1
|
Iyer KS, Dismuke Rodriguez KB, Lammert RM, Yirak JR, Saunders JM, Kavthe RD, Aue DH, Lipshutz BH. Rapid Aminations of Functionalized Aryl Fluorosulfates in Water. Angew Chem Int Ed Engl 2024; 63:e202411295. [PMID: 39034288 DOI: 10.1002/anie.202411295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Aryl fluorosulfates of varying complexities have been used in amination reactions in water using a new Pd oxidative addition complex (OAC-1) developed specifically to match the needs of the fine chemicals industry, not only in terms of functional group tolerance, but also reflecting time considerations associated with these important C-N couplings. Also especially noteworthy is that they replace both PFAS-related triflates and nonaflates, which are today out of favor due to recent government regulations. The new complex based on the BippyPhos ligand is used at low loadings and under aqueous micellar conditions. Moreover, it is easily prepared and stable to long term storage. DFT calculations on the OAC precatalyst compare well with the X-ray structure of the crystals with π-complexation to the aromatic system of the ligand and also confirm the NMR data showing a mixture of conformers in solution that differ from the X-ray structure in rotation of the phenyl and t-butyl ligand substituents. An extensive variety of coupling partners, including pharmaceutically relevant APIs, readily participate under mild and environmentally responsible reaction conditions.
Collapse
Affiliation(s)
- Karthik S Iyer
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | | | - Robert M Lammert
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Jordan R Yirak
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - John M Saunders
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Rahul D Kavthe
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Donald H Aue
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA
| |
Collapse
|
2
|
Wang W, Yu Y, Wang M, Wang Y, Liu S, Xu J, Sun Z. Pickering Emulsion Promoted Interfacial Sequential Chemo-Biocatalytic Reaction for the Synthesis of Chiral Alcohols from Styrene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:54799-54806. [PMID: 39315994 DOI: 10.1021/acsami.4c10461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Chemo-biocatalytic cascades have emerged as a promising approach in the realm of advanced synthesis. However, reconciling the incompatible reaction conditions among distinct catalytic species presents a significant challenge. Herein, we introduce an innovative solution using an emulsion system stabilized by Janus silica nanoparticles, which serve as a bridge for both chemo-catalysts and biocatalysts at the interface. The chemo-catalyst is securely anchored within a hydrophobic polymer matrix, ensuring its residence in an organic environment. Meanwhile, the negatively charged E. coli cells containing enzymes are attracted to the aqueous phase at the interface, facilitating their optimal positioning. We demonstrate the efficacy of this system through a two-step cascade reaction. Initially, the oxidation of styrene to acetophenone using palladium as a chemocatalyst achieves a 6-fold increase in yield compared to the control system. Subsequently, the reduction of achiral acetophenone to its chiral alcohol derivative presents a 17-fold yield enhancement relative to that of the control reaction. Importantly, our system exhibits versatility, accommodating a wide range of substrates for both individual and sequential reactions. This work not only validates the concept but also paves the way for the integration of chemo- and biocatalysts in the synthesis of a broader array of high-value chemical compounds.
Collapse
Affiliation(s)
- Weiqi Wang
- School of Pharmacy, Nantong University, 226001 Nantong, China
| | - Yuting Yu
- School of Pharmacy, Nantong University, 226001 Nantong, China
| | - Mengyao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Yangxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Shanqiu Liu
- College of Material Science and Engineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Jian Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014 Hangzhou, China
| | - Zhiyong Sun
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 310014 Hangzhou, China
| |
Collapse
|
3
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
4
|
Mubashra S, Rafiq A, Aslam S, Rasool N, Ahmad M. Recent synthetic strategies for N-arylation of pyrrolidines: a potential template for biologically active molecules. Mol Divers 2024:10.1007/s11030-024-10924-7. [PMID: 39048884 DOI: 10.1007/s11030-024-10924-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
The chemistry of nitrogen-containing heterocyclic compounds has been a multifaceted area of research for an extended period due to their varied therapeutic and biological significance. N-Aryl pyrrolidine formed by condensation of aryl group with nitrogen atom of pyrrolidine is present in a wide array of compounds. Various significant activities shown by N-arylated pyrrolidine include anti-Alzheimer, antihypoxic, anticancer, plant activator, analgesic effect, and hepatitis C inhibitor. This review summarizes different synthetic approaches, e.g., transition-metal catalyzed and transition-metal-free synthesis, decarboxylation reaction, reductive amination, nucleophilic cyclization, Ullmann-Goldberg amidation, Buchwald-Hartwig reaction, Chan-Evans-Lam coupling, addition to benzyne, multistep reaction, green synthesis, rearrangement reaction, and multicomponent reaction, to afford the derivatives of N-aryl pyrrolidine. It encompasses synthetic strategies documented from 2015 to 2023.
Collapse
Affiliation(s)
- Saeeda Mubashra
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ayesha Rafiq
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Sana Aslam
- Department of Chemistry, Government College Women University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| |
Collapse
|
5
|
Zhang H, Xie S, Yang J, Ye N, Gao F, Gallou F, Gao L, Lei X. Chemoenzymatic Synthesis of 2-Aryl Thiazolines from 4-Hydroxybenzaldehydes Using Vanillyl Alcohol Oxidases. Angew Chem Int Ed Engl 2024; 63:e202405833. [PMID: 38748747 DOI: 10.1002/anie.202405833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Indexed: 07/16/2024]
Abstract
Nitrogen heterocycles are commonly found in bioactive natural products and drugs. However, the biocatalytic tools for nitrogen heterocycle synthesis are limited. Herein, we report the discovery of vanillyl alcohol oxidases (VAOs) as efficient biocatalysts for the one-pot synthesis of 2-aryl thiazolines from various 4-hydroxybenzaldehydes and aminothiols. The wild-type biocatalyst features a broad scope of 4-hydroxybenzaldehydes. Though the scope of aminothiols is limited, it could be improved via semi-rational protein engineering, generating a variant to produce previously inaccessible cysteine-derived bioactive 2-aryl thiazolines using the wild-type VAO. Benefiting from the derivatizable functional groups in the enzymatic products, we further chemically modified these products to expand the chemical space, offering a new chemoenzymatic strategy for the green and efficient synthesis of structurally diverse 2-aryl-thiazoline derivatives to prompt their use in drug discovery and catalysis.
Collapse
Affiliation(s)
- Haowen Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Shuhan Xie
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, People's Republic of China
| | - Jun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| | - Ning Ye
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd., Changshu, 215537, People's Republic of China
- Current Address: Rezubio Pharmaceuticals Co., Ltd., Zhuhai, 519070, People's Republic of China
| | - Feng Gao
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd., Changshu, 215537, People's Republic of China
| | - Fabrice Gallou
- Chemical and Analytical Development, Novartis Pharma AG, Novartis Campus, Basel, 4056, Switzerland
| | - Lei Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, People's Republic of China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, People's Republic of China
| |
Collapse
|
6
|
Liu ZX, Gao YD, Yang LC. Biocatalytic Hydrogen-Borrowing Cascade in Organic Synthesis. JACS AU 2024; 4:877-892. [PMID: 38559715 PMCID: PMC10976568 DOI: 10.1021/jacsau.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024]
Abstract
Biocatalytic hydrogen borrowing represents an environmentally friendly and highly efficient synthetic method. This innovative approach involves converting various substrates into high-value-added products, typically via a one-pot, two/three-step sequence encompassing dehydrogenation (intermediate transformation) and hydrogenation processes employing the hydride shuffling between NAD(P)+ and NAD(P)H. Represented key transformations in hydrogen borrowing include stereoisomer conversion within alcohols, conversion between alcohols and amines, conversion of allylic alcohols to saturated carbonyl counterparts, and α,β-unsaturated aldehydes to saturated carboxylic acids, etc. The direct transformation methodology and environmentally benign characteristics of hydrogen borrowing have contributed to its advancements in fine chemical synthesis or drug developments. Over the past decades, the hydrogen borrowing strategy in biocatalysis has led to the creation of diverse catalytic systems, demonstrating substantial potential for straightforward synthesis as well as asymmetric transformations. This perspective serves as a detailed exposition of the recent advancements in biocatalytic reactions employing the hydrogen borrowing strategy. It provides insights into the potential of this approach for future development, shedding light on its promising prospects in the field of biocatalysis.
Collapse
Affiliation(s)
- Zong-Xiao Liu
- State Key Laboratory of Bioactive Substance
and Function of Natural Medicines, Institute
of Materia Medica, Chinese Academy of Medical Sciences & Peking
Union Medical College, 100050 Beijing, P. R. China
| | - Ya-Dong Gao
- State Key Laboratory of Bioactive Substance
and Function of Natural Medicines, Institute
of Materia Medica, Chinese Academy of Medical Sciences & Peking
Union Medical College, 100050 Beijing, P. R. China
| | - Li-Cheng Yang
- State Key Laboratory of Bioactive Substance
and Function of Natural Medicines, Institute
of Materia Medica, Chinese Academy of Medical Sciences & Peking
Union Medical College, 100050 Beijing, P. R. China
| |
Collapse
|
7
|
Iyer K, Kavthe R, Hu Y, Lipshutz BH. Nanoparticles as Heterogeneous Catalysts for ppm Pd-Catalyzed Aminations in Water. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:1997-2008. [PMID: 38333203 PMCID: PMC10848299 DOI: 10.1021/acssuschemeng.3c06527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024]
Abstract
A general protocol employing heterogeneous catalysis has been developed that enables ppm of Pd-catalyzed C-N cross-coupling reactions under aqueous micellar catalysis. A new nanoparticle catalyst containing specifically ligated Pd, in combination with nanoreactors composed of the designer surfactant Savie, a biodegradable amphiphile, catalyzes C-N bond formations in recyclable water. A variety of coupling partners, ranging from highly functionalized pharmaceutically relevant APIs to educts from the Merck Informer Library, readily participate under these environmentally responsible, sustainable reaction conditions. Other key features associated with this report include the low levels of residual Pd found in the products, the recyclability of the aqueous reaction medium, the use of ocean water as an alternative source of reaction medium, options for the use of pseudohalides as alternative reaction partners, and associated low E factors. In addition, an unprecedented 5-step, one-pot sequence is presented, featuring several of the most widely used transformations in the pharmaceutical industry, suggesting potential industrial applications.
Collapse
Affiliation(s)
| | | | - Yuting Hu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| | - Bruce H. Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
8
|
Yuan B, Yang D, Qu G, Turner NJ, Sun Z. Biocatalytic reductive aminations with NAD(P)H-dependent enzymes: enzyme discovery, engineering and synthetic applications. Chem Soc Rev 2024; 53:227-262. [PMID: 38059509 DOI: 10.1039/d3cs00391d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Chiral amines are pivotal building blocks for the pharmaceutical industry. Asymmetric reductive amination is one of the most efficient and atom economic methodologies for the synthesis of optically active amines. Among the various strategies available, NAD(P)H-dependent amine dehydrogenases (AmDHs) and imine reductases (IREDs) are robust enzymes that are available from various sources and capable of utilizing a broad range of substrates with high activities and stereoselectivities. AmDHs and IREDs operate via similar mechanisms, both involving a carbinolamine intermediate followed by hydride transfer from the co-factor. In addition, both groups catalyze the formation of primary and secondary amines utilizing both organic and inorganic amine donors. In this review, we discuss advances in developing AmDHs and IREDs as biocatalysts and focus on evolutionary history, substrate scope and applications of the enzymes to provide an outlook on emerging industrial biotechnologies of chiral amine production.
Collapse
Affiliation(s)
- Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dameng Yang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Nicholas J Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
9
|
Hao R, Zhang M, Tian D, Lei F, Qin Z, Wu T, Yang H. Bottom-Up Synthesis of Multicompartmentalized Microreactors for Continuous Flow Catalysis. J Am Chem Soc 2023; 145:20319-20327. [PMID: 37676729 DOI: 10.1021/jacs.3c04886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
The bottom-up assembly of biomimetic multicompartmentalized microreactors for use in continuous flow catalysis remains a grand challenge because of the structural instability or the absence of liquid microenvironments to host biocatalysts in the existing systems. Here, we address this challenge using a strategy that combines stepwise Pickering emulsification with interface-confined cross-linking. Our strategy allows for the fabrication of robust multicompartmentalized liquid-containing microreactors (MLMs), whose interior architectures can be exquisitely tuned in a bottom-up fashion. With this strategy, enzymes and metal catalysts can be separately confined in distinct subcompartments of MLMs for processing biocatalysis or chemo-enzymatic cascade reactions. As exemplified by the enzyme-catalyzed kinetic resolution of racemic alcohols, our systems exhibit a durability of 2000 h with 99% enantioselectivity. Another Pd-enzyme-cocatalyzed dynamic kinetic resolution of amines further demonstrates the versatility and long-term operational stability of our MLMs in continuous flow cascade catalysis. This study opens up a new way to design efficient biomimetic multicompartmental microreactors for practical applications.
Collapse
Affiliation(s)
- Ruipeng Hao
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ming Zhang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Danping Tian
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Fu Lei
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Zhiqin Qin
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Tao Wu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China
| | - Hengquan Yang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
10
|
Facchetti G, Neva F, Coffetti G, Rimoldi I. Chiral 8-Amino-5,6,7,8-tetrahydroquinoline Derivatives in Metal Catalysts for the Asymmetric Transfer Hydrogenation of 1-Aryl Substituted-3,4-dihydroisoquinolines as Alkaloids Precursors. Molecules 2023; 28:molecules28041907. [PMID: 36838894 PMCID: PMC9962878 DOI: 10.3390/molecules28041907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023] Open
Abstract
Chiral diamines based on an 8-amino-5,6,7,8-tetrahydroquinoline backbone, known as CAMPY (L1), or the 2-methyl substituted analogue Me-CAMPY (L2) were employed as novel ligands in Cp* metal complexes for the ATH of a series of substituted dihydroisoquinolines (DHIQs), known for being key intermediates in the synthesis of biologically active alkaloids. Different metal-based complexes were evaluated in this kind of reaction, rhodium catalysts, C3 and C4, proving most effective both in terms of reactivity and enantioselectivity. Although modest enantiomeric excess values were obtained (up to 69% ee in the case of substrate I), a satisfactory quantitative conversion was successfully fulfilled even in the case of the most demanding hindered substrates when La(OTf)3 was used as beneficial additive, opening up the possibility for a rational design of novel chiral catalysts alternatives to the Noyori-Ikariya (arene)Ru(II)/TsDPEN catalyst.
Collapse
|
11
|
Sangster JJ, Ruscoe RE, Cosgrove SC, Mangas-Sánchez J, Turner NJ. One-Pot Chemoenzymatic Cascade for the Enantioselective C(1)-Allylation of Tetrahydroisoquinolines. J Am Chem Soc 2023; 145:4431-4437. [PMID: 36790859 PMCID: PMC9983016 DOI: 10.1021/jacs.2c09176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Herein, we report a one-pot, chemoenzymatic process for the synthesis of enantioenriched C(1)-allylated tetrahydroisoquinolines. This transformation couples a monoamine oxidase (MAO-N)-catalyzed oxidation with a metal catalyzed allylboration, followed by a biocatalytic deracemization to afford allylic amine derivatives in both high yields and good to high enantiomeric excess. The cascade is operationally simple, with all components added at the start of the reaction and can be used to generate key building blocks for further elaboration.
Collapse
|
12
|
González-Granda S, Albarrán-Velo J, Lavandera I, Gotor-Fernández V. Expanding the Synthetic Toolbox through Metal-Enzyme Cascade Reactions. Chem Rev 2023; 123:5297-5346. [PMID: 36626572 DOI: 10.1021/acs.chemrev.2c00454] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The combination of metal-, photo-, enzyme-, and/or organocatalysis provides multiple synthetic solutions, especially when the creation of chiral centers is involved. Historically, enzymes and transition metal species have been exploited simultaneously through dynamic kinetic resolutions of racemates. However, more recently, linear cascades have appeared as elegant solutions for the preparation of valuable organic molecules combining multiple bioprocesses and metal-catalyzed transformations. Many advantages are derived from this symbiosis, although there are still bottlenecks to be addressed including the successful coexistence of both catalyst types, the need for compatible reaction media and mild conditions, or the minimization of cross-reactivities. Therefore, solutions are here also provided by means of catalyst coimmobilization, compartmentalization strategies, flow chemistry, etc. A comprehensive review is presented focusing on the period 2015 to early 2022, which has been divided into two main sections that comprise first the use of metals and enzymes as independent catalysts but working in an orchestral or sequential manner, and later their application as bionanohybrid materials through their coimmobilization in adequate supports. Each part has been classified into different subheadings, the first part based on the reaction catalyzed by the metal catalyst, while the development of nonasymmetric or stereoselective processes was considered for the bionanohybrid section.
Collapse
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
13
|
Huang W, Huang S, Sun Z, Zhang W, Zeng Z, Yuan B. Chemoenzymatic Synthesis of Sterically Hindered Biaryls by Suzuki Coupling and Vanadium Chloroperoxidase Catalyzed Halogenations. Chembiochem 2023; 24:e202200610. [PMID: 36325954 DOI: 10.1002/cbic.202200610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/02/2022] [Indexed: 11/06/2022]
Abstract
Halogenated biaryls are vital structural skeletons in bioactive products. In this study, an effective chemoenzymatic halogenation by vanadium-dependent chloroperoxidase from Camponotus inaequalis (CiVCPO) enabled the transformation of freely rotating biaryl bonds to sterically hindered axis. The yields were up to 84 % for the tribrominated biaryl products and up to 65 % when isolated. Furthermore, a one-pot, two-step chemoenzymatic strategy by incorporating transition metal catalyzed Suzuki coupling and the chemoenzymatic halogenation in aqueous phase were described. This strategy demonstrates a simplified one-pot reaction sequence with organometallic and biocatalytic procedures under economical and environmentally beneficial conditions that may inspire further research on synthesis of sterically hindered biaryls.
Collapse
Affiliation(s)
- Wansheng Huang
- School of Pharmacy, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, Hubei, 437100, P. R. China.,Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Shengtang Huang
- School of Pharmacy, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, Hubei, 437100, P. R. China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China.,National Innovation Center for Synthetic Biotechnology, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China.,National Innovation Center for Synthetic Biotechnology, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| | - Zhigang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Hubei University of Science and Technology, 88 Xianning Avenue, Xianning, Hubei, 437100, P. R. China.,Hubei Industry Technology Research Institute of Intelligent Health, 88 Xianning Avenue, Xianning, Hubei, 437100, P. R. China
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, P. R. China.,National Innovation Center for Synthetic Biotechnology, 32 West 7th Avenue, Tianjin, 300308, P. R. China
| |
Collapse
|
14
|
Rahman A, Ningegowda NB, Siddappa MK, Pargi M, Kumaraswamy HM, Satyanarayan ND, Achur R. Synthesis of Palladium-Catalysed C-C Bond Forming 5-Chloro Quinolines via Suzuki-Miyaura Coupling; Anti-Pancreatic Cancer Screening on PANC-1 Cell Lines. Chem Biodivers 2023; 20:e202200622. [PMID: 36437502 DOI: 10.1002/cbdv.202200622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Pancreatic cancer is the most severe among other cancers due to its late detection and less chance of survivability. Heterocycles are proven ring systems in the treatment of various cancers and this is due to the presence of two biodynamic molecules combined, which have a greater synergistic efficacy in many anticancer drugs. Quinoline and pyridine ring systems are brought together to obtain greater potency and this is achieved by coupling both using Pd-catalyst, and in the present investigation, Suzuki-Miyaura coupling (SMC) reactions are adopted to generate potent molecular entities. Pancreatic cancer is difficult to treat due to overexpression of the VEGFR2 protein. VEGFR2 is targeted to design the molecules of quinoline-coupled pyridine moieties and is docked to evaluate the protein-ligand interaction at the binding site. The binding affinity of conjugates revealed the potency and capability of ligands to inhibit the VEGFR2 pathway. The in-silico ADMET properties determined their inherent pharmacokinetic feasibility. The synthesized conjugates have been evaluated by MTT assay against the human pancreatic cancer cell lines (PANC-1). Among the series, compounds 5d, 5e, and 5h exhibited a greater inhibitory activity against the cell lines with an IC50 value of 82.32±1.38, 54.74±1.18 and 80.35±1.68 μM. In the present exploration, 5e exhibited greater inhibitory activity and it could be a promising lead for the development of new chemotherapeutics against pancreatic cancer.
Collapse
Affiliation(s)
- Abdul Rahman
- Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Center, Kadur, Chikkamagaluru, Karnataka, India -, 577548
| | - Nippu Belur Ningegowda
- Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Center, Kadur, Chikkamagaluru, Karnataka, India -, 577548
| | - Manjunatha Kammathalli Siddappa
- Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Center, Kadur, Chikkamagaluru, Karnataka, India -, 577548
| | - Meghana Pargi
- Laboratory of Experimental Medicine, Department of Biotechnology, Kuvempu University, Shankargatta, Shimoga, Karnataka, India -, 577451
| | | | - Nayak Devappa Satyanarayan
- Department of Pharmaceutical Chemistry, Kuvempu University, Post Graduate Center, Kadur, Chikkamagaluru, Karnataka, India -, 577548
| | - Rajeshwara Achur
- Department of Biochemistry, Kuvempu University, Shankargatta, Shimoga, Karnataka, India -, 577451
| |
Collapse
|
15
|
Sil S, Santha Bhaskaran A, Chakraborty S, Singh B, Kuniyil R, Mandal SK. Reduced-Phenalenyl-Based Molecule as a Super Electron Donor for Radical-Mediated C-N Coupling Catalysis at Room Temperature. J Am Chem Soc 2022; 144:22611-22621. [PMID: 36450182 DOI: 10.1021/jacs.2c09225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
We demonstrate that an in situ generated di-reduced phenalenyl (PLY) species accumulates sufficiently high energy and acts as a super electron donor to generate aryl radicals from aryl halides to accomplish Buchwald-Hartwig-type C-N cross-coupling reactions at room temperature. This catalytic protocol does not require any external stimuli such as heat, light, or cathodic current. This protocol shows a wide variety of substrate scope covering different genres of aryl and heteroaryl halides with various aromatic as well as aliphatic amines and late-stage functionalization of the well-known natural products. The control experiments, along with extensive density functional theory (DFT) calculations, unveil that the aryl radical is generated by a single electron transfer from the di-reduced PLY to the aryl halide substrate. The aryl radical acts as an electrophile and binds with amine, leading to the chemically driven radical-mediated C-N cross-coupling under transition-metal-free conditions.
Collapse
Affiliation(s)
- Swagata Sil
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | | | - Soumi Chakraborty
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Bhagat Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Rositha Kuniyil
- Department of Chemistry, Indian Institute of Technology, Palakkad 678557, Kerala, India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
16
|
Abstract
Chemoenzymatic catalysis, by definition, involves the merging of sequential reactions using both chemocatalysis and biocatalysis, typically in a single reaction vessel. A major challenge, the solution to which, however, is associated with numerous advantages, is to run such one-pot processes in water: the majority of enzyme-catalyzed processes take place in water as Nature's reaction medium, thus enabling a broad synthetic diversity when using water due to the option to use virtually all types of enzymes. Furthermore, water is cheap, abundantly available, and environmentally friendly, thus making it, in principle, an ideal reaction medium. On the other hand, most chemocatalysis is routinely performed today in organic solvents (which might deactivate enzymes), thus appearing to make it difficult to combine such reactions with biocatalysis toward one-pot cascades in water. Several creative approaches and solutions that enable such combinations of chemo- and biocatalysis in water to be realized and applied to synthetic problems are presented herein, reflecting the state-of-the-art in this blossoming field. Coverage has been sectioned into three parts, after introductory remarks: (1) Chapter 2 focuses on historical developments that initiated this area of research; (2) Chapter 3 describes key developments post-initial discoveries that have advanced this field; and (3) Chapter 4 highlights the latest achievements that provide attractive solutions to the main question of compatibility between biocatalysis (used predominantly in aqueous media) and chemocatalysis (that remains predominantly performed in organic solvents), both Chapters covering mainly literature from ca. 2018 to the present. Chapters 5 and 6 provide a brief overview as to where the field stands, the challenges that lie ahead, and ultimately, the prognosis looking toward the future of chemoenzymatic catalysis in organic synthesis.
Collapse
Affiliation(s)
- Harald Gröger
- Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld University, Universitätsstraße 25, 33615Bielefeld, Germany
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056Basel, Switzerland
| | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California93106, United States
| |
Collapse
|
17
|
Ascaso-Alegre C, MANGAS JUAN. Construction of chemoenzymatic linear cascades for the synthesis of chiral compounds. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Ascaso-Alegre
- CSIC: Consejo Superior de Investigaciones Cientificas Institute of Chemical Synthesis and Homogeneous Catalysis SPAIN
| | - JUAN MANGAS
- ARAID: Agencia Aragonesa para la Investigacion y Desarrollo ISQCH PEDRO CERBUNA, 12FACULTAD DE CIENCIAS D 50009 ZARAGOZA SPAIN
| |
Collapse
|
18
|
Adamik R, Buchholcz B, Darvas F, Sipos G, Novák Z. The Potential of Micellar Media in the Synthesis of DNA-Encoded Libraries. Chemistry 2022; 28:e202103967. [PMID: 35019168 PMCID: PMC9305553 DOI: 10.1002/chem.202103967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/17/2022]
Abstract
DNA‐encoded library (DEL) technology has become widely used in drug discovery research. The construction of DELs requires robust organic transformations that proceed in aqueous media under mild conditions. Unfortunately, the application of water as reaction medium for organic synthesis is not evident due to the generally limited solubility of organic reagents. However, the use of surfactants can offer a solution to this issue. Oil‐in‐water microemulsions formed by surfactant micelles are able to localize hydrophobic reagents inside them, resulting in high local concentrations of the organic substances in an otherwise poorly solvated environment. This review provides a conceptual and critical summary of micellar synthesis possibilities that are well suited to DEL synthesis. Existing examples of micellar DEL approaches, together with a selection of micellar organic transformations fundamentally suitable for DEL are discussed.
Collapse
Affiliation(s)
- Réka Adamik
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| | | | - Ferenc Darvas
- Innostudio Inc., Záhony u. 7, 1031, Budapest, Hungary
| | | | - Zoltán Novák
- ELTE "Lendület" Catalysis and Organic Synthesis Research Group, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter stny. 1/A, 1117, Budapest, Hungary
| |
Collapse
|
19
|
Abstract
The use of flow reactors in biocatalysis has increased significantly in recent years. Chemists have begun to design flow systems that even allow new biocatalytic reactions to take place. This concept article will focus on the design of flow systems that have allowed enzymes to go beyond their limits in batch. The case is made for moving towards fully continuous systems. With flow chemistry increasingly seen as an enabling technology for automated synthesis, and with advancements in AI-assisted enzyme design, there is a real possibility to fully automate the development and implementation of a continuous biocatalytic processes. This will lead to significantly improved enzyme processes for synthesis.
Collapse
Affiliation(s)
- Sebastian C. Cosgrove
- Lennard-Jones LaboratorySchool of Chemical and Physical SciencesKeele UniversityKeeleStaffordshireST5 5BGUnited Kingdom
| | | |
Collapse
|
20
|
Bering L, Thompson J, Micklefield J. New reaction pathways by integrating chemo- and biocatalysis. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.02.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Chirality in Organic and Mineral Systems: A Review of Reactivity and Alteration Processes Relevant to Prebiotic Chemistry and Life Detection Missions. Symmetry (Basel) 2022. [DOI: 10.3390/sym14030460] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Chirality is a central feature in the evolution of biological systems, but the reason for biology’s strong preference for specific chiralities of amino acids, sugars, and other molecules remains a controversial and unanswered question in origins of life research. Biological polymers tend toward homochiral systems, which favor the incorporation of a single enantiomer (molecules with a specific chiral configuration) over the other. There have been numerous investigations into the processes that preferentially enrich one enantiomer to understand the evolution of an early, racemic, prebiotic organic world. Chirality can also be a property of minerals; their interaction with chiral organics is important for assessing how post-depositional alteration processes could affect the stereochemical configuration of simple and complex organic molecules. In this paper, we review the properties of organic compounds and minerals as well as the physical, chemical, and geological processes that affect organic and mineral chirality during the preservation and detection of organic compounds. We provide perspectives and discussions on the reactions and analytical techniques that can be performed in the laboratory, and comment on the state of knowledge of flight-capable technologies in current and future planetary missions, with a focus on organics analysis and life detection.
Collapse
|
22
|
Merging enzymes with chemocatalysis for amide bond synthesis. Nat Commun 2022; 13:380. [PMID: 35046426 PMCID: PMC8770729 DOI: 10.1038/s41467-022-28005-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/16/2021] [Indexed: 01/03/2023] Open
Abstract
Amides are one of the most fundamental chemical bonds in nature. In addition to proteins and other metabolites, many valuable synthetic products comprise amide bonds. Despite this, there is a need for more sustainable amide synthesis. Herein, we report an integrated next generation multi-catalytic system, merging nitrile hydratase enzymes with a Cu-catalysed N-arylation reaction in a single reaction vessel, for the construction of ubiquitous amide bonds. This synergistic one-pot combination of chemo- and biocatalysis provides an amide bond disconnection to precursors, that are orthogonal to those in classical amide synthesis, obviating the need for protecting groups and delivering amides in a manner unachievable using existing catalytic regimes. Our integrated approach also affords broad scope, very high (molar) substrate loading, and has excellent functional group tolerance, telescoping routes to natural product derivatives, drug molecules, and challenging chiral amides under environmentally friendly conditions at scale. Proteins, other metabolites and many valuable synthetic products contain amide bonds and there is a need for more sustainable amide synthesis routes. Here the authors show an integrated next generation multi-catalytic system, merging nitrile hydratase enzymes with a Cu-catalysed N-arylation reaction in a single reaction vessel, for the construction of ubiquitous amide bonds.
Collapse
|
23
|
Steinsoultz P, Bailly A, Wagner P, Oliva E, Schmitt M, Grimaud L, Bihel F. In Situ Formation of Cationic π-Allylpalladium Precatalysts in Alcoholic Solvents: Application to C–N Bond Formation. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Philippe Steinsoultz
- Laboratoire d’Innovation Thérapeutique, UMR7200, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
- Médalis, Institut du Médicament de Strasbourg (IMS), Université de Strasbourg, 67401 Illkirch-Graffenstaden, France
| | - Aurélien Bailly
- Laboratoire de Biomolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Patrick Wagner
- Laboratoire d’Innovation Thérapeutique, UMR7200, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
- Médalis, Institut du Médicament de Strasbourg (IMS), Université de Strasbourg, 67401 Illkirch-Graffenstaden, France
| | - Estefania Oliva
- Plateforme d’Analyse Chimique de Strasbourg-Illkirch, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
| | - Martine Schmitt
- Laboratoire d’Innovation Thérapeutique, UMR7200, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
- Médalis, Institut du Médicament de Strasbourg (IMS), Université de Strasbourg, 67401 Illkirch-Graffenstaden, France
| | - Laurence Grimaud
- Laboratoire de Biomolécules (LBM), Département de Chimie, Sorbonne Université, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Frédéric Bihel
- Laboratoire d’Innovation Thérapeutique, UMR7200, CNRS, Université de Strasbourg, Faculté de Pharmacie, 74 Route du Rhin, 67401 Illkirch-Graffenstaden, France
- Médalis, Institut du Médicament de Strasbourg (IMS), Université de Strasbourg, 67401 Illkirch-Graffenstaden, France
| |
Collapse
|
24
|
Heckmann CM, Paradisi F. GPhos Ligand Enables Production of Chiral N-Arylamines in a Telescoped Transaminase-Buchwald-Hartwig Amination Cascade in the Presence of Excess Amine Donor. Chemistry 2021; 27:16616-16620. [PMID: 34585789 PMCID: PMC9292530 DOI: 10.1002/chem.202103472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 11/19/2022]
Abstract
The combination of biocatalysis and chemocatalysis can be more powerful than either technique alone. However, combining the two is challenging due to typically very different reaction conditions. Herein, chiral N-aryl amines, key features of many active pharmaceutical ingredients, are accessed in excellent enantioselectivity (typically>99.5 % ee) by combining transaminases with the Buchwald-Hartwig amination. By employing a bi-phasic buffer-toluene system as well as the ligand GPhos, the telescoped cascade proceeded with up to 89 % overall conversion in the presence of excess alanine. No coupling to alanine was observed.
Collapse
Affiliation(s)
| | - Francesca Paradisi
- School of ChemistryUniversity of NottinghamUniversity ParkNottinghamNG7 2RDUK
- Dept. of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernFreiestrasse 33012BernSwitzerland
| |
Collapse
|
25
|
Era Y, Dennis JA, Wallace S, Horsfall LE. Micellar catalysis of the Suzuki Miyaura reaction using biogenic Pd nanoparticles from Desulfovibrio alaskensis. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2021; 23:8886-8890. [PMID: 34912180 PMCID: PMC8593813 DOI: 10.1039/d1gc02392f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/22/2021] [Indexed: 06/02/2023]
Abstract
Microorganisms produce metal nanoparticles (MNPs) upon exposure to toxic metal ions. However, the catalytic activity of biosynthesised MNPs remains underexplored, despite the potential of these biological processes to be used for the sustainable recovery of critical metals, including palladium. Herein we report that biogenic palladium nanoparticles generated by the sulfate-reducing bacterium Desulfovibrio alaskensis G20 catalyse the ligand-free Suzuki Miyaura reaction of abiotic substrates. The reaction is highly efficient (>99% yield, 0.5 mol% Pd), occurs under mild conditions (37 °C, aqueous media) and can be accelerated within biocompatible micelles at the cell membrane to yield products containing challenging biaryl bonds. This work highlights how native metabolic processes in anaerobic bacteria can be combined with green chemical technologies to produce highly efficient catalytic reactions for use in sustainable organic synthesis.
Collapse
Affiliation(s)
- Yuta Era
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh Roger Land Building Alexander Crum Brown Road King's Buildings Edinburgh EH9 3FF UK
| | - Jonathan A Dennis
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh Roger Land Building Alexander Crum Brown Road King's Buildings Edinburgh EH9 3FF UK
- School of Chemistry, University of Edinburgh Joseph Black Building David Brewster Road King's Buildings Edinburgh EH9 3F UK
| | - Stephen Wallace
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh Roger Land Building Alexander Crum Brown Road King's Buildings Edinburgh EH9 3FF UK
| | - Louise E Horsfall
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh Roger Land Building Alexander Crum Brown Road King's Buildings Edinburgh EH9 3FF UK
| |
Collapse
|
26
|
Wang DH, Chen Q, Yin SN, Ding XW, Zheng YC, Zhang Z, Zhang YH, Chen FF, Xu JH, Zheng GW. Asymmetric Reductive Amination of Structurally Diverse Ketones with Ammonia Using a Spectrum-Extended Amine Dehydrogenase. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04324] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Dong-Hao Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Sai-Nan Yin
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Xu-Wei Ding
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yu-Cong Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Zhi Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Yu-Hui Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Fei-Fei Chen
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| | - Gao-Wei Zheng
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
- Frontiers Science Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China
| |
Collapse
|
27
|
Akporji N, Singhania V, Dussart-Gautheret J, Gallou F, Lipshutz BH. Nanomicelle-enhanced, asymmetric ERED-catalyzed reductions of activated olefins. Applications to 1-pot chemo- and bio-catalysis sequences in water. Chem Commun (Camb) 2021; 57:11847-11850. [PMID: 34698744 DOI: 10.1039/d1cc04774d] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bio-catalytic reactions involving ene-reductases (EREDs) in tandem with chemo-catalysis in water can be greatly enhanced by the presence of nanomicelles derived from the surfactant TPGS-750-M. Transformations are provided that illustrate the variety of sequences now possible in 1-pot as representative examples of this environmentally attractive approach to organic synthesis.
Collapse
Affiliation(s)
- Nnamdi Akporji
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Vani Singhania
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | - Jade Dussart-Gautheret
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| | | | - Bruce H Lipshutz
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, USA.
| |
Collapse
|
28
|
Zhang X, Tian C, Wang Z, Sivaguru P, Nolan SP, Bi X. Fluoroalkyl N-Triftosylhydrazones as Easily Decomposable Diazo Surrogates for Asymmetric [2 + 1] Cycloaddition: Synthesis of Chiral Fluoroalkyl Cyclopropenes and Cyclopropanes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01483] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Chunqi Tian
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhanjing Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
Shamovsky I, Ripa L, Narjes F, Bonn B, Schiesser S, Terstiege I, Tyrchan C. Mechanism-Based Insights into Removing the Mutagenicity of Aromatic Amines by Small Structural Alterations. J Med Chem 2021; 64:8545-8563. [PMID: 34110134 DOI: 10.1021/acs.jmedchem.1c00514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aromatic and heteroaromatic amines (ArNH2) are activated by cytochrome P450 monooxygenases, primarily CYP1A2, into reactive N-arylhydroxylamines that can lead to covalent adducts with DNA nucleobases. Hereby, we give hands-on mechanism-based guidelines to design mutagenicity-free ArNH2. The mechanism of N-hydroxylation of ArNH2 by CYP1A2 is investigated by density functional theory (DFT) calculations. Two putative pathways are considered, the radicaloid route that goes via the classical ferryl-oxo oxidant and an alternative anionic pathway through Fenton-like oxidation by ferriheme-bound H2O2. Results suggest that bioactivation of ArNH2 follows the anionic pathway. We demonstrate that H-bonding and/or geometric fit of ArNH2 to CYP1A2 as well as feasibility of both proton abstraction by the ferriheme-peroxo base and heterolytic cleavage of arylhydroxylamines render molecules mutagenic. Mutagenicity of ArNH2 can be removed by structural alterations that disrupt geometric and/or electrostatic fit to CYP1A2, decrease the acidity of the NH2 group, destabilize arylnitrenium ions, or disrupt their pre-covalent transition states with guanine.
Collapse
|
30
|
Liu Y, Wang Z, Guo N, Liu P, Liu G, Gao J, Zhang L, Jiang Y. Polydopamine‐Encapsulated
Dendritic Organosilica Nanoparticles as Amphiphilic Platforms for Highly Efficient Heterogeneous Catalysis in Water. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yunting Liu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco‐utilization (Tianjin University of Science and Technology) Tianjin 300457 China
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Zihan Wang
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Na Guo
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Pengbo Liu
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Guanhua Liu
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| | - Lei Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco‐utilization (Tianjin University of Science and Technology) Tianjin 300457 China
- College of Chemical Engineering and Materials Science and, Tianjin University of Science and Technology Tianjin 300457 China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology Tianjin 300130 China
| |
Collapse
|
31
|
Bera S, Biswas A, Samanta R. Straightforward Construction and Functionalizations of Nitrogen-Containing Heterocycles Through Migratory Insertion of Metal-Carbenes/Nitrenes. CHEM REC 2021; 21:3411-3428. [PMID: 33913245 DOI: 10.1002/tcr.202100061] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/15/2022]
Abstract
Nitrogen-containing heterocycles are widely found in various biologically active substrates, pharmaceuticals, natural products and organic materials. Consequently, the continuous effort has been devoted towards the development of straightforward, economical, environmentally acceptable, efficient and ingenious methods for the synthesis of various N-containing heterocycles and their functionalizations. Arguably, one of the most prominent direct strategy is regioselective C-H bond functionalizations which provide the step and atom economical approaches in the presence of suitable coupling partners. In this context, site-selective migratory insertion of metal carbenes/nitrenes to the desired C-H bonds has proven as a useful tool to access various functionalized nitrogen heterocycles. In this personal account, we highlight some of our contemporary development toward constructing N-containing heterocycles and their direct functionalizations via transition metal catalysed C-H bond functionalizations based on migratory insertion of metal-carbenes and nitrenes.
Collapse
Affiliation(s)
- Satabdi Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Aniruddha Biswas
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
32
|
Peñafiel I, Dryfe RAW, Turner NJ, Greaney MF. Integrated Electro‐Biocatalysis for Amine Alkylation with Alcohols. ChemCatChem 2021. [DOI: 10.1002/cctc.202001757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Itziar Peñafiel
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
- Future Biomanufacturing Research Hub The University of Manchester Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Robert A. W. Dryfe
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas J. Turner
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
- Future Biomanufacturing Research Hub The University of Manchester Manchester Institute of Biotechnology 131 Princess Street Manchester M1 7DN UK
| | - Michael F. Greaney
- Department of Chemistry The University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
33
|
Murru S, Mokar BD, Bista R, Harakat D, Le Bras J, Fronczek F, Nicholas KM, Srivastava RS. Copper-catalyzed asymmetric allylic C–H amination of alkenes using N-arylhydroxylamines. Org Chem Front 2021. [DOI: 10.1039/d1qo00223f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The first Cu-catalyzed asymmetric allylic C–H amination of alkenes with N-aryl hydroxylamines has been developed. Metal-complexes isolation, ESI-MS analysis and the DFT calculations provided key insights on mechanistic pathway.
Collapse
Affiliation(s)
- Siva Murru
- Chemistry Program
- School of Sciences
- University of Louisiana at Monroe
- Louisiana 71209
- USA
| | - Bhanudas D. Mokar
- Department of Chemistry
- University of Louisiana at Lafayette
- Louisiana 70504
- USA
| | - Ramesh Bista
- Chemistry Program
- School of Sciences
- University of Louisiana at Monroe
- Louisiana 71209
- USA
| | - Dominique Harakat
- Institut de Chimie Moléculaire de Reims – UMR 7312 CNRS-Université de Reims Champagne-Ardenne UFR des Sciences Exactes et Naturelles
- 51687 REIMS Cedex 2
- France
| | - Jean Le Bras
- Institut de Chimie Moléculaire de Reims – UMR 7312 CNRS-Université de Reims Champagne-Ardenne UFR des Sciences Exactes et Naturelles
- 51687 REIMS Cedex 2
- France
| | - Frank Fronczek
- Department of Chemistry
- Louisiana State University
- Baton Rouge 70803
- USA
| | | | | |
Collapse
|
34
|
Stockinger P, Schelle L, Schober B, Buchholz PCF, Pleiss J, Nestl BM. Engineering of Thermostable β-Hydroxyacid Dehydrogenase for the Asymmetric Reduction of Imines. Chembiochem 2020; 21:3511-3514. [PMID: 32939899 PMCID: PMC7756219 DOI: 10.1002/cbic.202000526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Indexed: 01/08/2023]
Abstract
The β-hydroxyacid dehydrogenase from Thermocrinus albus (Ta-βHAD), which catalyzes the NADP+ -dependent oxidation of β-hydroxyacids, was engineered to accept imines as substrates. The catalytic activity of the proton-donor variant K189D was further increased by the introduction of two nonpolar flanking residues (N192 L, N193 L). Engineering the putative alternative proton donor (D258S) and the gate-keeping residue (F250 A) led to a switched substrate specificity as compared to the single and triple variants. The two most active Ta-βHAD variants were applied to biocatalytic asymmetric reductions of imines at elevated temperatures and enabled enhanced product formation at a reaction temperature of 50 °C.
Collapse
Affiliation(s)
- Peter Stockinger
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Luca Schelle
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Benedikt Schober
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Patrick C. F. Buchholz
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| | - Bettina M. Nestl
- Institute of Biochemistry and Technical BiochemistryDepartment of Technical BiochemistryUniversity of StuttgartAllmandring 3170569StuttgartGermany
| |
Collapse
|
35
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2020. [DOI: 10.1039/d0np90047h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as longisglucinol A from Hypericum longistylum.
Collapse
|