - Christopher M. Baker
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Kenneth B. Ling
- Syngenta Jealott's Hill International Research Centre Bracknell, Berkshire RG42 6EY UK
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry University of Edinburgh Joseph Black Building, David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
17
|
Zondlo NJ. Solvation stabilizes intercarbonyl n→π* interactions and polyproline II helix. Phys Chem Chem Phys 2022; 24:13571-13586. [PMID: 35635541 DOI: 10.1039/d2cp00857b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
n→π* interactions between consecutive carbonyls stabilize the α-helix and polyproline II helix (PPII) conformations in proteins. n→π* interactions have been suggested to provide significant conformational biases to the disordered states of proteins. To understand the roles of solvation on the strength of n→π* interactions, computational investigations were conducted on a model n→π* interaction, the twisted-parallel-offset formaldehyde dimer, as a function of explicit solvation of the donor and acceptor carbonyls, using water and HF. In addition, the effects of urea, thiourea, guanidinium, and monovalent cations on n→π* interaction strength were examined. Solvation of the acceptor carbonyl significantly strengthens the n→π* interaction, while solvation of the donor carbonyl only modestly weakens the n→π* interaction. The n→π* interaction strength was maximized with two solvent molecules on the acceptor carbonyl. Urea stabilized the n→π* interaction via simultaneous engagement of both oxygen lone pairs on the acceptor carbonyl. Solvent effects were further investigated in the model peptides Ac-Pro-NMe2, Ac-Ala-NMe2, and Ac-Pro2-NMe2. Solvent effects in peptides were similar to those in the formaldehyde dimer, with solvation of the acceptor carbonyl increasing n→π* interaction strength and resulting in more compact conformations, in both the proline endo and exo ring puckers, as well as a reduction in the energy difference between these ring puckers. Carbonyl solvation leads to an energetic preference for PPII over both the α-helix and β/extended conformations, consistent with experimental data that protic solvents and protein denaturants both promote PPII. Solvation of the acceptor carbonyl weakens the intraresidue C5 hydrogen bond that stabilizes the β conformation.
Collapse
Affiliation(s)
- Neal J Zondlo
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
18
|
Sahariah B, Sarma BK. Deciphering the Backbone Noncovalent Interactions that Stabilize Polyproline II Conformation and Reduce cis Proline Abundance in Polyproline Tracts. J Phys Chem B 2021; 125:13394-13405. [PMID: 34851647 DOI: 10.1021/acs.jpcb.1c07875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Proline (Pro) has a higher propensity to adopt cis amide geometry than the other natural amino acids, and a poly-Pro (poly-P) tract can adopt either a polyproline I (PPI, all cis amide) or a polyproline II (PPII, all trans amide) helical conformation. Recent studies have revealed a reduced abundance of cis amide geometry among the inner Pro residues of a poly-P tract. However, the forces that stabilize the polyproline helices and the reason for the higher trans amide propensity of the inner Pro residues of a poly-P tract are poorly understood. Herein, we have studied both Pro and non-Pro PPII helical sequences and identified the backbone noncovalent interactions that are crucial to the higher stability of the trans Pro-amide geometry and the preference for a PPII helical conformation. We show the presence of reciprocal CO···CO interactions that extend over the whole PPII helical region. Interestingly, the CO···CO interactions strengthen with the increase in the PPII helical chain length and the inner CO groups possess stronger CO···CO interactions, which could explain the reduced cis abundance of the inner Pro residues of a poly-P tract. We also identified a much stronger (∼0.9 kcal·mol-1) nO → σ*Cα-Cβ interaction between the N-terminal CO oxygen lone pair and the antibonding orbital (σ*) of their Cα-Cβ bonds. As the nO → σ*Cα-Cβ interaction is possible only in the trans isomers of Pro, this interaction should be crucial for the stabilization of a PPII helix. Finally, an unusual nN(amide) → σ*C-N interaction (∼0.3 kcal·mol-1) was observed between the peptidic nitrogen lone pair (nN) and the antibonding orbital (σ*C-N) of the subsequent C-terminal peptide C-N bond. We propose a cumulative effect of these interactions in the stabilization of a PPII helix.
Collapse
Affiliation(s)
- Biswajit Sahariah
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Bani Kanta Sarma
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
19
|
Vik EC, Li P, Madukwe DO, Karki I, Tibbetts GS, Shimizu KD. Analysis of the Orbital and Electrostatic Contributions to the Lone Pair-Aromatic Interaction Using Molecular Rotors. Org Lett 2021; 23:8179-8182. [PMID: 34670094 DOI: 10.1021/acs.orglett.1c02878] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The attractive interaction between carbonyl oxygens and the π-face of aromatic surfaces was studied using N-phenylimide molecular rotors. The C═O···Ar interactions could stabilize the transition states but were half the strength of comparable C═O···C═O interactions. The C═O···Ar interaction had a significant electrostatic component but only a small orbital delocalization component.
Collapse
Affiliation(s)
- Erik C Vik
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ping Li
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Daniel O Madukwe
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ishwor Karki
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Gabriel S Tibbetts
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Ken D Shimizu
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
20
|
Enabling three-dimensional porous architectures via carbonyl functionalization and molecular-specific organic-SERS platforms. Nat Commun 2021; 12:6119. [PMID: 34675208 PMCID: PMC8531383 DOI: 10.1038/s41467-021-26385-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022] Open
Abstract
Molecular engineering via functionalization has been a great tool to tune noncovalent intermolecular interactions. Herein, we demonstrate three-dimensional highly crystalline nanostructured D(C7CO)-BTBT films via carbonyl-functionalization of a fused thienoacene π-system, and strong Raman signal enhancements in Surface-Enhanced Raman Spectroscopy (SERS) are realized. The small molecule could be prepared on the gram scale with a facile synthesis-purification. In the engineered films, polar functionalization induces favorable out-of-plane crystal growth via zigzag motif of dipolar C = O···C = O interactions and hydrogen bonds, and strengthens π-interactions. A unique two-stage film growth behavior is identified with an edge-on-to-face-on molecular orientation transition driven by hydrophobicity. The analysis of the electronic structures and the ratio of the anti-Stokes/Stokes SERS signals suggests that the π-extended/stabilized LUMOs with varied crystalline face-on orientations provide the key properties in the chemical enhancement mechanism. A molecule-specific Raman signal enhancement is also demonstrated on a high-LUMO organic platform. Our results demonstrate a promising guidance towards realizing low-cost SERS-active semiconducting materials, increasing structural versatility of organic-SERS platforms, and advancing molecule-specific sensing via molecular engineering. Nanostructured films of organic semiconductors with low lying LUMO orbitals can enhance Raman signals via a chemical enhancement mechanism but currently the material choice is limited to fluorinated oligothiophenes. Here, the authors investigate the growth of a porous thienoacene film enabled by carbonyls and demonstrate molecular specific organic-SERS platforms.
Collapse
|
21
|
Rodrigues Silva D, de Azevedo Santos L, Hamlin TA, Bickelhaupt FM, P Freitas M, Fonseca Guerra C. Dipolar repulsion in α-halocarbonyl compounds revisited. Phys Chem Chem Phys 2021; 23:20883-20891. [PMID: 34528039 PMCID: PMC8479779 DOI: 10.1039/d1cp02502c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The concept of dipolar repulsion has been widely used to explain several phenomena in organic chemistry, including the conformational preferences of carbonyl compounds. This model, in which atoms and bonds are viewed as point charges and dipole moment vectors, respectively, is however oversimplified. To provide a causal model rooted in quantitative molecular orbital theory, we have analyzed the rotational isomerism of haloacetaldehydes OHC–CH2X (X = F, Cl, Br, I), using relativistic density functional theory. We have found that the overall trend in the rotational energy profiles is set by the combined effects of Pauli repulsion (introducing a barrier around gauche that separates minima at syn and anti), orbital interactions (which can pull the anti minimum towards anticlinal to maximize hyperconjugation), and electrostatic interactions. Only for X = F, not for X = Cl–I, electrostatic interactions push the preference from syn to anti. Our bonding analyses show how this trend is related to the compact nature of F versus the more diffuse nature of the heavier halogens. Beyond point charges! The point charge concept within dipolar repulsion model is valid for compact atoms like fluorine. This model breaks down for larger halogens, for which the electrostatic attraction between nuclei and charge densities dominates.![]()
Collapse
Affiliation(s)
- Daniela Rodrigues Silva
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands. .,Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil.
| | - Lucas de Azevedo Santos
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands. .,Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil.
| | - Trevor A Hamlin
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands.
| | - F Matthias Bickelhaupt
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands. .,Institute for Molecules and Materials (IMM), Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Matheus P Freitas
- Departamento de Química, Instituto de Ciências Naturais, Universidade Federal de Lavras, 37200-900, Lavras, MG, Brazil.
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Amsterdam Center for Multiscale Modeling (ACMM), Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands. .,Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
22
|
Sahariah B, Sarma BK. Spectroscopic evidence of n → π* interactions involving carbonyl groups. Phys Chem Chem Phys 2021; 22:26669-26681. [PMID: 33226050 DOI: 10.1039/d0cp03557b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
n → π* has emerged as an important noncovalent interaction that can affect the conformations of both small- and macromolecules including peptides and proteins. Carbonyl-carbonyl (COCO) n → π* interactions involving CO groups are well studied. Recent studies have shown that the COCO n → π* interactions are the most abundant secondary interactions in proteins with a frequency of 33 interactions per 100 residues and, among the various secondary interactions, n → π* interactions are expected to provide the highest enthalpic contributions to the conformational stability of globular proteins. However, n → π* interactions are relatively weak and provide an average stabilization of about 0.25 kcal mol-1 per interaction in proteins. The strongest n → π* interaction could be as strong as a moderate hydrogen bond. Therefore, it is challenging to detect and quantify these weak interactions, especially in solution in the presence of perturbation from other intermolecular interactions. Accordingly, spectroscopic investigations that can provide direct evidence of n → π* interaction are limited, and the majority of papers published in this area have relied on X-ray crystallography and/or theoretical calculations to establish the presence of this interaction. The aim of this perspective is to discuss the studies where a spectroscopic signature in support of n → π* interaction was observed. As the "n → π* interaction" is a relatively new terminology, there remains the possibility of there being earlier studies where spectroscopic evidence for n → π* interactions was obtained but it was not discussed in light of the n → π* terminology. We noticed several such studies and, as can be expected, these studies were often overlooked in the discussion of n → π* interactions in the recent literature. In this perspective, we have also discussed these studies and provided computational support for the presence of n → π* interaction.
Collapse
Affiliation(s)
- Biswajit Sahariah
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India.
| | | |
Collapse
|
23
|
Elmi A, Cockroft SL. Quantifying Interactions and Solvent Effects Using Molecular Balances and Model Complexes. Acc Chem Res 2021; 54:92-103. [PMID: 33315374 DOI: 10.1021/acs.accounts.0c00545] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Where the basic units of molecular chemistry are the bonds within molecules, supramolecular chemistry is based on the interactions that occur between molecules. Understanding the "how" and "why" of the processes that govern molecular self-assembly remains an open challenge to the supramolecular community. While many interactions are readily examined in silico through electronic structure calculations, such insights may not be directly applicable to experimentalists. The practical limitations of computationally accounting for solvation is perhaps the largest bottleneck in this regard, with implicit solvation models failing to comprehensively account for the specific nature of solvent effects and explicit models incurring a prohibitively high computational cost. Since molecular recognition processes usually occur in solution, insight into the nature and effect of solvation is imperative not only for understanding these phenomena but also for the rational design of systems that exploit them.Molecular balances and supramolecular complexes have emerged as useful tools for the experimental dissection of the physicochemical basis of various noncovalent interactions, but they have historically been underexploited as a platform for the evaluation of solvent effects. Contrasting with large biological complexes, smaller synthetic model systems enable combined experimental and computational analyses, often facilitating theoretical analyses that can work in concert with experiment.Our research has focused on the development of supramolecular systems to evaluate the role of solvents in molecular recognition, and further characterize the underlying mechanisms by which molecules associate. In particular, the use of molecular balances has provided a framework to measure the magnitude of solvent effects and to examine the accuracy of solvent models. Such approaches have revealed how solvation can modulate the electronic landscape of a molecule and how competitive solvation and solvent cohesion can provide thermodynamic driving forces for association. Moreover, the use of simple model systems facilitates the interrogation and further dissection of the physicochemical origins of molecular recognition. This tandem experimental/computational approach has married less common computational techniques, like symmetry adapted perturbation theory (SAPT) and natural bonding orbital (NBO) analysis, with experimental observations to elucidate the influence of effects that are difficult to resolve experimentally (e.g., London dispersion and electron delocalization).
Collapse
Affiliation(s)
- Alex Elmi
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| | - Scott L. Cockroft
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, United Kingdom
| |
Collapse
|
24
|
Chen H, Tang X, Ye H, Wang X, Zheng H, Hai Y, Cao X, You L. Effects of n → π* Orbital Interactions on Molecular Rotors: The Control and Switching of Rotational Pathway and Speed. Org Lett 2020; 23:231-235. [PMID: 33351640 DOI: 10.1021/acs.orglett.0c03969] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of n → π* orbital interactions in the rotational pathway and barrier of biaryl-based molecular rotors was elucidated through a combined experimental and computational study. The n → π* interaction in the transition state can lead to the acceleration of rotors. The competition between the n → π* interaction and hydrogen bonding further enabled the reversal of the pathway and greasing/braking the rotor in response to acid/base stimuli, thereby creating a switchable molecular rotor.
Collapse
Affiliation(s)
- Hang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiao Tang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xinchang Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,China
| | - Hao Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
25
|
Ciou JM, Zhu HF, Chang CW, Chen JY, Lin YF. Physical organic studies and dynamic covalent chemistry of picolyl heterocyclic amino aminals. RSC Adv 2020; 10:40421-40427. [PMID: 35520848 PMCID: PMC9057465 DOI: 10.1039/d0ra08527h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/30/2020] [Indexed: 12/03/2022] Open
Abstract
A dynamic covalent system of the picolyl heterocyclic amino aminals has been studied. The aminals are characterized as a metastable species and easily switch to other forms via external stimuli. The solvent, temperature, acid-base and substituent effects have been examined to evaluate the dynamic covalent system. The results reveal that a more polar solvent, a lower temperature, basic conditions and an electron-withdrawing moiety contribute to the stabilities of aminals. The existence of the n → π* interaction between acetonitrile and the C[double bond, length as m-dash]N moiety makes the N-pyrimidyl imine (4c and 4d) yield higher in CD3CN. In a similar fashion, all aminals tend to convert to the corresponding hemiaminal ethers in a methanol environment. According to these findings, we successfully synthesized the following species: (a) N-2-picolylpyrimidin-2-amine 6c obtained by reduction using acetonitrile as the specific solvent; (b) a picolyl aromatic amino aminal 3e prepared from 2-pyridinecarboxaldehyde and the electron withdrawing 2-methoxy-5-nitroaniline.
Collapse
Affiliation(s)
- Ji-Ming Ciou
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University 100 Shi-Chuan 1st Rd., San-Ming Dist. Kaohsiung 80708 Taiwan
| | - Hong-Feng Zhu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Kaohsiung 80708 Taiwan
| | - Chia-Wen Chang
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University 100 Shi-Chuan 1st Rd., San-Ming Dist. Kaohsiung 80708 Taiwan
| | - Jing-Yun Chen
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University 100 Shi-Chuan 1st Rd., San-Ming Dist. Kaohsiung 80708 Taiwan
| | - Ya-Fan Lin
- Department of Fragrance and Cosmetic Science, Kaohsiung Medical University 100 Shi-Chuan 1st Rd., San-Ming Dist. Kaohsiung 80708 Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University Kaohsiung 80708 Taiwan
| |
Collapse
|
26
|
Iwaoka M, Yoshida K, Shimosato T. Application of a Distance-Dependent Sigmoidal Dielectric Constant to the REMC/SAAP3D Simulations of Chignolin, Trp-Cage, and the G10q Mutant. Protein J 2020; 39:402-410. [PMID: 33108545 DOI: 10.1007/s10930-020-09936-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 11/26/2022]
Abstract
The replica-exchange Monte Carlo method based on the single amino acid potential (SAAP) force field, i.e., REMC/SAAP3D, was recently developed by our group for the molecular simulation of short peptides. In this study, the method has been improved by applying a distance-dependent dielectric (DDD) constant and extended to the peptides containing D-amino acid (AA) residues. For chignolin (10 AAs), a sigmoidal DDD model reasonably allocated the native-like β-hairpin structure with all-atom root mean square deviation (RMSD) = 2.0 Å as a global energy minimum. The optimal DDD condition was subsequently applied for Trp-cage (20 AAs) and its G10q mutant. The native-like α-rich folded structures with main-chain RMSD = 3.7 and 3.8 Å were obtained as global energy minima for Trp-cage and G10q, respectively. The results suggested that the REMC/SAAP3D method with the sigmoidal DDD model is useful for structural prediction for the short peptides comprised of up to 20 AAs. In addition, the relative contributions of SAAP to the total energy (%SAAP) were evaluated by energetic component analysis. The ratios of %SAAP were about 40 and 20% for chignolin and Trp-cage (or G10q), respectively. It was proposed that SAAP is more important for the secondary structure formation than for the assembly to a higher-order folded structure, in which the attractive van der Waals interaction may play a more important role.
Collapse
Affiliation(s)
- Michio Iwaoka
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan.
| | - Koji Yoshida
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| | - Taku Shimosato
- Department of Chemistry, School of Science, Tokai University, Kitakaname, Hiratsuka-shi, Kanagawa, 259-1292, Japan
| |
Collapse
|
27
|
Abstract
The fundamental underpinnings of noncovalent bonds are presented, focusing on the σ-hole interactions that are closely related to the H-bond. Different means of assessing their strength and the factors that control it are discussed. The establishment of a noncovalent bond is monitored as the two subunits are brought together, allowing the electrostatic, charge redistribution, and other effects to slowly take hold. Methods are discussed that permit prediction as to which site an approaching nucleophile will be drawn, and the maximum number of bonds around a central atom in its normal or hypervalent states is assessed. The manner in which a pair of anions can be held together despite an overall Coulombic repulsion is explained. The possibility that first-row atoms can participate in such bonds is discussed, along with the introduction of a tetrel analog of the dihydrogen bond.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322-0300, USA
| |
Collapse
|
28
|
Burns RJ, Mati IK, Muchowska KB, Adam C, Cockroft SL. Quantifying Through-Space Substituent Effects. Angew Chem Int Ed Engl 2020; 59:16717-16724. [PMID: 32542910 PMCID: PMC7540488 DOI: 10.1002/anie.202006943] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Indexed: 01/12/2023]
Abstract
The description of substituents as electron donating or withdrawing leads to a perceived dominance of through-bond influences. The situation is compounded by the challenge of separating through-bond and through-space contributions. Here, we probe the experimental significance of through-space substituent effects in molecular interactions and reaction kinetics. Conformational equilibrium constants were transposed onto the Hammett substituent constant scale revealing dominant through-space substituent effects that cannot be described in classic terms. For example, NO2 groups positioned over a biaryl bond exhibited similar influences as resonant electron donors. Meanwhile, the electro-enhancing influence of OMe/OH groups could be switched off or inverted by conformational twisting. 267 conformational equilibrium constants measured across eleven solvents were found to be better predictors of reaction kinetics than calculated electrostatic potentials, suggesting utility in other contexts and for benchmarking theoretical solvation models.
Collapse
Affiliation(s)
- Rebecca J. Burns
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Ioulia K. Mati
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Kamila B. Muchowska
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Catherine Adam
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| | - Scott L. Cockroft
- EaStCHEM School of ChemistryUniversity of EdinburghJoseph Black BuildingDavid Brewster RoadEdinburghEH9 3FJUK
| |
Collapse
|
29
|
Kilgore HR, Olsson CR, D’Angelo KA, Movassaghi M, Raines RT. n→π* Interactions Modulate the Disulfide Reduction Potential of Epidithiodiketopiperazines. J Am Chem Soc 2020; 142:15107-15115. [PMID: 32701272 PMCID: PMC7484275 DOI: 10.1021/jacs.0c06477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epithiodiketopiperazines (ETPs) are a structurally complex class of fungal natural products with potent anticancer activity. In ETPs, the diketopiperazine ring is spanned by a disulfide bond that is constrained in a high-energy eclipsed conformation. We employed computational, synthetic, and spectroscopic methods to investigate the physicochemical attributes of this atypical disulfide bond. We find that the disulfide bond is stabilized by two n→π* interactions, each with large energies (3-5 kcal/mol). The n→π* interactions in ETPs make disulfide reduction much more difficult, endowing stability in physiological environments in a manner that could impact their biological activity. These data reveal a previously unappreciated means to stabilize a disulfide bond and highlight the utility of the n→π* interaction in molecular design.
Collapse
Affiliation(s)
| | | | - Kyan A. D’Angelo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Kubyshkin V. Polarity effects in 4-fluoro- and 4-(trifluoromethyl)prolines. Beilstein J Org Chem 2020; 16:1837-1852. [PMID: 32765799 PMCID: PMC7385359 DOI: 10.3762/bjoc.16.151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Fluorine-containing analogues of proline are valuable tools in engineering and NMR spectroscopic studies of peptides and proteins. Their use relies on the fundamental understanding of the interplay between the substituents and the main chain groups of the amino acid residue. This study aims to showcase the polarity-related effects that arise from the interaction between the functional groups in molecular models. Properties such as conformation, acid-base transition, and amide-bond isomerism were examined for diastereomeric 4-fluoroprolines, 4-(trifluoromethyl)prolines, and 1,1-difluoro-5-azaspiro[2.4]heptane-6-carboxylates. The preferred conformation on the proline ring originated from a preferential axial positioning for a single fluorine atom, and an equatorial positioning for a trifluoromethyl- or a difluoromethylene group. This orientation of the substituents explains the observed trends in the pK a values, lipophilicity, and the kinetics of the amide bond rotation. The study also provides a set of evidences that the transition state of the amide-bond rotation in peptidyl-prolyl favors C4-exo conformation of the pyrrolidine ring.
Collapse
|