1
|
Wu C, Zhu Y. Organic photosensitized aziridination of alkenes. Chem Commun (Camb) 2024; 60:12449-12452. [PMID: 39380316 DOI: 10.1039/d4cc03291h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
We report a new TADF-catalyzed aziridination of alkenes under visible light. In this protocol, a free triplet nitrene is in situ generated from the commercially available tosyl azide by energy transfer of the excited photocatalyst 4DPAIPN. Our finding enables the smooth installation of the strained aziridine ring into a remarkably wide scope of alkenes and pharmaceutical-derived olefins and natural products, as well as the synthesis of sitagliptin. This metal-free method provides a new opportunity for the late-stage modification of complex molecules or synthesis of nitrogen-containing pharmaceuticals.
Collapse
Affiliation(s)
- Chunying Wu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi 710061, China.
| | - Yunbo Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, 76 Yanta West Road, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Gao CJ, Li ZX, Mou WL, Li YY, Jin GY, Fan SJ, Pan X, Han HL, Li ZF, Liu JM, Wang G, Yang W, Jin QH. Synthesis of Silver(I) Complexes through In Situ Reactions of dppeda with dmp in the Presence of Silver Halides for Photocatalysis. Inorg Chem 2024; 63:18689-18698. [PMID: 39303191 DOI: 10.1021/acs.inorgchem.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Due to the unique photosensitivity of silver compounds, they exhibit good photocatalytic activity as photocatalysts in the degradation of water pollutants. However, silver compounds have poor cycling stability and are prone to decomposition and reaction under light to form metallic silver, which greatly limits their practical application. Herein, a (2-(2-(diphenylphosphaneyl)ethyl)-9-methyl-1.10-phenanthroline (PSNNP)) pincer ligand was designed for stabilizing the central metal. The in situ-formed PSNNP ligand could be readily generated in one pot with the participation of silver halides. The reaction of silver halides with dppeda (N,N,N',N'-tetra(diphenylphosphanylmethyl)ethylene diamine) in the presence of dmp (2,9-dimethyl-1,10-phenanthroline) in acetonitrile afforded complexes Ag2X2 (PSNNP)2 (complexes 1, 2) (X = Cl, Br). Single-crystal X-ray diffraction shows that the tridentate coordination of the pincer ligand provides strong binding with metal centers and leads to high stability of the pincer metal unit. The removal rate of rhodamine B (RhB) by complexes 1 and 2 can reach up to 100%, demonstrating an excellent photocatalytic degradation performance for organic dyes. The important effect of PSNNP ligands on photocatalytic properties after coordination with central metals was studied through experiments and discrete Fourier transform (DFT) calculations. The photocatalytic reaction mechanism of complexes 1 and 2 was also studied. This result provides an effective pathway for the first synthesis of PSNNP and interesting insights into photocatalytic degradation chemistry.
Collapse
Affiliation(s)
- Cheng-Jie Gao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zi-Xi Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wen-Long Mou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Ying-Yu Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guan-Yu Jin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Si-Jie Fan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xun Pan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hong-Liang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhong-Feng Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jian-Ming Liu
- Mathematical Sciences, Peking University, Beijing 100871, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wei Yang
- Faculty of Food Science and Technology, Suzhou Polytechnical Institute of Agriculture, Suzhou 215008, China
| | - Qiong-Hua Jin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- The State Key Laboratory of Rare Earth Resource Utilization, Changchun, Jilin 130000, China
| |
Collapse
|
3
|
Jin HG, Zhao PC, Qian Y, Xiao JD, Chao ZS, Jiang HL. Metal-organic frameworks for organic transformations by photocatalysis and photothermal catalysis. Chem Soc Rev 2024; 53:9378-9418. [PMID: 39163028 DOI: 10.1039/d4cs00095a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Organic transformation by light-driven catalysis, especially, photocatalysis and photothermal catalysis, denoted as photo(thermal) catalysis, is an efficient, green, and economical route to produce value-added compounds. In recent years, owing to their diverse structure types, tunable pore sizes, and abundant active sites, metal-organic framework (MOF)-based photo(thermal) catalysis has attracted broad interest in organic transformations. In this review, we provide a comprehensive and systematic overview of MOF-based photo(thermal) catalysis for organic transformations. First, the general mechanisms, unique advantages, and strategies to improve the performance of MOFs in photo(thermal) catalysis are discussed. Then, outstanding examples of organic transformations over MOF-based photo(thermal) catalysis are introduced according to the reaction type. In addition, several representative advanced characterization techniques used for revealing the charge reaction kinetics and reaction intermediates of MOF-based organic transformations by photo(thermal) catalysis are presented. Finally, the prospects and challenges in this field are proposed. This review aims to inspire the rational design and development of MOF-based materials with improved performance in organic transformations by photocatalysis and photothermal catalysis.
Collapse
Affiliation(s)
- Hong-Guang Jin
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Peng-Cheng Zhao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, P. R. China.
| | - Zi-Sheng Chao
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, 410114, China.
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
4
|
Ozgun U, Genc HN. Catalytic Performance of Chiral Tetraaza-Bridged Calix[4]arene[2]triazine Derivatives for Enantioselective Michael Reactions. Chirality 2024; 36:e23711. [PMID: 39267303 DOI: 10.1002/chir.23711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 09/17/2024]
Abstract
Novel chiral tetraaza-bridged calix[4]arene[2]triazine-based organocatalysts were synthesized and used for catalytic asymmetric Michael reaction of acetylacetone to various aromatic nitrostyrenes. Chiral subunits (R)- and (S)-1,2,3,4-tetrahydro-1-naphthylamine were attached to the tetraaza-bridged calix[4]arene[2]triazine platform in both enantiomeric forms. The R configuration of the major enantiomer of the Michael product was obtained when 3a was used as catalyst, and the S configuration was obtained when 3b was used as catalyst. This indicated that the configuration of the Michael product was controlled by the chiral calixarene moiety. The Michael adducts were obtained in excellent yields (91%) and enantioselectivities (98%).
Collapse
Affiliation(s)
- Ummu Ozgun
- Department of Chemistry, A. K. Education Faculty, Necmettin Erbakan University, Konya, Türkiye
- Faculty of Engineering, Necmettin Erbakan University, Konya, Türkiye
| | - Hayriye Nevin Genc
- Department of Science Education, A. K. Education Faculty, Necmettin Erbakan University, Konya, Türkiye
| |
Collapse
|
5
|
Garrido-González JJ, Medrano-Uribe K, Rosso C, Humbrías-Martín J, Dell'Amico L. Photocatalytic Synthesis and Functionalization of Sulfones, Sulfonamides and Sulfoximines. Chemistry 2024; 30:e202401307. [PMID: 39037368 DOI: 10.1002/chem.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 07/23/2024]
Abstract
Sulfur(VI)-based functional groups are popular scaffolds in a wide variety of research fields including synthetic and medicinal chemistry, as well as chemical biology. The growing interest in sulfur(VI)-containing molecules has motivated the scientific community to explore new methods to synthesize and modify them. Here, photocatalysis plays a key role granting access to new types of reactivity under mild reaction conditions. In this Perspective, we present a selection of works reported in the last six years focused on the photocatalytic assembly and reactivity of sulfones, sulfonamides, and sulfoximines. We addressed the key synthetic intermediates for each transformation, while discussing limitations and strength points of the protocols. Future directions of the field are finally presented.
Collapse
Affiliation(s)
- José J Garrido-González
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Katy Medrano-Uribe
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Cristian Rosso
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Jorge Humbrías-Martín
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
6
|
Sawada N, Yu Z, Takinami H, Inoue D, Ghosh T, Sasaki N, Nokami T, Taniguchi T, Abe M, Koike T. Organophotocatalytic access to C-glycosides: multicomponent coupling reactions using glycosyl bromides. Chem Commun (Camb) 2024. [PMID: 39034774 DOI: 10.1039/d4cc02833c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Photochemical multi-component coupling reactions initiated by the activation of glycosyl bromides in the presence of 1,4-bis(diphenylamino)benzene (BDB) as an organic photocatalyst were developed. C-glycosides accompanied by olefin (di)functionalization were obtained. This method allows us to access various C-glycosides with alkene, carbonyl, alcohol, ether, and amide functionalities.
Collapse
Affiliation(s)
- Naoya Sawada
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Ziyi Yu
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Hiryu Takinami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Daichi Inoue
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Titli Ghosh
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Norihiko Sasaki
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Toshiki Nokami
- Department of Chemistry and Biotechnology, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
- Centre for Research on Green Sustainable Chemistry, Faculty of Engineering, Tottori University, 4-101 Koyamacho minami, Tottori city, 680-8552 Tottori, Japan
| | - Tsuyoshi Taniguchi
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba city, Ibaraki, 305-8565, Japan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, Higashi-Hiroshima city, Hiroshima, 739-8526, Japan
| | - Takashi Koike
- Department of Applied Chemistry, Faculty of Fundamental Engineering, Nippon Institute of Technology, E24-315, 4-1 Gakuendai, Miyashiro-Machi, Minamisaitama-Gun, 345-8501 Saitama, Japan
| |
Collapse
|
7
|
Prakash R, Sen PP, Pathania V, Raha Roy S. Photocatalytic Proficiency of Cinnoline Moiety for Cross-Coupling Reactions: A Two in One Photocatalyst. Org Lett 2024; 26:5923-5927. [PMID: 38959051 DOI: 10.1021/acs.orglett.4c01812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Herein, we have developed a new class of organic photocatalysts that can mimic transition metals for several oxidative and reductive organic cross-coupling transformations. Due to its wide potential window in both the oxidation and reduction ranges, cinnoline exhibits dual catalytic activity under visible light illumination, acting as both a photoreductant and photooxidant.
Collapse
Affiliation(s)
- Rashmi Prakash
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vishali Pathania
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
8
|
Cai B, Huang P, Fang Y, Tian H. Recyclable and Stable Porphyrin-Based Self-Assemblies by Electrostatic Force for Efficient Photocatalytic Organic Transformation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308469. [PMID: 38460154 DOI: 10.1002/advs.202308469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Indexed: 03/11/2024]
Abstract
Development of efficient, stable, and recyclable photocatalysts for organic synthesis is vital for transformation of traditional thermal organic chemistry into green sustainable organic chemistry. In this work, the study reports an electrostatic approach to assemble meso-tetra (4-sulfonate phenyl) porphyrin (TPPS)tetra (4-sulfonate phenyl) porphyrin (TPPS) as a donor and benzyl viologen (BV) as an acceptor into stable and recyclable photocatalyst for an efficient organic transformation reaction - aryl sulfide oxidation. By use of the electrostatic TPPS-BV photocatalysts, 0.1 mmol aryl sulfide with electron-donating group can be completely transformed into aryl sulfoxide in 60 min without overoxidation into sulfone, rendering near 100% yield and selectivity. The photocatalyst can be recycled up to 95% when 10 mg amount is used. Mechanistic study reveals that efficient charge separation between TPPS and BV results in sufficient formation of superoxide which further reacts with the oxidized sulfide by the photocatalyst to produce the sulfoxide. This mechanistic pathway differs significantly from the previously proposed singlet oxygen-dominated process in homogeneous TPPS photocatalysis.
Collapse
Affiliation(s)
- Bin Cai
- Department of Chemistry-Ångström Lab, Uppsala University, Box 523, Uppsala, SE 751 20, Sweden
| | - Ping Huang
- Department of Chemistry-Ångström Lab, Uppsala University, Box 523, Uppsala, SE 751 20, Sweden
| | - Yuan Fang
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30-36, Stockholm, SE 100 44, Sweden
| | - Haining Tian
- Department of Chemistry-Ångström Lab, Uppsala University, Box 523, Uppsala, SE 751 20, Sweden
| |
Collapse
|
9
|
Mandal B, Mandal S, Halder S, Adhikari D. Photocatalytic α-arylation of cyclic ketones by a thermally activated delayed fluorescence molecule. Chem Commun (Camb) 2024; 60:5852-5855. [PMID: 38752485 DOI: 10.1039/d4cc01287a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
α-Arylation of cyclic ketones via an organophotocatalytic route has been described utilizing PXZ-TRZ, a molecule displaying thermally activated delayed fluorescence (TADF). Using this route, a plethora of cyclic ketones including cyclohexanone, cyclopentanone and even cyclooctanone can be effectively arylated with many aryl iodides or bromides under mild conditions.
Collapse
Affiliation(s)
- Baishanal Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India.
| | - Sourav Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India.
| | - Supriya Halder
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India.
| | - Debashis Adhikari
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector-81, Knowledge City, Manauli-140306, India.
| |
Collapse
|
10
|
Yousif M, Ibrahim AH, Al-Rawi SS, Majeed A, Iqbal MA, Kashif M, Abidin ZU, Arbaz M, Ali S, Hussain SA, Shahzadi A, Haider MT. Visible light assisted photooxidative facile degradation of azo dyes in water using a green method. RSC Adv 2024; 14:16138-16149. [PMID: 38769951 PMCID: PMC11103459 DOI: 10.1039/d4ra01202j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/13/2024] [Indexed: 05/22/2024] Open
Abstract
In this study, the methyl orange (MO) dye has been degraded after screening several azo dyes due to its effective results and being toxic and carcinogenic to aquatic life and humans. An environmentally friendly, economical, and green method for water purification was used in this study using the photooxidative method. Several organic acids were screened for oxidative applications against various azo dyes but due to better results, methyl orange was selected for the whole study. Ascorbic acid, also known as vitamin C, was found to be best for photodegradation due to its high oxidative activity among various organic acids utilized. A newly developed photoreactor box has been used to conduct the photooxidation process. To evaluate the degradation efficiency of AsA, photooxidative activity was monitored periodically. When the dose of AsA was used at a contact time of 180 minutes, degradation efficiency was 96%. The analysis of degraded products was performed using HPLC and GC-MS. The nucleophilicity of HOMO-LUMO and MEPs was confirmed using density functional theory. For the optimization of the process, central composite design (CCD) in Response Surface Methodology (RSM) was utilized.
Collapse
Affiliation(s)
- Muhammad Yousif
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Ahmad H Ibrahim
- Pharmacy Department, Faculty of Pharmacy, Tishk International University 100 m St, Near Baz Intersection Erbil KRG Iraq
| | - Sawsan S Al-Rawi
- Biology Education Department, Faculty of Education, Tishk International University 100 m St, Near Baz Intersection Erbil KRG Iraq
| | - Adnan Majeed
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Adnan Iqbal
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
- Synthetic Organometallic and Coordination Chemistry Laboratory, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Kashif
- Department of Mathematics and Statistics, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Zain Ul Abidin
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Muhammad Arbaz
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Shahzaib Ali
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Syed Arslan Hussain
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | - Anam Shahzadi
- Department of Chemistry, University of Agriculture Faisalabad Faisalabad-38000 Pakistan
| | | |
Collapse
|
11
|
Zubkov MO, Dilman AD. Radical reactions enabled by polyfluoroaryl fragments: photocatalysis and beyond. Chem Soc Rev 2024; 53:4741-4785. [PMID: 38536104 DOI: 10.1039/d3cs00889d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Polyfluoroarenes have been known for a long time, but they are most often used as fluorinated building blocks for the synthesis of aromatic compounds. At the same time, due to peculiar fluorine effect, they have unique properties that provide applications in various fields ranging from synthesis to materials science. This review summarizes advances in the radical chemistry of polyfluoroarenes, which have become possible mainly with the advent of photocatalysis. Transformations of the fluorinated ring via the C-F bond activation, as well as use of fluoroaryl fragments as activating groups and hydrogen atom transfer agents are discussed. The ability of fluoroarenes to serve as catalysts is also considred.
Collapse
Affiliation(s)
- Mikhail O Zubkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| | - Alexander D Dilman
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991 Moscow, Russian Federation.
| |
Collapse
|
12
|
An B, Cui H, Zheng C, Chen JL, Lan F, You SL, Zhang X. Tunable C-H functionalization and dearomatization enabled by an organic photocatalyst. Chem Sci 2024; 15:4114-4120. [PMID: 38487217 PMCID: PMC10935768 DOI: 10.1039/d4sc00120f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/05/2024] [Indexed: 03/17/2024] Open
Abstract
C-H functionalization and dearomatization constitute fundamental transformations of aromatic compounds, which find wide applications in various research areas. However, achieving both transformations from the same substrates with a single catalyst by operating a distinct mechanism remains challenging. Here, we report a photocatalytic strategy to modulate the reaction pathways that can be directed toward either C-H functionalization or dearomatization under redox-neutral or net-reductive conditions, respectively. Two sets of indoles and indolines bearing tertiary alcohols are divergently furnished with good yields and high selectivity. The key to success is the introduction of isoazatruxene ITN-2 as a novel photocatalyst (PC), which outperforms the commonly used PCs. The ready synthesis and high modulability of isoazatruxene type PCs indicate their great application potential.
Collapse
Affiliation(s)
- Bohang An
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Hao Cui
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Ji-Lin Chen
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Feng Lan
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| | - Xiao Zhang
- Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou 350007 China
| |
Collapse
|
13
|
Majeed A, Ibrahim AH, Al-Rawi SS, Iqbal MA, Kashif M, Yousif M, Abidin ZU, Ali S, Arbaz M, Hussain SA. Green Organo-Photooxidative Method for the Degradation of Methylene Blue Dye. ACS OMEGA 2024; 9:12069-12083. [PMID: 38496983 PMCID: PMC10938592 DOI: 10.1021/acsomega.3c09989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
This study used an organophoto-oxidative material to degrade the toxic azo dye, methylene blue (MB), due to its hazardous effects on aquatic life and humans. MB is traditionally degraded using metal-based catalysts, resulting in high costs. Several organic acids were screened for organo-photooxidative applications against various azo dyes, and ascorbic acid (AA), also known as vitamin C, was found to be best for degradation due to its high photooxidative activity. It is an eco-friendly, edible, and efficient photooxidative material. A photocatalytic box has been developed for the study of organo-photooxidative activity. It was found that when AA was added, degradation efficiency increased from 42 to 95% within 240 min. Different characterization techniques, such as HPLC and GC-MS, were used after degradation for the structural elucidation of degraded products. DFT study was done for the investigation of the mechanistic study behind the degradation process. A statistical tool, RSM, was used for the optimization of parameters (concentration of dye, catalyst, and time). This study develops sustainable and effective solutions for wastewater treatment.
Collapse
Affiliation(s)
- Adnan Majeed
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Ahmad H. Ibrahim
- Pharmacy
Department, Faculty of Pharmacy, Tishk International
University, 100Mt. St, Near Baz Intersection, Erbil, KRG, Iraq
| | - Sawsan S. Al-Rawi
- Biology
Education Department, Faculty of Education, Tishk International University, 100Mt. St, Near Baz Intersection, Erbil, KRG, Iraq
| | - Muhammad Adnan Iqbal
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
- Synthetic
Organometallic and Coordination Chemistry Laboratory, University of Agriculture Faisalabad, Faisalabad38000, Pakistan
| | - Muhammad Kashif
- Department
of Mathematics and Statistics, University
of Agriculture Faisalabad, Faisalabad38000, Pakistan
| | - Muhammad Yousif
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Zain Ul Abidin
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Shahzaib Ali
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Muhammad Arbaz
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| | - Syed Arslan Hussain
- Department
of Chemistry, University of Agriculture
Faisalabad, Faisalabad38000, Pakistan
| |
Collapse
|
14
|
Zhu WF, Empel C, Pelliccia S, Koenigs RM, Proschak E, Hernandez-Olmos V. Photochemistry in Medicinal Chemistry and Chemical Biology. J Med Chem 2024. [PMID: 38457829 DOI: 10.1021/acs.jmedchem.3c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- W Felix Zhu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Karak P, Moitra T, Banerjee A, Ruud K, Chakrabarti S. Accidental triplet harvesting in donor-acceptor dyads with low spin-orbit coupling. Phys Chem Chem Phys 2024; 26:5344-5355. [PMID: 38268441 DOI: 10.1039/d3cp04904c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
We present an accidental mechanism for efficient intersystem crossing (ISC) between singlet and triplet states with low spin-orbit coupling (SOC) in molecules having donor-acceptor (D-A) moieties separated by a Sigma bond. Our study shows that SOC between the lowest singlet excited state and the higher-lying triplet states, together with nuclear motion-driven coupling of this triplet state with lower-lying triplet states during the free rotation about a Sigma bond, is one of the possible ways to achieve the experimentally observed ISC rate for a class of D-A type photoredox catalysts. This mechanism is found to be the dominant contributor to the ISC process with the corresponding rate reaching a maximum at a dihedral angle in the range of 72°-78° between the D-A moieties of 10-(naphthalen-1-yl)-3,7-diphenyl-10H-phenoxazine and other molecules included in the study. We have further demonstrated that the same mechanism is operative in a specific spirobis[anthracene]dione molecule, where the D and A moieties are interlocked near to the optimal dihedral angle, indicating the plausible effectiveness of the proposed mechanism. The present finding is expected to have implications in strategies for the synthesis of new generations of triplet-harvesting organic molecules.
Collapse
Affiliation(s)
- Pijush Karak
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata - 700009, West Bengal, India.
| | - Torsha Moitra
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway.
| | - Ambar Banerjee
- Department of Physics and Astronomy, X-ray Photon Science, Uppsala University, Ångströmlaboratoriet, Lägerhyddsvägen 1, 75120, Uppsala, Sweden.
| | - Kenneth Ruud
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Tromsø - The Arctic University of Norway, 9037 Tromsø, Norway.
- Norwegian Defence Research Establishment, P.O.Box 25, 2027 Kjeller, Norway
| | - Swapan Chakrabarti
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata - 700009, West Bengal, India.
| |
Collapse
|
16
|
Chen S, Zhou Y, Ma X. Homogeneous-like photocatalysis: covalent immobilization of an iridium(III) complex onto polystyrene brushes grafted on SiO 2 nanoparticles as a mass/charge transfer-enhanced platform. Dalton Trans 2024; 53:2731-2740. [PMID: 38226726 DOI: 10.1039/d3dt03903j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Current heterogeneous photocatalysis faces the major bottlenecks of limited mass transfer, charge recombination and tedious immobilization of expensive photocatalysts. In this work, fac-Ir(ppy)3 is directly anchored at a low cost via covalent linkage to poly(4-vinyl benzyl chloride) (PVBC) brushes grafted on SiO2 nanoparticles (PVBC@SiO2 NPs) via Friedel-Crafts alkylation, affording PVBC@SiO2 NP-supported fac-Ir(ppy)3 with high luminous efficacies such as emission lifetime and quantum yield. In the reductive cross-coupling of benzaldehydes/acetophenones with 1,4-dicyanobenzene (1,4-DCB), the as-fabricated photocatalyst affords benzhydrols in the same yields as homogeneous fac-Ir(ppy)3, except for o-substituted benzaldehydes/acetophenones. In terms of the same yields as homogeneous fac-Ir(ppy)3, a new catalytic model, named homogeneous-like photocatalysis, is proposed. In this catalytic model, the open stretching of PVBC brushes in DMSO enables the anchored fac-Ir(ppy)3 to catalyse the reaction in a similar manner as homogeneous fac-Ir(ppy)3, effectively avoiding charge recombination and mass transfer limitation. Furthermore, no significant decrease in yield (<5%) is observed over eight catalytic cycles, due to the good chemical and mechanical stabilities of PVBC@SiO2 NP-supported fac-Ir(ppy)3. Overall, the immobilization of fac-Ir(ppy)3 onto the PVBC brushes grafted on SiO2 NPs provides a mass/charge transfer-enhanced platform for supported photocatalysts.
Collapse
Affiliation(s)
- Shaoqi Chen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Yang Zhou
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| | - Xuebing Ma
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
17
|
Shi Q, Kang XW, Liu Z, Sakthivel P, Aman H, Chang R, Yan X, Pang Y, Dai S, Ding B, Ye J. Single-Electron Oxidation-Initiated Enantioselective Hydrosulfonylation of Olefins Enabled by Photoenzymatic Catalysis. J Am Chem Soc 2024; 146:2748-2756. [PMID: 38214454 DOI: 10.1021/jacs.3c12513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Controlling the enantioselectivity of hydrogen atom transfer (HAT) reactions has been a long-standing synthetic challenge. While recent advances on photoenzymatic catalysis have demonstrated the great potential of non-natural photoenzymes, all of the transformations are initiated by single-electron reduction of the substrate, with only one notable exception. Herein, we report an oxidation-initiated photoenzymatic enantioselective hydrosulfonylation of olefins using a novel mutant of gluconobacter ene-reductase (GluER-W100F-W342F). Compared to known photoenzymatic systems, our approach does not rely on the formation of an electron donor-acceptor complex between the substrates and enzyme cofactor and simplifies the reaction system by obviating the addition of a cofactor regeneration mixture. More importantly, the GluER variant exhibits high reactivity and enantioselectivity and a broad substrate scope. Mechanistic studies support the proposed oxidation-initiated mechanism and reveal that a tyrosine-mediated HAT process is involved.
Collapse
Affiliation(s)
- Qinglong Shi
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiu-Wen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyong Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pandaram Sakthivel
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hasil Aman
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyu Yan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shaobo Dai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bei Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Center for Ultrafast Science and Technology, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
18
|
Sakakibara Y, Itami K, Murakami K. Switchable Decarboxylation by Energy- or Electron-Transfer Photocatalysis. J Am Chem Soc 2024; 146:1554-1562. [PMID: 38103176 DOI: 10.1021/jacs.3c11588] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Kolbe dimerization and Hofer-Moest reactions are well-investigated carboxylic acid transformations, wherein new carbon-carbon and carbon-heteroatom bonds are constructed via electrochemical decarboxylation. These transformations can be switched by choosing an electrode that allows control of the reactive intermediate, such as carbon radical or carbocation. However, the requirement of a high current density diminishes the functional group compatibility with these electrochemical reactions. Here, we demonstrate the photocatalytic decarboxylative transformation of activated carboxylic acids in a switchable and functional group-compatible manner. We discovered that switching between Kolbe-type or Hofer-Moest-type reactions can be accomplished with suitable photocatalysts by controlling the reaction pathways: energy transfer (EnT) and single-electron transfer (SET). The EnT pathway promoted by an organo-photocatalyst yielded 1,2-diarylethane from arylacetic acids, whereas the ruthenium photoredox catalyst allows the construction of an ester scaffold with two arylmethyl moieties via the SET pathway. The resulting radical intermediates were coupled to olefins to realize multicomponent reactions. Consequently, four different products were selectively obtained from a simple carboxylic acid. This discovery offers new opportunities for selectively synthesizing multiple products via switchable reactions using identical substrates with minimal cost and effort.
Collapse
Affiliation(s)
- Yota Sakakibara
- Graduate School of Science, Nagoya University, Chikusa 464-8602, Nagoya, Japan
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda 669-1330, Hyogo, Japan
- Japanese Science and Technology Agency (JST)-PRESTO, Chiyoda 102-0076, Tokyo, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Chikusa 464-8602, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa 464-8602, Nagoya, Japan
| | - Kei Murakami
- Department of Chemistry, School of Science, Kwansei Gakuin University, Sanda 669-1330, Hyogo, Japan
- Japanese Science and Technology Agency (JST)-PRESTO, Chiyoda 102-0076, Tokyo, Japan
| |
Collapse
|
19
|
Gentile G, Bartolomei B, Dosso J, Demitri N, Filippini G, Prato M. Synthesis of a novel tetra-phenol π-extended phenazine and its application as an organo-photocatalyst. Chem Commun (Camb) 2024; 60:602-605. [PMID: 38099872 DOI: 10.1039/d3cc05176e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
In this paper, the synthesis of a novel tetra-phenol π-extended dihydrophenazine is reported. The obtained derivative presents marked reducing properties in the excited state and was exploited as an organo-photocatalyst in dehalogenation and C-C bond formation reactions. These results underline the great potential of functionalized π-extended dihydrophenazines as organo-photocatalysts.
Collapse
Affiliation(s)
- Giuseppe Gentile
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Beatrice Bartolomei
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Jacopo Dosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Nicola Demitri
- Elettra-Sincrotrone, Trieste S.S. 14 Km 163.5, Area Science Park, 34149 Basovizza, Trieste, Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy.
- Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain
- Basque Fdn Sci, Ikerbasque, 48013 Bilbao, Spain
| |
Collapse
|
20
|
Mazzarella D, Bortolato T, Pelosi G, Dell'Amico L. Photocatalytic (3 + 2) dipolar cycloadditions of aziridines driven by visible-light. Chem Sci 2023; 15:271-277. [PMID: 38131079 PMCID: PMC10732004 DOI: 10.1039/d3sc05997a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
Herein, we document the design and development of a novel (3 + 2) cycloaddition reaction aided by the activity of an organic photocatalyst and visible light. The process is extremely fast, taking place in a few minutes, with virtually complete atom economy. A large variety of structurally diverse aziridines were used as masked ylides in the presence of different types of dipolarophiles (28 examples with up to 94% yield and >95 : 5 dr). Mechanistic insights obtained from photophysical, electrochemical and experimental studies highlight that the chemistry is driven by the in situ generation of the reactive ylide through two consecutive electron-transfer processes. We also report an aerobic cascade process, where an additional oxidation step grants access to a vast array of pyrrole derivatives (19 examples with up to 95% yield). Interestingly, the extended aromatic core exhibits a distinctive absorption and emission profile, which can be easily used to tag the effectiveness of this covalent linkage.
Collapse
Affiliation(s)
- Daniele Mazzarella
- Department of Chemical Sciences, University of Padova Via Francesco Marzolo 1 35131 Padova Italy
| | - Tommaso Bortolato
- Department of Chemical Sciences, University of Padova Via Francesco Marzolo 1 35131 Padova Italy
| | - Giorgio Pelosi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma Parco Area delle Scienze 17 43124 Parma Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova Via Francesco Marzolo 1 35131 Padova Italy
| |
Collapse
|
21
|
Kowalska E, Dyguda M, Artelska A, Albrecht A. Visible Light Promoted [3+2]-Cycloaddition for the Synthesis of Cyclopenta[ b]chromenocarbonitrile Derivatives. J Org Chem 2023; 88:16589-16597. [PMID: 38037694 PMCID: PMC10696553 DOI: 10.1021/acs.joc.3c02172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/05/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023]
Abstract
In the manuscript, a novel method for the preparation of cyclopenta[b]chromenocarbonitrile derivatives via [3+2] cycloaddition reaction of substituted 3-cyanochromones and N-cyclopropyloamines initiated by visible light catalysis has been described. The reaction was performed in the presence of Eosin Y as a photocatalyst. The key parameters responsible for the success of the described strategy are visible light, a small amount of photoredox catalyst, an anhydrous solvent, and an inert atmosphere.
Collapse
Affiliation(s)
- Ewelina Kowalska
- Institute
of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Mateusz Dyguda
- Institute
of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Angelika Artelska
- Institute
of Applied Radiation Chemistry, Lodz University
of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Anna Albrecht
- Institute
of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| |
Collapse
|
22
|
Xie S, Ma L, Xiao TF, Zhang J, Kong J, Kuang Z, Zhou M, Xu GQ, Li Y, Xia A. Exploring Solvent Polarity-Dependent Photocatalysis Mechanism of Organic Photoredox Catalysts. J Phys Chem B 2023; 127:9813-9821. [PMID: 37968938 DOI: 10.1021/acs.jpcb.3c05879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Organic dyads with intramolecular charge-transfer (ICT) character are emerging as viable and more sustainable photocatalysts than metal-based complexes. Herein, a carbazole- and naphthalimide-based organic dyad (Cz-NI) was designed as an efficient organic photocatalyst for the direct C(sp3)-H carbamoylation of saturated aza-heterocycles. Aiming at understanding the effect of environment, especially the solvent polarity on photocatalysis performance, the excited-state dynamics of Cz-NI in different polar solvents were studied by femtosecond (fs) and nanosecond (ns) time-resolved transient absorption (TA) spectroscopy. Fs-TA measurements indicate that the formation of an intramolecular charge separation (ICS) state with twisted structural feature in polar solvents is driven and stabilized by solvation dynamics. Combined with chemical calculations, we found that orbital decoupling, poor conjugation between Cz and NI groups due to intramolecular torsional motion and transition moments associated with ICT emission, limits excited-state deactivation through radiation and nonradiation transition to the ground state. In addition, the orthogonal π-system of the ICS state enables the efficient spin-orbit, charge-transfer intersystem crossing to a triplet state, which is localized on the NI group. Spectroscopic and computational results reveal the formation of an ICS state at an appropriate energy that enables the population of the triplet state with high quantum yield, and the localized triplet state has long lifetime and high reduction potential for subsequent reactions. Therefore, solvent-solute interaction, especially the solvation-coupled excited-state structural relaxation, is the main factor that the photocatalysis efficiency of Cz-NI has a significant polarity correlation.
Collapse
Affiliation(s)
- Siyu Xie
- School of Science, State Key Laboratory of Information Photonic and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Lin Ma
- School of Science, State Key Laboratory of Information Photonic and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Teng-Fei Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Jiawen Zhang
- School of Science, State Key Laboratory of Information Photonic and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Jie Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Zhuoran Kuang
- School of Science, State Key Laboratory of Information Photonic and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yang Li
- School of Science, State Key Laboratory of Information Photonic and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| | - Andong Xia
- School of Science, State Key Laboratory of Information Photonic and Optical Communications, Beijing University of Posts and Telecommunications (BUPT), Beijing 100876, P. R. China
| |
Collapse
|
23
|
Chang R, Pang Y, Ye J. Divergent Photosensitizer Controlled Reactions of 4-Hydroxycoumarins and Unactivated Olefins: Hydroarylation and Subsequent [2+2] Cycloaddition. Angew Chem Int Ed Engl 2023; 62:e202309897. [PMID: 37749064 DOI: 10.1002/anie.202309897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Herein, we report a photoinduced approach for hydroarylation of unactivated olefins using 4-hydroxycoumarins as the arylating reagent. Key to the success of this reaction is the conversion of nucleophilic 4-hydroxycoumarins into electrophilic carbon radicals via photocatalytic arene oxidation, which not only circumvents the polarity-mismatch issue encountered under ionic conditions but also accommodates a broad substrate scope and inhibits side reactions that were previously observed. Moreover, divergent reactivity was achieved by changing the photocatalyst, enabling a subsequent [2+2] cycloaddition to deliver cyclobutane-fused pentacyclic products that are otherwise challenging to access in high yields and with high diastereoselectivity. Mechanistic studies have elucidated the mechanism of the reactions and the origin of the divergent reactivity.
Collapse
Affiliation(s)
- Rui Chang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yubing Pang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juntao Ye
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
24
|
Dolcini L, Gandini T, Castiglioni R, Bossi A, Penconi M, Dal Corso A, Gennari C, Pignataro L. Visible Light-Promoted β-Functionalization of Carbonyl Compounds in the Presence of Organic Dyes. J Org Chem 2023; 88:14283-14291. [PMID: 37792665 PMCID: PMC10594657 DOI: 10.1021/acs.joc.3c00890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 10/06/2023]
Abstract
Herein, we investigate the use of organic photocatalysts in the visible light-promoted β-functionalization of carbonyl compounds. In particular, we studied the addition of aliphatic aldehydes to α,β-unsaturated compounds (β-Michael addition), and the reaction of cyclic ketones with either ketones (β-aldol condensation) or imines (β-Mannich reaction). Among the dyes tested, donor-acceptor cyanoarenes gave the best results, promoting the transformations of interest in moderate to good yields. The reaction scope was investigated on substrates with different steric and electronic properties. Fluorescence quenching analysis (Stern-Volmer experiments) led us to propose for these reactions a reductive quenching mechanism involving a transient 5πe- activation mode.
Collapse
Affiliation(s)
- Luigi Dolcini
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Tommaso Gandini
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Riccardo Castiglioni
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Alberto Bossi
- Istituto
di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)
del Consiglio Nazionale delle Ricerche (CNR), via Fantoli 16/15; SmartMatLab Center, via C. Golgi
19, Milano 20138, Italy
| | - Marta Penconi
- Istituto
di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)
del Consiglio Nazionale delle Ricerche (CNR), via Fantoli 16/15; SmartMatLab Center, via C. Golgi
19, Milano 20138, Italy
| | - Alberto Dal Corso
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Cesare Gennari
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| | - Luca Pignataro
- Dipartimento
di Chimica, Università degli Studi
di Milano, via C. Golgi 19, Milano 20133, Italy
| |
Collapse
|
25
|
Pfund B, Hutskalova V, Sparr C, Wenger OS. Isoacridone dyes with parallel reactivity from both singlet and triplet excited states for biphotonic catalysis and upconversion. Chem Sci 2023; 14:11180-11191. [PMID: 37860649 PMCID: PMC10583676 DOI: 10.1039/d3sc02768f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023] Open
Abstract
Metal-based photosensitizers commonly undergo quantitative intersystem crossing into photoactive triplet excited states. In contrast, organic photosensitizers often feature weak spin-orbit coupling and low intersystem crossing efficiencies, leading to photoactive singlet excited states. By modifying the well-known acridinium dyes, we obtained a new family of organic photocatalysts, the isoacridones, in which both singlet- and triplet-excited states are simultaneously photoactive. These new isoacridone dyes are synthetically readily accessible and show intersystem crossing efficiencies of up to 52%, forming microsecond-lived triplet excited states (T1), storing approximately 1.9 eV of energy. Their photoactive singlet excited states (S1) populated in parallel have only nanosecond lifetimes, but store ∼0.4 eV more energy and act as strong oxidants. Consequently, the new isoacridone dyes are well suited for applications requiring parallel triplet-triplet energy transfer and photoinduced electron transfer elementary steps, which have become increasingly important in modern photocatalysis. In proof-of-principle experiments, the isoacridone dyes were employed for Birch-type arene reductions and C-C couplings via sensitization-initiated electron transfer, substituting the commonly used iridium or ruthenium based photocatalysts. Further, in combination with a pyrene-based annihilator, sensitized triplet-triplet annihilation upconversion was achieved in an all-organic system, where the upconversion quantum yield correlated with the intersystem crossing quantum yield of the photosensitizer. This work seems relevant in the greater contexts of developing new applications that utilize biphotonic photophysical and photochemical behavior within metal-free systems.
Collapse
Affiliation(s)
- Björn Pfund
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Valeriia Hutskalova
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Christof Sparr
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| | - Oliver S Wenger
- Department of Chemistry, University of Basel St. Johanns-Ring 19 4056 Basel Switzerland
| |
Collapse
|
26
|
Sneha M, Thornton GL, Lewis-Borrell L, Ryder ASH, Espley SG, Clark IP, Cresswell AJ, Grayson MN, Orr-Ewing AJ. Photoredox-HAT Catalysis for Primary Amine α-C-H Alkylation: Mechanistic Insight with Transient Absorption Spectroscopy. ACS Catal 2023; 13:8004-8013. [PMID: 37342833 PMCID: PMC10278065 DOI: 10.1021/acscatal.3c01474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Indexed: 06/23/2023]
Abstract
The synergistic use of (organo)photoredox catalysts with hydrogen-atom transfer (HAT) cocatalysts has emerged as a powerful strategy for innate C(sp3)-H bond functionalization, particularly for C-H bonds α- to nitrogen. Azide ion (N3-) was recently identified as an effective HAT catalyst for the challenging α-C-H alkylation of unprotected, primary alkylamines, in combination with dicyanoarene photocatalysts such as 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN). Here, time-resolved transient absorption spectroscopy over sub-picosecond to microsecond timescales provides kinetic and mechanistic details of the photoredox catalytic cycle in acetonitrile solution. Direct observation of the electron transfer from N3- to photoexcited 4CzIPN reveals the participation of the S1 excited electronic state of the organic photocatalyst as an electron acceptor, but the N3• radical product of this reaction is not observed. Instead, both time-resolved infrared and UV-visible spectroscopic measurements implicate rapid association of N3• with N3- (a favorable process in acetonitrile) to form the N6•- radical anion. Electronic structure calculations indicate that N3• is the active participant in the HAT reaction, suggesting a role for N6•- as a reservoir that regulates the concentration of N3•.
Collapse
Affiliation(s)
- Mahima Sneha
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- Department
of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Georgia L. Thornton
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Luke Lewis-Borrell
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Alison S. H. Ryder
- Centre
for Sustainable Chemical Technologies, University
of Bath, 1 South, Claverton Down, Bath BA2 7AY, U.K.
| | - Samuel G. Espley
- Department
of Chemistry, University of Bath, 1 South, Claverton Down, Bath BA2 7AY, U.K.
| | - Ian P. Clark
- Central
Laser Facility, Research Complex at Harwell, Science and Technology
Facilities Council, Rutherford Appleton
Laboratory, Harwell Oxford, Didcot OX11 0QX, U.K.
| | - Alexander J. Cresswell
- Department
of Chemistry, University of Bath, 1 South, Claverton Down, Bath BA2 7AY, U.K.
| | - Matthew N. Grayson
- Department
of Chemistry, University of Bath, 1 South, Claverton Down, Bath BA2 7AY, U.K.
| | - Andrew J. Orr-Ewing
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
27
|
Nan J, Huang G, Liu S, Wang J, Ma Y, Luan X. In(OTf) 3-catalyzed reorganization/cycloaddition of two imine units and subsequent modular assembly of acridinium photocatalysts. Chem Sci 2023; 14:5160-5166. [PMID: 37206409 PMCID: PMC10189902 DOI: 10.1039/d3sc00163f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023] Open
Abstract
Herein, we disclose a novel reorganization/cycloaddition between two imine units catalyzed by In(OTf)3 Lewis acid that differs from the well-known [4 + 2] cycloaddition version via the Povarov reaction. By means of this unprecedented imine chemistry, a collection of synthetically useful dihydroacridines has been synthesized. Notably, the obtained products give rise to a series of structurally novel and fine-tuneable acridinium photocatalysts, offering a heuristic paradigm for synthesis and efficiently facilitating several encouraging dihydrogen coupling reactions.
Collapse
Affiliation(s)
- Jiang Nan
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Guanjie Huang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Shilei Liu
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Jing Wang
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Yangmin Ma
- The Youth Innovation Team of Shaanxi Universities, Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology Xi'an 710021 China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710021 China
| |
Collapse
|
28
|
Wang D, Wang X, Zhou S, Gu P, Zhu X, Wang C, Zhang Q. Evolution of BODIPY as triplet photosensitizers from homogeneous to heterogeneous: The strategies of functionalization to various forms and their recent applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
29
|
Miyajima R, Ooe Y, Miura T, Ikoma T, Iwamoto H, Takizawa SY, Hasegawa E. Triarylamine-Substituted Benzimidazoliums as Electron Donor-Acceptor Dyad-Type Photocatalysts for Reductive Organic Transformations. J Am Chem Soc 2023; 145:10236-10248. [PMID: 37127911 DOI: 10.1021/jacs.3c01264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Triarylamine-substituted benzimidazoliums (BI+-PhNAr2), new electron donor-acceptor dyad molecules, were synthesized. Their photocatalytic properties for reductive organic transformations were explored using absorption and fluorescence spectroscopy, redox potential determinations, density functional theory calculations, transient absorption spectroscopy, and reduction reactions of selected substrates. The results show that irradiation of BI+-PhNAr2 promotes photoinduced intramolecular electron transfer to form a long-lived (∼300 μs) charge shifted state (BI•-PhN•+Ar2). In the pathway for photocatalysis of reduction reactions of substrates, BI•-PhN•+Ar2 is subsequently transformed to the neutral benzimidazolyl radical (BI•-PhNAr2) by single-electron transfer from the donor 1,3-dimethyl-2-phenylbenzimidazoline (BIH-Ph) serving as a cooperative agent. Among the benzimidazoliums explored, the bromo-substituted analogue BI+-PhN(C6H4Br-p)2 in conjunction with BIH-Ph demonstrates the most consistent catalytic performance.
Collapse
Affiliation(s)
- Ryo Miyajima
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Yuuki Ooe
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tomoaki Miura
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Tadaaki Ikoma
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Hajime Iwamoto
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| | - Shin-Ya Takizawa
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Eietsu Hasegawa
- Department of Chemistry, Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
30
|
Singh PP, Singh J, Srivastava V. Visible-light acridinium-based organophotoredox catalysis in late-stage synthetic applications. RSC Adv 2023; 13:10958-10986. [PMID: 37033422 PMCID: PMC10077514 DOI: 10.1039/d3ra01364b] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023] Open
Abstract
The field of photoredox catalysis has been transformed by the use of organic photocatalysts, which give access to re-activities that were previously only possible with transition-metal photocatalysts. Recent advancements in the use of an acridinium photocatalyst in organic synthesis are covered in this review. Both the late-stage functionalization of biorelevant molecules and the activation of inert chemical bonds are explored, with an emphasis on their mechanistic features.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Naini Prayagraj 211010 India
| | - Jaya Singh
- Department of Chemistry, LRPG College Sahibabad Gaziabad Uttar Pradesh India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj 211002 Uttar Pradesh India
| |
Collapse
|
31
|
Moczulski M, Deredas D, Kuśmierek E, Albrecht Ł, Albrecht A. Synthesis of cyclopent-1-enecarbonitriles via a tandem Giese/HWE reaction initiated by visible light. Chem Commun (Camb) 2023; 59:4372-4375. [PMID: 36946322 DOI: 10.1039/d2cc06543f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In the manuscript, a novel method for the preparation of cyclopent-1-enecarbonitriles via tandem Giese/HWE reaction initiated by visible light in the presence of fac-Ir(ppy)3 as a photocatyst has been described. The cascade reactivity combining radical and polar processes has proven applicable for a wide range of N-(acyloxy)phthalimides (which serve as precursors of the corresponding radicals) as well as diethyl (E)-(1-cyano-2-arylvinyl)phosphonates. The key parameters responsible for the success of the described strategy are: visible light, 1 mol% of photoredox catalyst, base, anhydrous solvent and inert atmosphere. The reaction results in new sp3-sp3 and sp2-sp2 carbon-carbon bonds formation under mild conditions.
Collapse
Affiliation(s)
- Marek Moczulski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland.
| | - Dariusz Deredas
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland.
| | - Elżbieta Kuśmierek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland.
| | - Anna Albrecht
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| |
Collapse
|
32
|
Parvatkar PT, Kandambeth S, Shaikh AC, Nadinov I, Yin J, Kale VS, Healing G, Emwas AH, Shekhah O, Alshareef HN, Mohammed OF, Eddaoudi M. A Tailored COF for Visible-Light Photosynthesis of 2,3-Dihydrobenzofurans. J Am Chem Soc 2023; 145:5074-5082. [PMID: 36827417 PMCID: PMC9999419 DOI: 10.1021/jacs.2c10471] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Heterogeneous photocatalysis is considered as an ecofriendly and sustainable approach for addressing energy and environmental persisting issues. Recently, heterogeneous photocatalysts based on covalent organic frameworks (COFs) have gained considerable attention due to their remarkable performance and recyclability in photocatalytic organic transformations, offering a prospective alternative to homogeneous photocatalysts based on precious metal/organic dyes. Herein, we report Hex-Aza-COF-3 as a metal-free, visible-light-activated, and reusable heterogeneous photocatalyst for the synthesis of 2,3-dihydrobenzofurans, as a pharmaceutically relevant structural motif, via the selective oxidative [3+2] cycloaddition of phenols with olefins. Moreover, we demonstrate the synthesis of natural products (±)-conocarpan and (±)-pterocarpin via the [3+2] cycloaddition reaction as an important step using Hex-Aza-COF-3 as a heterogeneous photocatalyst. Interestingly, the presence of phenazine and hexaazatriphenylene as rigid heterocyclic units in Hex-Aza-COF-3 strengthens the covalent linkages, enhances the absorption in the visible region, and narrows the energy band, leading to excellent activity, charge transport, stability, and recyclability in photocatalytic reactions, as evident from theoretical calculations and real-time information on ultrafast spectroscopic measurements.
Collapse
Affiliation(s)
- Prakash T Parvatkar
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Sharath Kandambeth
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Aslam C Shaikh
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Issatay Nadinov
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.,Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077 Hong Kong People's Republic of China
| | - Vinayak S Kale
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - George Healing
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Laboratories, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Osama Shekhah
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPM), Division of Physical Science and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Biswas A, Bhunia A, Mandal SK. Mechanochemical solid state single electron transfer from reduced organic hydrocarbon for catalytic aryl-halide bond activation. Chem Sci 2023; 14:2606-2615. [PMID: 36908958 PMCID: PMC9993847 DOI: 10.1039/d2sc06119h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 02/02/2023] [Indexed: 02/05/2023] Open
Abstract
Solid-state radical generation is an attractive but underutilized methodology in the catalytic strong bond activation process, such as the aryl-halide bond. Traditionally, such a process of strong bond activation relied upon the use of transition metal complexes or strongly reducing photocatalysts in organic solvents. The generation of the aryl radical from aryl halides in the absence of transition-metal or external stimuli, such as light or cathodic current, remains an elusive process. In this study, we describe a reduced organic hydrocarbon, which can act as a super reductant in the solid state to activate strong bonds by solid-state single electron transfer (SSSET) under the influence of mechanical energy leading to a catalytic strategy based on the mechano-SSSET or mechanoredox process. Here, we investigate the solid-state synthesis of the super electron donor phenalenyl anion in a ball mill and its application as an active catalyst in strong bond (aryl halide) activation. Aryl radicals generated from aryl halides by employing this strategy are competent for various carbon-carbon bond-forming reactions under solvent-free and transition metal-free conditions. We illustrate this approach for partially soluble or insoluble polyaromatic arenes in accomplishing solid-solid C-C cross-coupling catalysis, which is otherwise difficult to achieve by traditional methods using solvents.
Collapse
Affiliation(s)
- Amit Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| | - Anup Bhunia
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata Mohanpur-741246 India
| |
Collapse
|
34
|
Dosso J, Prato M. N,N-Diphenyl Dihydrophenazines: Using π-Extension to Access Dicationic Multifunctional Materials. Chemistry 2023; 29:e202203637. [PMID: 36519970 DOI: 10.1002/chem.202203637] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Dihydrophenazines are receiving increasing attention due to applications in numerous fields of chemistry, from light emission to organo-photocatalysis. Despite this growing interest and numerous works involving the preparation of radical cations based on this scaffold, the isolation and study of the aromatic dications obtained by 2 electron oxidation of dihydrophenazines is still mostly unexplored. From this point of view, along with the substitution at the N atoms generally used to tune dihydrophenazine properties, the π-extension of the phenazine core could play a crucial role in making dicationic states accessible. This could result in an extension of the knowledge on these elusive dications and in potentially highly interesting applications ranging from material science to molecular actuators.
Collapse
Affiliation(s)
- Jacopo Dosso
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, CENMAT, Centre of Excellence for Nanostructured Materials, INSTM UdR Trieste, University of Trieste, via Licio Giorgieri 1, 34127, Trieste, Italy.,Centre for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia San Sebastián, Spain.,Basque Fdn Sci, Ikerbasque, 48013, Bilbao, Spain
| |
Collapse
|
35
|
Votkina D, Petunin P, Miliutina E, Trelin A, Lyutakov O, Svorcik V, Audran G, Havot J, Valiev R, Valiulina LI, Joly JP, Yamauchi Y, Mokkath JH, Henzie J, Guselnikova O, Marque SRA, Postnikov P. Uncovering the Role of Chemical and Electronic Structures in Plasmonic Catalysis: The Case of Homolysis of Alkoxyamines. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Darya Votkina
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Avn. 30, Tomsk 634050, Russian Federation
| | - Pavel Petunin
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Avn. 30, Tomsk 634050, Russian Federation
| | - Elena Miliutina
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Andrii Trelin
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Oleksiy Lyutakov
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Vaclav Svorcik
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| | - Gérard Audran
- Aix-Marseille University, CNRS, UMR 7273,
ICR case 551, Avenue Escadrille Normandie-Niemen, Marseille 13397 Cedex 20, France
| | - Jeffrey Havot
- Aix-Marseille University, CNRS, UMR 7273,
ICR case 551, Avenue Escadrille Normandie-Niemen, Marseille 13397 Cedex 20, France
| | - Rashid Valiev
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk 634050, Russia
- Kazan Federal University, Kremlyovskaya St., 18, Kazan 420008, Republic of Tatarstan, Russian Federation
| | | | - Jean-Patrick Joly
- Aix-Marseille University, CNRS, UMR 7273,
ICR case 551, Avenue Escadrille Normandie-Niemen, Marseille 13397 Cedex 20, France
| | - Yusuke Yamauchi
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, 4072 Brisbane, QLD, Australia
| | - Junais Habeeb Mokkath
- Quantum Nanophotonics Simulations Lab, Department of Physics, Kuwait College of Science and Technology, Doha Area, 7th Ring Road, P.O.
Box 27235, Safat 13058, Kuwait
City, Kuwait
| | - Joel Henzie
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Olga Guselnikova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Avn. 30, Tomsk 634050, Russian Federation
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Sylvain R. A. Marque
- Aix-Marseille University, CNRS, UMR 7273,
ICR case 551, Avenue Escadrille Normandie-Niemen, Marseille 13397 Cedex 20, France
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Avn. 30, Tomsk 634050, Russian Federation
- Department of Solid-State Engineering, University of Chemistry and Technology, Technicka 5, Prague 166 28, Czech Republic
| |
Collapse
|
36
|
Franceschi P, Rossin E, Goti G, Scopano A, Vega-Peñaloza A, Natali M, Singh D, Sartorel A, Dell'Amico L. A Proton-Coupled Electron Transfer Strategy to the Redox-Neutral Photocatalytic CO 2 Fixation. J Org Chem 2023; 88:6454-6464. [PMID: 36760023 DOI: 10.1021/acs.joc.2c02952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Herein, we report our study on the design and development of a novel photocarboxylation method. We have used an organic photoredox catalyst (PC, 4CzIPN) and differently substituted dihydropyridines (DHPs) in combination with an organic base (1,5,7-triazabicyclodec-5-ene, TBD) to access a proton-coupled electron transfer (PCET) based manifold. In depth mechanistic investigations merging experimental analysis (NMR, IR, cyclic voltammetry) and density-functional theory (DFT) calculations reveal the key activity of a H-bonding complex between the DHP and the base. The thermodynamic and kinetic benefits of the PCET mechanism allowed the implementation of a redox-neutral fixation process leading to synthetically relevant carboxylic acids (18 examples with isolated yields up to 75%) under very mild reaction conditions. Finally, diverse product manipulations were performed to demonstrate the synthetic versatility of the obtained products.
Collapse
Affiliation(s)
- Pietro Franceschi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Elena Rossin
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Giulio Goti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Angelo Scopano
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Alberto Vega-Peñaloza
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Mirco Natali
- Department of Chemical, Pharmaceutical, and Agricultural Sciences, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Deepak Singh
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Andrea Sartorel
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
37
|
Meier A, Badalov SV, Biktagirov T, Schmidt WG, Wilhelm R. Diquat Based Dyes: A New Class of Photoredox Catalysts and Their Use in Aerobic Thiocyanation. Chemistry 2023; 29:e202203541. [PMID: 36700523 DOI: 10.1002/chem.202203541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
A series of new organic donor-π-acceptor dyes incorporating a diquat moiety as a novel electron-acceptor unit have been synthesized and characterized. The analytical data were supported by DFT calculations. These dyes were explored in the aerobic thiocyanation of indoles and pyrroles. Here they showed a high photocatalytic activity under visible light, giving isolated yields of up to 97 %. In addition, the photocatalytic activity of standalone diquat and methyl viologen through formation of an electron donor acceptor complex is presented.
Collapse
Affiliation(s)
- Armin Meier
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678, Clausthal-Zellerfeld, Germany
| | - Sabuhi V Badalov
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - Timur Biktagirov
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - Wolf Gero Schmidt
- Lehrtuhl für Theoretische Materialphysik, Universität Paderborn, 33095, Paderborn, Germany
| | - René Wilhelm
- Institute of Organic Chemistry, Clausthal University of Technology, Leibnizstr. 6, 38678, Clausthal-Zellerfeld, Germany
| |
Collapse
|
38
|
Marin-Beloqui JM, Gómez S, Gonev HI, Comí M, Al-Hashimi M, Clarke TM. Truncated conjugation in fused heterocycle-based conducting polymers: when greater planarity does not enhance conjugation. Chem Sci 2023; 14:812-821. [PMID: 36755723 PMCID: PMC9890783 DOI: 10.1039/d2sc06271b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
One of the main assumptions in the design of new conjugated polymer materials for their use in organic electronics is that higher coplanarity leads to greater conjugation along the polymer backbone. Conventionally, a more planar monomer structure induces a larger backbone coplanarity, thus leading to a greater overlap of the carbon π-orbitals and therefore a higher degree of π-electron delocalisation. However, here we present a case that counters the validity of this assumption. Different diselenophene-based polymers were studied where one polymer possesses two selenophene rings fused together to create a more rigid, planar structure. The effects of this greater polymer coplanarity were examined using Raman spectroscopy and theoretical calculations. Raman spectra showed a large difference between the vibrational modes of the fused and unfused polymers, indicating very different electronic structures. Resonance Raman spectroscopy confirmed the rigidity of the fused selenophene polymer and also revealed, by studying the excitation profiles of the different bands, the presence of two shorter, uncoupled conjugation pathways. Supported by Density Functional Theory (DFT) calculations, we have demonstrated that the reason for this lack of conjugation is a distortion of the selenophene rings due to the induced planarity, forming a new truncated conjugation pathway through the selenophene β-position and bypassing the beneficial α-position. This effect was studied using DFT in an ample range of derivatives, where substitution of the selenium atom with other heteroatoms still maintained the same unconventional conjugation-planarity relationship, confirming the generality of this phenomenon. This work establishes an important structure-property relationship for conjugated polymers that will help rational design of more efficient organic electronics materials.
Collapse
Affiliation(s)
- Jose Manuel Marin-Beloqui
- Department of Chemistry, University College London Christopher Ingold Building London WC1H 0AJ UK .,Department of Physical Chemistry, University of Malaga Blvrd Louis Pasteur 31 29010 Malaga Spain
| | - Sandra Gómez
- Department of Physical Chemistry, University of SalamancaCaidos Sq.37008SalamancaSpain
| | - Hristo Ivov Gonev
- Department of Chemistry, University College London Christopher Ingold Building London WC1H 0AJ UK
| | - Marc Comí
- Department of Chemistry, Texas A&M University at QatarEducation City, P. O. Box 23874DohaQatar
| | - Mohammed Al-Hashimi
- Department of Chemistry, Texas A&M University at QatarEducation City, P. O. Box 23874DohaQatar
| | - Tracey M. Clarke
- Department of Chemistry, University College LondonChristopher Ingold BuildingLondon WC1H 0AJUK
| |
Collapse
|
39
|
Kim M, Hong S, Jeong J, Hong S. Visible-Light-Active Coumarin- and Quinolinone-Based Photocatalysts and Their Applications in Chemical Transformations. CHEM REC 2023:e202200267. [PMID: 36627191 DOI: 10.1002/tcr.202200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Indexed: 01/12/2023]
Abstract
Organic dyes have been actively studied as useful photocatalysts because they allow access to versatile structural flexibility and green synthetic applications. The identification of a new class of robust organic chromophores is, therefore, in high demand to increase structural diversity and variability. Although coumarins and quinolinones have long been acknowledged as organic chromophores, their ability to participate in photoinduced transformations is somewhat less familiar. Fascinated by their chromophoric features and adaptable platform, our group is interested in the identification of fluorescent bioactive molecules and in the development of new photoinduced synthetic methods using coumarins and quinolinones as photocatalysts. This account provides an overview of our recent progress in the discovery and application of light-absorbing coumarin and quinolinone derivatives in photochemistry and medicinal chemistry.
Collapse
Affiliation(s)
- Myojeong Kim
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonghyeok Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jinwook Jeong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea.,Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
40
|
Dulov DA, Bogdanov AV, Dorofeev SG, Magdesieva TV. N, N'-Diaryldihydrophenazines as a Sustainable and Cost-Effective Alternative to Precious Metal Complexes in the Photoredox-Catalyzed Alkylation of Aryl Alkyl Ketones. Molecules 2022; 28:221. [PMID: 36615415 PMCID: PMC9822323 DOI: 10.3390/molecules28010221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
An inexpensive and highly efficient metal-free alternative to commonly used Ru- and Ir-based catalysts was proposed. It was shown that the new 2,7-di-tert-butyl-5,10-bis(4-trifluoromethylphenyl)-5,10-dihydrophenazine outcompeted the iridium phenylpyridyl complex in photoredox activity in the alkylation of silyl enol ethers yielding aryl alkyl ketones. The reaction occurred under visible light irradiation at room temperature and was also applicable to drug derivatives (ibuprofen and naproxen). In-depth photophysical, electrochemical, and quantum chemical studies showed that the aforementioned N,N-diaryldihydrophenazine exhibited enhanced properties that were essential for the photoredox catalysis (a long-lived triplet excited state, strong reducing ability, high stability of the radical cations formed in single-electron-transfer event, and chemical inertness of the catalyst with respect to reactants). Importantly, the substituted N,N'-diaryldihydrophenazines could be obtained directly from diaryl amines; a facile, easily handled and scaled-up one-pot synthetic procedure was elaborated.
Collapse
Affiliation(s)
- Dmitry A Dulov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Alexey V Bogdanov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Sergey G Dorofeev
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Tatiana V Magdesieva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
41
|
Kundu S, Roy L, Maji MS. Development of Carbazole-Cored Organo-Photocatalyst for Visible Light-Driven Reductive Pinacol/Imino-Pinacol Coupling. Org Lett 2022; 24:9001-9006. [PMID: 36469513 DOI: 10.1021/acs.orglett.2c03600] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Benzoperylenocarbazole (BPC), a unique carbazole-based organophotocatalyst, is reported herein as a potent organo-photoreductant. Lower excited state oxidation potential (-2.0 V vs SCE) and reasonable excited state lifetime (4.61 ns) render BPC an effective photosensitizer. Under irradiation of blue light employing low catalyst loading (0.5 mol %), a plethora of vicinal diols and diamines were synthesized in excellent yields through reductive coupling of carbonyls and imines, respectively. Insight about the electronic structure of BPC was obtained by DFT calculations.
Collapse
Affiliation(s)
- Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
42
|
Morofuji T, Kurokawa T, Chitose Y, Adachi C, Kano N. Trifluoromethylated thermally activated delayed fluorescence molecule as a versatile photocatalyst for electron-transfer- and energy-transfer-driven reactions. Org Biomol Chem 2022; 20:9600-9603. [PMID: 36412506 DOI: 10.1039/d2ob02055f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this study, we propose that the trifluoromethylated thermally activated delayed fluorescent molecule 4[Cz(CF3)2]IPN is a versatile organic photocatalyst that can be used for electron-transfer-driven reactions requiring a photocatalyst with high oxidizing power and energy-transfer-driven reactions that require an Ir photocatalyst. 4[Cz(CF3)2]IPN was used in radical reactions via electron transfer and dearomative cycloaddition reactions via energy transfer.
Collapse
Affiliation(s)
- Tatsuya Morofuji
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Takuma Kurokawa
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| | - Youhei Chitose
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.,Department of Applied Chemistry, Graduate School of Engineering, Center for Molecular Systems (CMS), Kyushu University, Fukuoka 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395, Japan.,International Institute for Carbon Neutral Energy Research (I2CNER), Kyushu University, Fukuoka 819-0395, Japan
| | - Naokazu Kano
- Department of Chemistry, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan.
| |
Collapse
|
43
|
Malakar CC, Dell'Amico L, Zhang W. Dual Catalysis in Organic Synthesis: Current Challenges and New Trends. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chandi C. Malakar
- Department of Chemistry National Institute of Technology Manipur Langol Imphal 795004 Manipur India
| | - Luca Dell'Amico
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
44
|
Mandal T, Mallick S, Kumari N, De Sarkar S. Visible-Light-Mediated Synthesis of Phenanthrenes through Successive Photosensitization and Photoredox by a Single Organocatalyst. Org Lett 2022; 24:8452-8457. [DOI: 10.1021/acs.orglett.2c03612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Samrat Mallick
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Nidhi Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, West Bengal, India
| |
Collapse
|
45
|
Katayama Y, Mitsunuma H, Kanai M. Lewis Acid-Conjugated Pyrene Photoredox Catalyst Promoting the Addition Reaction of α-Silyl Amines with Benzalmalononitriles. Chem Pharm Bull (Tokyo) 2022; 70:765-768. [DOI: 10.1248/cpb.c22-00526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuri Katayama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | | | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
46
|
Zeng FL, Zhang ZY, Yin PC, Cheng FK, Chen XL, Qu LB, Cao ZY, Yu B. Visible-Light-Induced Cascade Cyclization of 3-(2-(Ethynyl)phenyl)quinazolinones to Phosphorylated Quinolino[2,1- b]quinazolinones. Org Lett 2022; 24:7912-7917. [PMID: 36269864 DOI: 10.1021/acs.orglett.2c02930] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-(2-(Ethynyl)phenyl)quinazolinones were designed and synthesized as a class of novel and efficient skeletons for phosphorylation/cyclization reactions. Under visible light irradiation, a series of phosphorylated quinolino[2,1-b]quinazolinones (35 examples, up to 87% yield) were first synthesized from 3-(2-(ethynyl)phenyl)quinazolinones and diarylphosphine oxides by using 4CzIPN as a photocatalyst under mild conditions. This reaction was also applicable under sunlight irradiation. Moreover, the reaction efficiency could be significantly improved under continuous-flow conditions.
Collapse
Affiliation(s)
- Fan-Lin Zeng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhi-Yang Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Peng-Cheng Yin
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Fu-Kun Cheng
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao-Lan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Ling-Bo Qu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
47
|
Exploiting photoredox catalysis for carbohydrate modification through C–H and C–C bond activation. Nat Rev Chem 2022; 6:782-805. [PMID: 37118094 DOI: 10.1038/s41570-022-00422-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2022] [Indexed: 11/09/2022]
Abstract
Photoredox catalysis has recently emerged as a powerful synthetic platform for accessing complex chemical structures through non-traditional bond disconnection strategies that proceed through free-radical intermediates. Such synthetic strategies have been used for a range of organic transformations; however, in carbohydrate chemistry they have primarily been applied to the generation of oxocarbenium ion intermediates in the ubiquitous glycosylation reaction. In this Review, we present more intricate light-induced synthetic strategies to modify native carbohydrates through homolytic C-H and C-C bond cleavage. These strategies allow access to glycans and glycoconjugates with profoundly altered carbohydrate skeletons, which are challenging to obtain through conventional synthetic means. Carbohydrate derivatives with such structural motifs represent a broad class of natural products integral to numerous biochemical processes and can be found in active pharmaceutical substances. Here we present progress made in C-H and C-C bond activation of carbohydrates through photoredox catalysis, focusing on the operational mechanisms and the scope of the described methodologies.
Collapse
|
48
|
Hydrotrifluoromethylation of Styrene and Phenylacetylene Derivatives under Visible-Light Photoredox Conditions. CHEMISTRY 2022. [DOI: 10.3390/chemistry4030068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Photoredox processes have emerged recently as a powerful tool for methodology developments. In this context, the hydrotrifluoromethylation of alkenes and alkynes using visible light photoredox methodologies has proven its efficiency these last years. This micro-review summarizes the latest developments in this field.
Collapse
|
49
|
Funabiki K, Yamada K, Arisawa Y, Watanabe A, Agou T, Kubota Y, Inuzuka T, Miwa Y, Udagawa T, Kutsumizu S. Design, Regioselective Synthesis, and Photophysical Properties of Perfluoronaphthalene-Based Donor-Acceptor-Donor Fluorescent Dyes. J Org Chem 2022; 87:11751-11765. [PMID: 36001449 DOI: 10.1021/acs.joc.2c01446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A one-step route to a series of perfluoronaphthalene-based donor (D)-acceptor (A)-D fluorescent dyes with various electron-donating groups was developed. The perfluoronaphthalene moiety in the D-A-D dyes served as a good electron-accepting aromatic ring with excellent intramolecular charge transfer properties, as determined by density functional theory calculations and measurements of the fluorescence properties in solution, in poly(methyl methacrylate) (PMMA) films, and in crystal form. Notably, replacing the naphthalene ring with perfluoronaphthalene in the D-A-D dyes carrying the phenothiazine moiety not only stabilized the highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels but also reduced the energy band gap to change the emission color from blue to yellow. Among the four synthesized perfluoronaphthalene D-A-D dyes, those bearing diphenylamino groups afforded the best fluorescence quantum yields in Et2O solution (0.60) and in PMMA film (0.65) because the propeller structure of the diphenylamino group that acts as a donor substituent effectively suppresses radiation-free deactivation. In contrast, in the crystalline state, the carbazoyl-bearing D-A-D dye provided the best fluorescence quantum yield (0.35) because the radiation-free inactivation was suppressed by π-πF stacking at the donor site, which was confirmed by single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Kazumasa Funabiki
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Kengo Yamada
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Yuta Arisawa
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Arina Watanabe
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Tomohiro Agou
- Department of Biomolecular Functional Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi 316-8511, Japan
| | - Yasuhiro Kubota
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yohei Miwa
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Taro Udagawa
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Shoichi Kutsumizu
- Department of Chemistry and Biomolecular Science, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
50
|
Yang Z, Chen J, Liao S. Monophosphoniums as Effective Photoredox Organocatalysts for Visible Light-Regulated Cationic RAFT Polymerization. ACS Macro Lett 2022; 11:1073-1078. [PMID: 35984378 DOI: 10.1021/acsmacrolett.2c00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Visible light-regulated metal-free polymerizations have attracted considerable attention for macromolecular syntheses in recent years. However, few organic photocatalysts show high efficiency and strict photocontrol in cationic polymerizations. Herein, we introduce monophosphonium-doped polycyclic arenes as an organic photocatalyst, which features the high tunability, broad redox window, long excited state lifetime, and excellent temporal control in the cationic reversible addition-fragmentation chain transfer polymerization of vinyl ethers. A correlation of the catalytic performance and the photophysical and electrochemical properties of photocatalysts is also discussed.
Collapse
Affiliation(s)
- Zan Yang
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jianxu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|