1
|
Koseki Y, Nishimura H, Asano R, Aoki K, Shiyu L, Sugiyama R, Yamazaki M. Isolation of new indole alkaloid triglucoside from the aqueous extract of Uncaria rhynchophylla. J Nat Med 2025; 79:28-35. [PMID: 39174720 PMCID: PMC11735493 DOI: 10.1007/s11418-024-01836-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
Uncaria rhynchophylla (Miq.) Miq. (Rubiaceae) is widely used as a botanical raw material for traditional Japanese and Chinese medicines. However, not all of its potentially bioactive constituents have been isolated and characterized. Herein, one new indole alkaloid triglucoside (1), nine known alkaloids (2-10) and thirteen known non-alkaloids (11-23) were isolated from the aqueous extract of Uncaria rhynchophylla hook and structurally characterized 1H and 13C NMR and high-resolution electrospray ionization mass spectrometry. The absolute configurations of isolated compounds (1, 2 and 3) were determined by the X-ray diffraction analysis of their single crystals obtained using a micro-drop crystallization technique. This technique allows single crystals to be obtained from samples as small as 50 µg, thus providing detailed structural information even on minor constituents and enabling the accurate quality monitoring of botanical raw materials more accurately.
Collapse
Affiliation(s)
- Yuta Koseki
- Tsumura Botanical Raw Materials Research Laboratories, Tsumura and Co., 3586, Yoshiwara, Ami‑machi, Inashiki‑gun, Ibaraki, 300‑1192, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan
| | - Hiroaki Nishimura
- Tsumura Botanical Raw Materials Research Laboratories, Tsumura and Co., 3586, Yoshiwara, Ami‑machi, Inashiki‑gun, Ibaraki, 300‑1192, Japan
| | - Ryuji Asano
- Tsumura Botanical Raw Materials Research Laboratories, Tsumura and Co., 3586, Yoshiwara, Ami‑machi, Inashiki‑gun, Ibaraki, 300‑1192, Japan
| | - Katsuyuki Aoki
- Tsumura Botanical Raw Materials Research Laboratories, Tsumura and Co., 3586, Yoshiwara, Ami‑machi, Inashiki‑gun, Ibaraki, 300‑1192, Japan
| | - Li Shiyu
- Shenzhen Tsumura Medicine Co., No.99, Fuyon Road, Fuyong Street, Baoan District, Shenzhen, 518103, Guandong, China
| | - Ryosuke Sugiyama
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan
| | - Mami Yamazaki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan.
- Plant Molecular Science Center, Chiba University, 1-8-1 Inohana, Chuo-Ku, Chiba, 260-8675, Japan.
| |
Collapse
|
2
|
Rao L, Chen F, Gao MH, Tan JJ, Qu SJ, Tan CH. Monoterpene indole glycoalkaloids from the hook-bearing branches of Uncaria rhynchophylla. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:31-37. [PMID: 39412426 DOI: 10.1080/10286020.2024.2410460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 01/11/2025]
Abstract
Twelve monoterpene indole glycoalkaloids, comprising of three new ones, 19-epi-rhynchophylloside A (1), 7-epi-rhynchophylloside A (2), and 7-epi-anthocephalusine A (3), were isolated from the hook-bearing branches of Uncaria rhynchophylla. The structures and absolute configurations of 1-3 were elucidated by analysis of MS, NMR, ECD, and single-crystal X-ray diffraction or TDDFT-ECD calculations. Glycoalkaloids 1 and 3 showed significant immunosuppressive activity against the proliferation of B lymphocyte induced by LPS with broad selective index.
Collapse
Affiliation(s)
- Lu Rao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei Chen
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Hui Gao
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun-Jie Tan
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- National Engineering Research Center of TCM Standardization Technology, Shanghai201203, China
| | - Shi-Jin Qu
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- National Engineering Research Center of TCM Standardization Technology, Shanghai201203, China
| | - Chang-Heng Tan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Natural Product Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
- National Engineering Research Center of TCM Standardization Technology, Shanghai201203, China
| |
Collapse
|
3
|
Nakashima Y, Rakumitsu K, Ishikawa H. Recent advances in the total synthesis of alkaloids using chiral secondary amine organocatalysts. Org Biomol Chem 2024; 22:9319-9341. [PMID: 39512145 DOI: 10.1039/d4ob01590h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Since the early 21st century, organocatalytic reactions have undergone significant advancements. Notably, numerous asymmetric reactions utilizing chiral secondary amine catalysts have been developed and applied in the total synthesis of natural products. In this review, we provide an overview of alkaloid syntheses reported since 2017, categorized by scaffold, with a focus on key steps involving asymmetric reactions catalyzed by secondary amine organocatalysts.
Collapse
Affiliation(s)
- Yuta Nakashima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Kenta Rakumitsu
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
4
|
Kantasrila R, Pandith H, Balslev H, Wangpakapattanawong P, Panyadee P, Inta A. Ethnobotany and phytochemistry of plants used to treat musculoskeletal disorders among Skaw Karen, Thailand. PHARMACEUTICAL BIOLOGY 2024; 62:62-104. [PMID: 38131672 PMCID: PMC10763916 DOI: 10.1080/13880209.2023.2292261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 12/03/2023] [Indexed: 12/23/2023]
Abstract
CONTEXT Musculoskeletal system disorders (MSD) are prevalent around the world affecting the health of people, especially farmers who work hard in the field. Karen farmers use many medicinal plants to treat MSD. OBJECTIVE This study collects traditional plant-based remedies used by the Skaw Karen to treat MSD and evaluates their active phytochemical compounds. MATERIALS AND METHODS The ethnobotanical study was conducted in six Karen villages in Chiang Mai province using semi-structured interviews were of 120 informants. The data were analyzed using ethnobotanical indices including use values (UV), choice value (CV), and informant consensus factor (ICF). Consequently, the 20 most important species, according to the indices, were selected for phytochemical analysis using LC-MS/MS. RESULTS A total of 3731 use reports were obtained for 139 species used in MSD treatment. The most common ailments treated with those plants were muscular pain. A total of 172 high-potential active compounds for MSD treatment were identified. Most of them were flavonoids, terpenoids, alkaloids, and steroids. The prevalent phytochemical compounds related to treat MSD were 9-hydroxycalabaxanthone, dihydrovaltrate, morroniside, isoacteoside, lithocholic acid, pomiferin, cucurbitacin E, leonuriside A, liriodendrin, and physalin E. Sambucus javanica Reinw. ex Blume (Adoxaceae), Betula alnoides Buch.-Ham. ex D.Don (Betulaceae), Blumea balsamifera (L.) DC. (Asteraceae), Plantago major L. (Plantaginaceae) and Flacourtia jangomas (Lour.) Raeusch. (Salicaceae) all had high ethnobotanical index values and many active compounds. DISCUSSION AND CONCLUSIONS This study provides valuable information, demonstrating low-cost medicine plants that are locally available. It is a choice of treatment for people living in remote areas.
Collapse
Affiliation(s)
- Rapeeporn Kantasrila
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | | | - Henrik Balslev
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | | | - Prateep Panyadee
- The Botanical Garden Organization, Queen Sirikit Botanic Garden, Chiang Mai, Thailand
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Thailand
| |
Collapse
|
5
|
Le Pogam P, Beniddir MA. Structural diversity and chemical logic underlying the assembly of monoterpene indole alkaloids oligomers. Nat Prod Rep 2024; 41:1723-1765. [PMID: 39262398 DOI: 10.1039/d4np00011k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Covering: up to 2024This review aims to draw a parallel between all known oligomers of monoterpene indole alkaloids (MIAs) by illustrating the chemical logic underlying their assembly. For this purpose, oligomeric MIAs were first comprehensively listed and organized according to the names of the backbones of their constitutive monomers and the binding sites. From this extensive list, an oligomer network was generated and unprecedented MIA statistics were mined and shared herein. Subsequently, oligomeric MIAs were categorized according to the number of connections instigated between their monomeric components (single, double, triple, and mixed tethering), then subdivided according to the uniqueness or combination of oligomerization assembly reactions. This effort outlined oligomerization trends in a scaffold-specific manner, and established binding reactivity patterns facilitating the comprehension of the associated biosynthetic processes. At last, this review illustrates a unique initiative in crafting a comprehensive repository of machine-readable metadata for MIA oligomers that could be leveraged for chemoinformatic purposes.
Collapse
Affiliation(s)
- Pierre Le Pogam
- Équipe, Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, BioCIS, 17 avenue des Sciences, 91400 Orsay, France.
| | - Mehdi A Beniddir
- Équipe, Chimie des Substances Naturelles, Université Paris-Saclay, CNRS, BioCIS, 17 avenue des Sciences, 91400 Orsay, France.
| |
Collapse
|
6
|
Liu T, Huang Z, Cheng S, Chen W, Yang X, Zhang H. Collective Syntheses of Corynanthe Alkaloids Based on a Chirality-Tunable Structure Unit. Org Lett 2024; 26:8803-8809. [PMID: 39378191 DOI: 10.1021/acs.orglett.4c03177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A novel strategy based on a common intermediate bearing a chirality-tunable structure unit for the collective syntheses of corynantheine-type and heteroyohimbine-type alkaloids has been developed. Key transformations of the synthetic strategy are a sequential nucleophilic C-N bond formation/Mannich-type cyclization to construct the highly functional C/D rings, a stereocontrolled introduction of the C15 and C20 chiral centers based on the chirality-tunable structure unit, and an amine-directed addition of Me3Al to construct the C18 methyl group.
Collapse
Affiliation(s)
- Tongqi Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Zhenrui Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Shuai Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Wen Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Xiaodong Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Key Laboratory of Research and Development for Natural Products, Yunnan Characteristic Plant Extraction Laboratory, School of Pharmacy, Yunnan University, Kunming, Yunnan 650500, P. R. China
| |
Collapse
|
7
|
Chennamsetti H, Rathore KS, Chatterjee S, Mandal PK, Katukojvala S. Triple Nucleophilic Head-to-Tail Cascade Polycyclization of Diazodienals via Combination Catalysis: Direct Access to Cyclopentane Fused Aza-Polycycles with Six-Contiguous Stereocenters. JACS AU 2024; 4:2099-2107. [PMID: 38938806 PMCID: PMC11200238 DOI: 10.1021/jacsau.4c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 06/29/2024]
Abstract
Reported herein are the bench stable (2E,4E)-diazohexa-2,4-dienals (diazodienals) and their unprecedented polycyclization with aldimine and arylamines enabled by Rh(II)/Brønsted acid relay catalysis. This scalable and atom-economical reaction provides direct access to the biologically important azatricyclo[6.2.1.04,11]undecane fused polycycles having six-contiguous stereocenters. Mechanistic studies revealed that polycyclization proceeds through an unusual triple-nucleophilic cascade initiated by aldimine attack on remote Rh-carbenoid, 6π-electrocyclization of aza-trienyl azomethine ylide, stereoselective aza-Michael addition via iminium activation, and inverse electron-demand intramolecular aza Diels-Alder reaction. The π-π secondary interactions play a crucial role in the preorganization of reactive intermediates for the pericyclic reactions and, hence, the overall efficiency of the polycyclization.
Collapse
Affiliation(s)
| | | | | | | | - Sreenivas Katukojvala
- Department of Chemistry, Indian
Institute of Science Education & Research
Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
8
|
Yoshimura G, Sakamoto J, Kitajima M, Ishikawa H. Indole C5-Selective Bromination of Indolo[2,3-a]quinolizidine Alkaloids via In Situ-Generated Indoline Intermediate. Chemistry 2024; 30:e202401153. [PMID: 38584124 DOI: 10.1002/chem.202401153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/09/2024]
Abstract
There are many indole alkaloids that contain diverse functional groups attached to the benzene ring on the indole core. Promising biological activities of these alkaloids have been reported. Herein, we report the indole C5-selective bromination of indolo[2,3-a]quinolizidine alkaloids by adding nearly equimolar amounts of Br3 ⋅ PyH and HCl in MeOH. The resulting reaction plausibly proceeds through an indoline intermediate by the nucleophilic addition of MeOH to the C3-brominated indolenine intermediate. Data support the intermediacy of a C3-, C5-dibrominated indolenine intermediate as a brominating agent. These conditions demonstrate excellent selectivity for indole C5 bromination of natural products and their derivatives. Thus, these simple, mild, and metal-free conditions allow for selective, late-stage bromination followed by further chemical modifications. The utility of the brominated product prepared from naturally occurring yohimbine was demonstrated through various derivatizations, including a bioinspired heterodimerization reaction.
Collapse
Affiliation(s)
- Go Yoshimura
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, 260-8675, Chiba, Japan
| | - Jukiya Sakamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, 260-8675, Chiba, Japan
| | - Mariko Kitajima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, 260-8675, Chiba, Japan
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, 260-8675, Chiba, Japan
| |
Collapse
|
9
|
Tang M, Lu H, Zu L. Collective total synthesis of stereoisomeric yohimbine alkaloids. Nat Commun 2024; 15:941. [PMID: 38296955 PMCID: PMC10830567 DOI: 10.1038/s41467-024-45140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Stereoisomeric polycyclic natural products are important for drug discovery-based screening campaigns, due to the close correlation of stereochemistry with diversified bioactivities. Nature generates the stereoisomeric yohimbine alkaloids using bioavailable monoterpene secolaganin as the ten-carbon building block. In this work, we reset the stage by the development of a bioinspired coupling, in which the rapid construction of the entire pentacyclic skeleton and the complete control of all five stereogenic centers are achieved through enantioselective kinetic resolution of an achiral, easily accessible synthetic surrogate. The stereochemical diversification from a common intermediate allows for the divergent and collective synthesis of all four stereoisomeric subfamilies of yohimbine alkaloids through orchestrated tackling of thermodynamic and kinetic preference.
Collapse
Affiliation(s)
- Meiyi Tang
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Haigen Lu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China
| | - Liansuo Zu
- School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
10
|
Dror MJ, Misa J, Yee DA, Chu AM, Yu RK, Chan BB, Aoyama LS, Chaparala AP, O'Connor SE, Tang Y. Engineered biosynthesis of plant heteroyohimbine and corynantheine alkaloids in Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2024; 51:kuad047. [PMID: 38140980 PMCID: PMC10995622 DOI: 10.1093/jimb/kuad047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
Monoterpene indole alkaloids (MIAs) are a class of natural products comprised of thousands of structurally unique bioactive compounds with significant therapeutic values. Due to difficulties associated with isolation from native plant species and organic synthesis of these structurally complex molecules, microbial production of MIAs using engineered hosts are highly desired. In this work, we report the engineering of fully integrated Saccharomyces cerevisiae strains that allow de novo access to strictosidine, the universal precursor to thousands of MIAs at 30-40 mg/L. The optimization efforts were based on a previously reported yeast strain that is engineered to produce high titers of the monoterpene precursor geraniol through compartmentalization of mevalonate pathway in the mitochondria. Our approaches here included the use of CRISPR-dCas9 interference to identify mitochondria diphosphate transporters that negatively impact the titer of the monoterpene, followed by genetic inactivation; the overexpression of transcriptional regulators that increase cellular respiration and mitochondria biogenesis. Strain construction included the strategic integration of genes encoding both MIA biosynthetic and accessory enzymes into the genome under a variety of constitutive and inducible promoters. Following successful de novo production of strictosidine, complex alkaloids belonging to heteroyohimbine and corynantheine families were reconstituted in the host with introduction of additional downstream enzymes. We demonstrate that the serpentine/alstonine pair can be produced at ∼5 mg/L titer, while corynantheidine, the precursor to mitragynine can be produced at ∼1 mg/L titer. Feeding of halogenated tryptamine led to the biosynthesis of analogs of alkaloids in both families. Collectively, our yeast strain represents an excellent starting point to further engineer biosynthetic bottlenecks in this pathway and to access additional MIAs and analogs through microbial fermentation. ONE SENTENCE SUMMARY An Saccharomyces cerevisiae-based microbial platform was developed for the biosynthesis of monoterpene indole alkaloids, including the universal precursor strictosidine and further modified heteroyohimbine and corynantheidine alkaloids.
Collapse
Affiliation(s)
- Moriel J Dror
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Danielle A Yee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Angela M Chu
- Stanford Genome Technology Center, Stanford University, Stanford, CA 94305, USA
| | - Rachel K Yu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bradley B Chan
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lauren S Aoyama
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anjali P Chaparala
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Jena 07745, Germany
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Yoshidome A, Sakamoto J, Kohara M, Shiomi S, Hokaguchi M, Hitora Y, Kitajima M, Tsukamoto S, Ishikawa H. Divergent Total Syntheses of Hetero-Oligomeric Iridoid Glycosides. Org Lett 2023; 25:347-352. [PMID: 36607173 DOI: 10.1021/acs.orglett.2c03965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Divergent total syntheses of the hetero-oligomeric iridoid glycosides mainly found in Dipsacus asper were achieved. Thus, loganin (1), which is important as a monomer unit, was efficiently synthesized by stereoselective reductive cyclization using secologanin (2) as a substrate. Sequential condensation reactions of derivatives of 1 and 2 as monomer units led to the first enantioselective total syntheses of the heterooligomers cantleyoside, (E)-aldosecologanin, dipsaperine, (3R, 5S)-5-carboxyvincosidic acid 22-loganin ester, and dipsanoside A.
Collapse
Affiliation(s)
- Akiho Yoshidome
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan.,Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Jukiya Sakamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mizuki Kohara
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Shinya Shiomi
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Mako Hokaguchi
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yuki Hitora
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Mariko Kitajima
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Sachiko Tsukamoto
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
12
|
Sakamoto J, Kitajima M, Ishikawa H. Total Syntheses of (+)-Villocarine A, (-)-Apogeissoschizine, and (+)-Geissoschizine. Chemistry 2023; 29:e202300179. [PMID: 36670343 DOI: 10.1002/chem.202300179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Total syntheses of geissoschizine-type monoterpenoid indole alkaloids (MTIAs) are reported. An intramolecular Pictet-Spengler cyclization was developed for the selective construction of the 3R stereocenter. The first total synthesis of (+)-villocarine A was then achieved. Furthermore, the first total synthesis of the highly strained (-)-apogeissoschizine was also accomplished in an aza-Michael cyclization/E1cB elimination/stereoselective olefin isomerization sequence. Finally, (+)-geissoschizine, a common biosynthetic intermediate of MTIAs, was obtained from apogeissoschizine through ring-opening along with a release of ring strain.
Collapse
Affiliation(s)
- Jukiya Sakamoto
- Graduate School of Pharmaceutical Sciences, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Mariko Kitajima
- Graduate School of Pharmaceutical Sciences, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University 1-8-1 Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
13
|
Cao W, Dou Y, Kouklovsky C, Vincent G. Total Synthesis of Ophiorrhine A, G and Ophiorrhiside E Featuring a Bioinspired Intramolecular Diels-Alder Cycloaddition. Angew Chem Int Ed Engl 2022; 61:e202209135. [PMID: 35869029 PMCID: PMC9543224 DOI: 10.1002/anie.202209135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 11/18/2022]
Abstract
We report the first total synthesis of the monoterpene indole alkaloids ophiorrhine A via a late stage bioinspired intramolecular Diels-Alder cycloaddition to form the intricate bridged and spirannic polycyclic system. Several strategies were investigated to construct the indolopyridone moiety of ophiorrhiside E, the postulated biosynthetic precursor of ophiorrhine A. Eventually, the Friedel-Crafts-type coupling of N-methyl indolyl-acetamide with a secologanin-derived acid chloride delivered ophiorrhine G. Cyclodehydration of a protected form of the latter was followed by the desired spontaneous intramolecular Diels-Alder cycloaddition of protected ophiorrhiside E leading to ophiorrhine A.
Collapse
Affiliation(s)
- Wei Cao
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Yingchao Dou
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'OrsayUniversité Paris-SaclayCNRS91405OrsayFrance
| |
Collapse
|
14
|
Sakamoto J, Kitajima M, Ishikawa H. Asymmetric Total Syntheses of Mitragynine, Speciogynine, and 7-Hydroxymitragynine. Chem Pharm Bull (Tokyo) 2022; 70:662-668. [DOI: 10.1248/cpb.c22-00441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jukiya Sakamoto
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Mariko Kitajima
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
15
|
Cao W, Dou Y, Kouklovsky C, Vincent G. Total Synthesis of Ophiorrhine A, G and Ophiorrhiside E Featuring a Bioinspired Intramolecular Diels‐Alder Cycloaddition. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Cao
- Universite Paris-Saclay Institut de Chimie Moléculaire et des Matériaux d'Orsay FRANCE
| | - Yingchao Dou
- Universite Paris-Saclay Institut de Chimie Moléculaire et des Matériaux d'Orsay FRANCE
| | - Cyrille Kouklovsky
- Universite Paris-Saclay Institut de Chimie Moléculaire et des Matériaux d'Orsay FRANCE
| | - Guillaume Vincent
- Universite Paris-Saclay Institut de Chimie Moléculaire et des Matériaux d'Orsay 15, Boulevard Georges ClemenceauBat. 410 91405 Orsay FRANCE
| |
Collapse
|
16
|
Misa J, Billingsley JM, Niwa K, Yu RK, Tang Y. Engineered Production of Strictosidine and Analogues in Yeast. ACS Synth Biol 2022; 11:1639-1649. [PMID: 35294193 PMCID: PMC9171786 DOI: 10.1021/acssynbio.2c00037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Monoterpene indole alkaloids (MIAs) are an expansive class of plant natural products, many of which have been named on the World Health Organization's List of Essential Medicines. Low production from native plant hosts necessitates a more reliable source of these drugs to meet global demand. Here, we report the development of a yeast-based platform for high-titer production of the universal MIA precursor, strictosidine. Our fed-batch platform produces ∼50 mg/L strictosidine, starting from the commodity chemicals geraniol and tryptamine. The microbially produced strictosidine was purified to homogeneity and characterized by NMR. Additionally, our approach enables the production of halogenated strictosidine analogues through the feeding of modified tryptamines. The MIA platform strain enables rapid access to strictosidine for reconstitution and production of downstream MIA natural products.
Collapse
Affiliation(s)
- Joshua Misa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - John M. Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Kanji Niwa
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Rachel K. Yu
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
17
|
Yi ZJ, Sun JT, Yang TY, Yu XY, Han XL, Wei BG. Cu(OTf) 2-catalyzed C3 aza-Friedel-Crafts alkylation of indoles with N, O-acetals. Org Biomol Chem 2022; 20:2261-2270. [PMID: 35229848 DOI: 10.1039/d1ob02383g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An efficient approach to access functionalized indole derivatives has been developed through Cu(OTf)2-catalyzed C3 aza-Friedel-Crafts alkylation of substituted indoles 5a-5m, N-methyl-pyrrole with linear N,O-acetals 4a-4l. As a result, a series of C3 amide aza-alkylated indole derivatives 6a-6ag and 7 were synthesized in moderate to excellent yields.
Collapse
Affiliation(s)
- Zi-Juan Yi
- Key Laboratory of Theoretical Organic Chemistry Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China. .,Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Jian-Ting Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Tian-Yu Yang
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Xian-Yong Yu
- Key Laboratory of Theoretical Organic Chemistry Functional Molecule, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, People's Republic of China.
| | - Xiao-Li Han
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China. .,Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
18
|
Nakashima N, Sakamoto J, Rakumitsu K, Kitajima M, Juliawaty LD, Ishikawa H. Secorubenine, a Monoterpenoid Indole Alkaloid Glycoside from Adina rubescens: Isolation, Structure Elucidation, and Enantioselective Total Synthesis. Chem Pharm Bull (Tokyo) 2022; 70:187-191. [PMID: 35110441 DOI: 10.1248/cpb.c21-00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A new pentacyclic monoterpenoid indole alkaloid glycoside named secorubenine (1) was isolated from the heartwood of Adina rubescens, collected in Indonesia. The structure was elucidated by spectroscopic analysis and chemical modification of isolated secorubenine (1). The bioinspired enantioselective total synthesis of 1 was accomplished in 12 steps, whereafter its structure was determined and the absolute stereochemistry was confirmed.
Collapse
Affiliation(s)
| | - Jukiya Sakamoto
- Graduate School of Pharmaceutical Sciences, Chiba University
| | - Kenta Rakumitsu
- Graduate School of Science and Technology, Kumamoto University
| | - Mariko Kitajima
- Graduate School of Pharmaceutical Sciences, Chiba University
| | | | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University
| |
Collapse
|
19
|
Dou Y, Evanno L, Poupon E, Vincent G. Pictet-Spengler Reaction for the Chemical Synthesis of Strictosidine. Methods Mol Biol 2022; 2505:79-85. [PMID: 35732938 DOI: 10.1007/978-1-0716-2349-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Strictosidine is the common biosynthetic precursor of Monoterpene Indole Alkaloids (MIA). A practical single-step procedure to assemble strictosidine from secologanin is described via a bioinspired Pictet-Spengler reaction. Mild conditions and purification by crystallization and flash chromatography allow access to the targeted product in fair yield.
Collapse
Affiliation(s)
- Yingchao Dou
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, Orsay Cedex, France
| | - Laurent Evanno
- Biomolécules: Conception, Synthèse, Isolement (BioCIS), Université Paris-Saclay, CNRS, Châtenay-Malabry, France.
| | - Erwan Poupon
- Biomolécules: Conception, Synthèse, Isolement (BioCIS), Université Paris-Saclay, CNRS, Châtenay-Malabry, France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Université Paris-Saclay, CNRS, Orsay Cedex, France
| |
Collapse
|
20
|
Zhu H, Cai Y, Ma S, Futamura Y, Li J, Zhong W, Zhang X, Osada H, Zou H. Privileged Biorenewable Secologanin-Based Diversity-Oriented Synthesis for Pseudo-Natural Alkaloids: Uncovering Novel Neuroprotective and Antimalarial Frameworks. CHEMSUSCHEM 2021; 14:5320-5327. [PMID: 34636473 DOI: 10.1002/cssc.202101868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Bioprivileged molecules hold great promise for supplementing petrochemicals in sustainable organic synthesis of a diverse bioactive products library. Secologanin, a biorenewable monoterpenoid glucoside with unique structural elements, is the key precursor for thousands of natural monoterpenoid alkaloids. Inspired by its inherent highly congested functional groups, a secologanin-based diversity-oriented synthesis (DOS) strategy for novel pseudo-natural alkaloids was developed. All the reactive units of secologanin were involved in these operation simplicity protocols under mild reaction conditions, including the one-step enantioselective transformation of exocyclic C8, C8/C11, and C8/C9/C10 as well as the chemoenzymatic manipulation of endocyclic C2/C6 via the attack by various nucleophiles. A combinatory scenario of the aforementioned reactions further provided diverse polycyclic products with multiple chiral centers. Preliminary activity screening of these newly constructed molecules led to the discovery of antimalarial and highly potent neuroprotective skeletons. The application of green biorenewable secologanin in diversity-oriented pseudo-natural monoterpenoid alkaloid synthesis might encourage the pursuit of valuable bioactive frameworks.
Collapse
Affiliation(s)
- Huajian Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yunrui Cai
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shijia Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Jinbiao Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wen Zhong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiangnan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hongbin Zou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
21
|
Sakamoto J, Ishikawa H. Bioinspired Transformations Using Strictosidine Aglycones: Divergent Total Syntheses of Monoterpenoid Indole Alkaloids in the Early Stage of Biosynthesis. Chemistry 2021; 28:e202104052. [PMID: 34854134 DOI: 10.1002/chem.202104052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/11/2022]
Abstract
A series of bioinspired transformations that are applied to convert strictosidine aglycones into monoterpenoid indole alkaloids is reported. The highly reactive key intermediates, strictosidine aglycones, were prepared in situ by simple removal of a silyl protecting group from the silyl ether derivatives, and converted selectively via bioinspired transformations under substrate control into heteroyohimbine- and corynantheine-type, and akagerine and naucleaoral related alkaloids. Thus, concise, divergent total syntheses of 13 monoterpenoid indole alkaloids, (-)-cathenamine, (-)-tetrahydroalstonine, (+)-dihydrocorynantheine, (-)-corynantheidine, (-)-akagerine, (-)-dihydrocycloakagerine, (-)-naucleaoral B, (+)-naucleidinal, (-)-naucleofficines D and III, (-)-nauclefiline, and (-)-naucleamides A and E, were accomplished in fewer than 13 steps.
Collapse
Affiliation(s)
- Jukiya Sakamoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8675, Japan
| | - Hayato Ishikawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8675, Japan
| |
Collapse
|
22
|
Liu XY, Qin Y. Recent advances in the total synthesis of monoterpenoid indole alkaloids enabled by asymmetric catalysis. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
23
|
Lee JH, Austin JR, Burdette JE, Murphy BT. Secoiridoids from Dogwood ( Cornus officinalis) Potentiate Progesterone Signaling. JOURNAL OF NATURAL PRODUCTS 2021; 84:2612-2616. [PMID: 34411479 PMCID: PMC8906238 DOI: 10.1021/acs.jnatprod.1c00516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The use of botanical dietary supplements for the alleviation of conditions such as hot flashes, premenstrual syndrome, and fertility is prolific worldwide. Estrogen and progesterone receptors (ER and PR) and their corresponding steroid hormones are critical for the relief of hot flashes and the treatment of patients who develop endometriosis, and these pathways can influence the development of endometrial, ovarian, and breast cancers. However, few studies have investigated or identified the natural product components in herbal supplements that act on the PR. In the current study, a new secoiridoid, demethoxy-cornuside (1), along with six known secoiridoids (2-7) were isolated from the twigs of dogwood (Cornus officinalis) by bioassay-guided isolation with a progesterone response element (PRE)/luciferase (Luc) reporter assay in Ishikawa cells. Four phytoprogestins (1, 2, 6, 7) potentiated the effect of progesterone in the PRE/Luc assay. This study demonstrates that C. officinalis components might potentiate progesterone signaling in the presence of progesterone, which could modify progesterone receptor action in hormone-responsive tissues such as the uterus and mammary gland.
Collapse
Affiliation(s)
- Jung-Ho Lee
- Department of Pharmaceutical Sciences: Center for Biomolecular Sciences: College of Pharmacy, 833 S. Wood St., University of Illinois at Chicago, Chicago, IL 60612 United States
| | - Julia R. Austin
- Department of Pharmaceutical Sciences: Center for Biomolecular Sciences: College of Pharmacy, 833 S. Wood St., University of Illinois at Chicago, Chicago, IL 60612 United States
| | - Joanna E. Burdette
- Department of Pharmaceutical Sciences: Center for Biomolecular Sciences: College of Pharmacy, 833 S. Wood St., University of Illinois at Chicago, Chicago, IL 60612 United States
| | - Brian T. Murphy
- Department of Pharmaceutical Sciences: Center for Biomolecular Sciences: College of Pharmacy, 833 S. Wood St., University of Illinois at Chicago, Chicago, IL 60612 United States
| |
Collapse
|
24
|
Liu C, Zhang L, Tan L, Liu Y, Tian W, Ma L. Immobilized Crosslinked Pectinase Preparation on Porous ZSM-5 Zeolites as Reusable Biocatalysts for Ultra-Efficient Hydrolysis of β-Glycosidic Bonds. Front Chem 2021; 9:677868. [PMID: 34458232 PMCID: PMC8385667 DOI: 10.3389/fchem.2021.677868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/05/2021] [Indexed: 12/02/2022] Open
Abstract
In this study, we immobilized pectinase preparation on porous zeolite ZSM-5 as an enzyme carrier. We realized this immobilized enzyme catalyst, pectinase preparation@ZSM-5, via a simple combined strategy involving the van der Waals adsorption of pectinase preparation followed by crosslinking of the adsorbed pectinase preparation with glutaraldehyde over ZSM-5. Conformal pectinase preparation coverage of various ZSM-5 supports was achieved for the as-prepared pectinase preparation@ZSM-5. The porous pectinase preparation@ZSM-5 catalyst exhibited ultra-efficient biocatalytic activity for hydrolyzing the β-glycosidic bonds in the model substrate 4-nitrophenyl β-D-glucopyranoside, with a broad operating temperature range, high thermal stability, and excellent reusability. The relative activity of pectinase preparation@ZSM-5 at a high temperature (70 °C) was nine times higher than that of free pectinase preparation. Using thermal inactivation kinetic analysis based on the Arrhenius law, pectinase preparation@ZSM-5 showed higher activation energy for denaturation (315 kJ mol−1) and a longer half-life (62 min−1) than free pectinase preparation. Moreover, a Michaelis–Menten enzyme kinetic analysis indicated a higher maximal reaction velocity for pectinase preparation@ZSM-5 (0.22 µmol mg−1 min−1). This enhanced reactivity was attributed to the microstructure of the immobilized pectinase preparation@ZSM-5, which offered a heterogeneous reaction system that decreased the substrate–pectinase preparation binding affinity and modulated the kinetic characteristics of the enzyme. Additionally, pectinase preparation@ZSM-5 showed the best ethanol tolerance among all the reported pectinase preparation-immobilized catalysts, and an activity 247% higher than that of free pectinase preparation at a 10% (v/v) ethanol concentration was measured. Furthermore, pectinase preparation@ZSM-5 exhibited potential for practical engineering applications, promoting the hydrolysis of β-glycosidic bonds in baicalin to convert it into baicalein. This was achieved with a 98% conversion rate, i.e., 320% higher than that of the free enzyme.
Collapse
Affiliation(s)
- Can Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Liming Zhang
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Li Tan
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Yueping Liu
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| | - Weiqian Tian
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Lanqing Ma
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
25
|
Anthony SM, Tona V, Zou Y, Morrill LA, Billingsley JM, Lim M, Tang Y, Houk KN, Garg NK. Total Synthesis of (-)-Strictosidine and Interception of Aryne Natural Product Derivatives "Strictosidyne" and "Strictosamidyne". J Am Chem Soc 2021; 143:7471-7479. [PMID: 33955226 DOI: 10.1021/jacs.1c02004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Monoterpene indole alkaloids are a large class of natural products derived from a single biosynthetic precursor, strictosidine. We describe a synthetic approach to strictosidine that relies on a key facially selective Diels-Alder reaction between a glucosyl-modified alkene and an enal to set the C15-C20-C21 stereotriad. DFT calculations were used to examine the origin of stereoselectivity in this key step, wherein two of 16 possible isomers are predominantly formed. These calculations suggest the presence of a glucosyl unit, also inherent in the strictosidine structure, guides diastereoselectivity, with the reactive conformation of the vinyl glycoside dienophile being controlled by an exo-anomeric effect. (-)-Strictosidine was subsequently accessed using late-stage synthetic manipulations and an enzymatic Pictet-Spengler reaction. Several new natural product analogs were also accessed, including precursors to two unusual aryne natural product derivatives termed "strictosidyne" and "strictosamidyne". These studies provide a strategy for accessing glycosylic natural products and a new platform to access monoterpene indole alkaloids and their derivatives.
Collapse
Affiliation(s)
- Sarah M Anthony
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Veronica Tona
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Lucas A Morrill
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - John M Billingsley
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Megan Lim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Yi Tang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
26
|
A review on β-carboline alkaloids and their distribution in foodstuffs: A class of potential functional components or not? Food Chem 2021; 348:129067. [PMID: 33548760 DOI: 10.1016/j.foodchem.2021.129067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/14/2020] [Accepted: 01/06/2021] [Indexed: 11/23/2022]
Abstract
Pharmacologically active β-carboline alkaloids (βCs) such as harman, norharman and some others are naturally present in plants and occur in many foodstuffs. They have a lot of pharmacological properties, including antitumor, antioxidant, anti-inflammatory and antimicrobial effects, and possess the potential for treating Alzheimer's disease, Parkinson's disease, depression and other central nervous system diseases. Dietary intake is proven to be an important source of βCs. Therefore, it is important to know the amounts of βCs that can be gotten from daily diets. This review summarizes the pharmacological activities, toxicology and formation of βCs, and gives collective information on contents of βCs in different foodstuffs.
Collapse
|
27
|
Dou Y, Kouklovsky C, Vincent G. Bioinspired Divergent Oxidative Cyclization from Strictosidine and Vincoside Derivatives: Second‐Generation Total Synthesis of (−)‐Cymoside and Access to an Original Hexacyclic‐Fused Furo[3,2‐
b
]indoline. Chemistry 2020; 26:17190-17194. [DOI: 10.1002/chem.202003758] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/26/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yingchao Dou
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) Université Paris-Saclay, CNRS 91405 Orsay France
| | - Cyrille Kouklovsky
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) Université Paris-Saclay, CNRS 91405 Orsay France
| | - Guillaume Vincent
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO) Université Paris-Saclay, CNRS 91405 Orsay France
| |
Collapse
|
28
|
Guirimand G, Kulagina N, Papon N, Hasunuma T, Courdavault V. Innovative Tools and Strategies for Optimizing Yeast Cell Factories. Trends Biotechnol 2020; 39:488-504. [PMID: 33008642 DOI: 10.1016/j.tibtech.2020.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic engineering (ME) aims to develop efficient microbial cell factories that can produce a wide variety of valuable compounds, ideally at the highest yield and from various feedstocks. We summarize recent developments in ME methods for tailoring different yeast cell factories (YCFs). In particular, we highlight the most timely and cutting-edge molecular tools and strategies for biosynthetic pathway optimization (including genome-editing tools), combinatorial transcriptional and post-transcriptional engineering (cis/trans regulators), dynamic control of metabolic fluxes (e.g., rewiring of primary metabolism), and spatial reconfiguration of metabolic pathways. Finally, we discuss challenges and perspectives for adaptive laboratory evolution (ALE) of yeast to advance ME of microbial cell factories.
Collapse
Affiliation(s)
- Gregory Guirimand
- Graduate School of Sciences, Technology and Innovation, Kobe University, Kobe, Japan; Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France
| | - Natalja Kulagina
- Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France
| | - Nicolas Papon
- Groupe d'Etude des Interactions Hôte-Pathogène (GEIHP), EA 3142, Université Angers and Université Brest, Structure Féderative de Recherche (SFR) 4208 Interactions Cellulaires et Applications Thérapeutiques (ICAT), Angers, France
| | - Tomohisa Hasunuma
- Graduate School of Sciences, Technology and Innovation, Kobe University, Kobe, Japan; Engineering Biology Research Center, Kobe University, Kobe, Japan.
| | - Vincent Courdavault
- Biomolécules et Biotechnologies Végétales (BBV), Équipe d'Accueil (EA) 2106, Université de Tours, Tours, France.
| |
Collapse
|