1
|
Song C, Bai X, Li B, Dang Y, Yu S. Photoexcited Palladium-Catalyzed Deracemization of Allenes. J Am Chem Soc 2024. [PMID: 39024194 DOI: 10.1021/jacs.4c07126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The different enantiomers of specific chiral molecules frequently exhibit disparate biological, physiological, or pharmacological properties. Therefore, the efficient synthesis of single enantiomers is of particular importance not only to the pharmaceutical sector but also to other industrial sectors, such as agrochemical and fine chemical industries. Deracemization, a process during which a racemic mixture is converted into a nonracemic product with 100% atom economy and theoretical yield, is the most straightforward method to access enantioenriched molecules but a challenging task due to a decrease in entropy and microscopic reversibility. Axially chiral allenes bear a distinctive structure of two orthogonal cumulative π-systems and are acknowledged as synthetically versatile synthons in organic synthesis. The selective creation of axially chiral allenes with high optical purity under mild reaction conditions has always been a very popular and hot topic in organic synthesis but remains challenging. Herein, a photoexcited palladium-catalyzed deracemization of nonprefunctionalized disubstituted allenes is disclosed. This method provides an efficient and economical strategy to accommodate a broad scope of allenes with good enantioselectivities and yields (53 examples, up to 96% yield and 95% ee). The use of a suitable chiral palladium complex with visible light irradiation is an essential factor in achieving this transformation. A metal-to-ligand charge transfer mechanism was proposed based on control experiments and density functional theory calculations. Quantum mechanical studies implicate dual modes of asymmetric induction behind our new protocol: (1) sterically controlled stereoselective binding of one allene enantiomer under the ground-state and (2) facile, noncovalent interaction-driven excited-state isomerization toward the opposite enantiomer. The success of this newly established photochemical deracemization strategy should provide inspiration for expansion to other multisubstituted allenes and will open up a new mode for enantioselective excited-state palladium catalysis.
Collapse
Affiliation(s)
- Changhua Song
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiangbin Bai
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bo Li
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
2
|
Mendel M, Karl TM, Hamm J, Kaldas SJ, Sperger T, Mondal B, Schoenebeck F. Dynamic stereomutation of vinylcyclopropanes with metalloradicals. Nature 2024; 631:80-86. [PMID: 38898284 PMCID: PMC11222138 DOI: 10.1038/s41586-024-07555-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/10/2024] [Indexed: 06/21/2024]
Abstract
The ever increasing demands for greater sustainability and lower energy usage in chemical processes call for fundamentally new approaches and reactivity principles. In this context, the pronounced prevalence of odd-oxidation states in less precious metals bears untapped potential for fundamentally distinct reactivity modes via metalloradical catalysis1-3. Contrary to the well-established reactivity paradigm that organic free radicals, upon addition to a vinylcyclopropane, lead to rapid ring opening under strain release-a transformation that serves widely as a mechanistic probe (radical clock)4 for the intermediacy of radicals5-we herein show that a metal-based radical, that is, a Ni(I) metalloradical, triggers reversible cis/trans isomerization instead of opening. The isomerization proceeds under chiral inversion and, depending on the substitution pattern, occurs at room temperature in less than 5 min, requiring solely the addition of the non-precious catalyst. Our combined computational and experimental mechanistic studies support metalloradical catalysis as origin of this profound reactivity, rationalize the observed stereoinversion and reveal key reactivity features of the process, including its reversibility. These insights enabled the iterative thermodynamic enrichment of enantiopure cis/trans mixtures towards a single diastereomer through multiple Ni(I) catalysis rounds and also extensions to divinylcyclopropanes, which constitute strategic motifs in natural product- and total syntheses6. While the trans-isomer usually requires heating at approximately 200 °C to trigger thermal isomerization under racemization to cis-divinylcyclopropane, which then undergoes facile Cope-type rearrangement, the analogous contra-thermodynamic process is herein shown to proceed under Ni(I) metalloradical catalysis under mild conditions without any loss of stereochemical integrity, enabling a mild and stereochemically pure access to seven-membered rings, fused ring systems and spirocycles.
Collapse
Affiliation(s)
- Marvin Mendel
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Teresa M Karl
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Jegor Hamm
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Sherif J Kaldas
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Theresa Sperger
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | - Bhaskar Mondal
- Institute of Organic Chemistry, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
3
|
Zhao Y, Voloshkin VA, Martynova EA, Maity B, Cavallo L, Nolan SP. Synthesis of cyclohepta[ b]indoles via gold mediated energy transfer photocatalysis. Chem Commun (Camb) 2024; 60:3174-3177. [PMID: 38411538 DOI: 10.1039/d4cc00379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Photocatalysis involving energy transfer (EnT) has become a valuable technique for building intricate organic frameworks mostly through [2+2]-cycloaddition reactions. Herein, we report a synthetic method leading to functionalized cyclohepta[b]indoles, an important structural motif in natural products and pharmaceuticals, using gold-mediated energy transfer photocatalysis. The scope of this operationally simple and atom-economical strategy is presented. Density functional theory studies were employed in order to gain insights into the mechanism of formation of the cyclohepta[b]indole core.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Vladislav A Voloshkin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Ekaterina A Martynova
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Bholanath Maity
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| |
Collapse
|
4
|
Zhang J, Wang K, Zhu C. Deracemization of Atropisomeric Biaryls Enabled by Copper Catalysis. JACS AU 2024; 4:502-511. [PMID: 38425940 PMCID: PMC10900502 DOI: 10.1021/jacsau.3c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 03/02/2024]
Abstract
Atropisomeric biaryls have found crucial applications in versatile chiral catalysts as well as in ligands for transition metals. Herein, we have developed an efficient crystallization-induced deracemization (CID) method to access chiral biaryls from their racemates with a chiral ammonium salt under copper catalysis including BINOL, NOBIN, and BINAM derivatives. After being significantly accelerated by its bidentate diamine ligand, the copper catalyst exhibits high efficiency and selectivity in racemizing biaryl skeletons, and the cocrystal complex would be enantioselectively formed together with chiral ammonium salt, which on acid-quenching would directly deliver chiral biaryl without further chromatographic purification. This CID process is easily scalable, and the chiral ammonium salt was nicely recoverable. Ligand effect studies showed that bulky alkyl substitution was an indispensable element to ensure efficient racemization, which probably proceeds via a radical-cation intermediate and further allows axial rotation by forming a delocalized radical.
Collapse
Affiliation(s)
| | | | - Can Zhu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
5
|
Dutta S, Erchinger JE, Strieth-Kalthoff F, Kleinmans R, Glorius F. Energy transfer photocatalysis: exciting modes of reactivity. Chem Soc Rev 2024; 53:1068-1089. [PMID: 38168974 DOI: 10.1039/d3cs00190c] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Excited (triplet) states offer a myriad of attractive synthetic pathways, including cycloadditions, selective homolytic bond cleavages and strain-release chemistry, isomerizations, deracemizations, or the fusion with metal catalysis. Recent years have seen enormous advantages in enabling these reactivity modes through visible-light-mediated triplet-triplet energy transfer catalysis (TTEnT). This tutorial review provides an overview of this emerging strategy for synthesizing sought-after organic motifs in a mild, selective, and sustainable manner. Building on the photophysical foundations of energy transfer, this review also discusses catalyst design, as well as the challenges and opportunities of energy transfer catalysis.
Collapse
Affiliation(s)
- Subhabrata Dutta
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Johannes E Erchinger
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Felix Strieth-Kalthoff
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Roman Kleinmans
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| | - Frank Glorius
- University of Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
6
|
Großkopf J, Bach T. Catalytic Photochemical Deracemization via Short-Lived Intermediates. Angew Chem Int Ed Engl 2023; 62:e202308241. [PMID: 37428113 DOI: 10.1002/anie.202308241] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Upon irradiation in the presence of a suitable chiral catalyst, racemic compound mixtures can be converted into enantiomerically pure compounds with the same constitution. The process is called photochemical deracemization and involves the formation of short-lived intermediates. By opening different reaction channels for the forward reaction to the intermediate and for the re-constitution of the chiral molecule, the entropically disfavored process becomes feasible. Since the discovery of the first photochemical deracemization in 2018, the field has been growing rapidly. This review comprehensively covers the research performed in the area and discusses current developments. It is subdivided according to the mode of action and the respective substrate classes. The focus of this review is on the scope of the individual reactions and on a discussion of the mechanistic details underlying the presented reaction.
Collapse
Affiliation(s)
- Johannes Großkopf
- School of Natural Sciences, Technische Universität München, Department Chemie and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| | - Thorsten Bach
- School of Natural Sciences, Technische Universität München, Department Chemie and Catalysis Research Center (CRC), Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
7
|
Nguyen TVT, Bossonnet A, Wodrich MD, Waser J. Photocatalyzed [2σ + 2σ] and [2σ + 2π] Cycloadditions for the Synthesis of Bicyclo[3.1.1]heptanes and 5- or 6-Membered Carbocycles. J Am Chem Soc 2023; 145:25411-25421. [PMID: 37934629 DOI: 10.1021/jacs.3c09789] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
We report the use of photocatalysis for the homolytic ring-opening of carbonyl cyclopropanes. In contrast to previous studies, our approach does not require a metal cocatalyst or a strong reductant. The carbonyl cyclopropanes can be employed for both [2σ + 2σ] and [2σ + 2π] annulation with either alkenes/alkynes or bicyclo[1.1.0]butanes, yielding cyclopent-anes/-enes and bicyclo[3.1.1]heptanes (BCHs), respectively. BCHs are promising bioisosteres for 1,2,4,5 tetra-substituted aromatic rings. Mechanistic studies, including density functional theory computation and a trapping experiment with DMPO, support a 1,3-biradical generated from cyclopropane as a key intermediate for these transformations.
Collapse
Affiliation(s)
- Tin V T Nguyen
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - André Bossonnet
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - Matthew D Wodrich
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemistry and Chemical Engineering, Ecole Polytechnique Federale de Lausanne, Lausanne Ch-1015, Switzerland
| |
Collapse
|
8
|
Großkopf J, Plaza M, Kutta RJ, Nuernberger P, Bach T. Creating a Defined Chirality in Amino Acids and Cyclic Dipeptides by Photochemical Deracemization. Angew Chem Int Ed Engl 2023; 62:e202313606. [PMID: 37793026 DOI: 10.1002/anie.202313606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/06/2023]
Abstract
2,5-Diketopiperazines are cyclic dipeptides displaying a wide range of applications. Their enantioselective preparation has now been found possible from the respective racemates by a photochemical deracemization (53 examples, 74 % to quantitative yield, 71-99 % ee). A chiral benzophenone catalyst in concert with irradiation at λ=366 nm enables to establish the configuration at the stereogenic carbon atom C6 at will. If other stereogenic centers are present in the diketopiperazines they remain unaffected and a stereochemical editing is possible at a single position. Consecutive reactions, including the conversion into N-aryl or N-alkyl amino acids or the reduction to piperazines, occur without compromising the newly created stereogenic center. Transient absorption spectroscopy revealed that the benzophenone catalyst processes one enantiomer of the 2,5-diketopiperazines preferentially and enables a reversible hydrogen atom transfer that is responsible for the deracemization process. The remarkably long lifetime of the protonated ketyl radical implies a yet unprecedented mode of action.
Collapse
Affiliation(s)
- Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| | - Manuel Plaza
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| | - Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, D-93053, Regensburg, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747, Garching, Germany
| |
Collapse
|
9
|
Wen L, Ding J, Duan L, Wang S, An Q, Wang H, Zuo Z. Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols. Science 2023; 382:458-464. [PMID: 37883537 DOI: 10.1126/science.adj0040] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2023] [Indexed: 10/28/2023]
Abstract
Stereochemical enrichment of a racemic mixture by deracemization must overcome unfavorable entropic effects as well as the principle of microscopic reversibility; recently, photochemical reaction pathways unveiled by the energetic input of light have led to innovations toward this end, most often by ablation of a stereogenic C(sp3)-H bond. We report a photochemically driven deracemization protocol in which a single chiral catalyst effects two mechanistically different steps, C-C bond cleavage and C-C bond formation, to achieve multiplicative enhancement of stereoinduction, which leads to high levels of stereoselectivity. Ligand-to-metal charge transfer excitation of a titanium catalyst coordinated by a chiral phosphoric acid or bisoxazoline efficiently enriches racemic alcohols that feature adjacent and fully substituted stereogenic centers to enantiomeric ratios up to 99:1. Mechanistic investigations support a pathway of sequential radical-mediated bond scission and bond formation through a common prochiral intermediate and reveal that, although the overall stereoenrichment is high, the selectivity in each individual step is moderate.
Collapse
Affiliation(s)
- Lu Wen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hexiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Kim SF, Sarpong R. Interconverting mirror-image molecules. Science 2023; 382:373-374. [PMID: 37883536 DOI: 10.1126/science.adk7116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
A light-driven multitasking catalyst enhances chirality in molecular mixtures.
Collapse
Affiliation(s)
- Sojung F Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
11
|
Zähringer TJB, Wienhold M, Gilmour R, Kerzig C. Direct Observation of Triplet States in the Isomerization of Alkenylboronates by Energy Transfer Catalysis. J Am Chem Soc 2023; 145:21576-21586. [PMID: 37729087 DOI: 10.1021/jacs.3c07678] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Alkenylboronates are versatile building blocks for stereocontrolled synthesis owing to the traceless nature of the boron group that can be leveraged to achieve highly selective geometric isomerization. Using thioxanthone as an inexpensive photocatalyst, the photoisomerization of these species continues to provide an expansive platform for stereodivergent synthesis, particularly in the construction of bioactive polyenes. Although mechanistic investigations are consistent with light-driven energy transfer, direct experimental evidence remains conspicuously absent. Herein, we report a rigorous mechanistic investigation using two widely used alkenylboronates alongside relevant reference compounds. Through the combination of irradiation experiments, transient absorption spectroscopic studies, kinetic modeling, and DFT calculations with all isomers of the model compounds, it has been possible to unequivocally detect and characterize the perpendicular triplet generated by energy transfer. Our results serve not only as a blueprint for mechanistic studies that are challenging with organic sensitizers, but these guidelines delineated have also enabled the development of more sustainable reaction conditions: for the first time, efficient organocatalytic isomerization under sunlight irradiation has become feasible.
Collapse
Affiliation(s)
- Till J B Zähringer
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Max Wienhold
- Organisch-Chemisches Institut,Westfälische Wilhelms-Universität Münster, Correnstraβe 36, 48149 Münster, Germany
| | - Ryan Gilmour
- Organisch-Chemisches Institut,Westfälische Wilhelms-Universität Münster, Correnstraβe 36, 48149 Münster, Germany
- Cells in Motion (CiM) Interfaculty Center, Röntgenstraβe 16, 48149 Münster, Germany
| | - Christoph Kerzig
- Department of Chemistry, Johannes Gutenberg University Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
12
|
Onneken C, Morack T, Soika J, Sokolova O, Niemeyer N, Mück-Lichtenfeld C, Daniliuc CG, Neugebauer J, Gilmour R. Light-enabled deracemization of cyclopropanes by Al-salen photocatalysis. Nature 2023; 621:753-759. [PMID: 37612509 PMCID: PMC10533403 DOI: 10.1038/s41586-023-06407-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 07/05/2023] [Indexed: 08/25/2023]
Abstract
Privileged chiral catalysts-those that share common structural features and are enantioselective across a range of reactions-continue to transform the chemical-research landscape1. In recent years, new reactivity modes have been achieved through excited-state catalysis, processes activated by light, but it is unclear if the selectivity of ground-state privileged catalysts can be matched. Although the interception of photogenerated intermediates by ground-state cycles has partially addressed this challenge2, single, chiral photocatalysts that simultaneously regulate reactivity and selectivity are conspicuously scarce3. So far, precision donor-acceptor recognition motifs remain crucial in enantioselective photocatalyst design4. Here we show that chiral Al-salen complexes, which have well-defined photophysical properties, can be used for the efficient photochemical deracemization5 of cyclopropyl ketones (up to 98:2 enantiomeric ratio (e.r.)). Irradiation at λ = 400 nm (violet light) augments the reactivity of the commercial catalyst to enable reactivity and enantioselectivity to be regulated simultaneously. This circumvents the need for tailored catalyst-substrate recognition motifs. It is predicted that this study will stimulate a re-evaluation of many venerable (ground-state) chiral catalysts in excited-state processes, ultimately leading to the identification of candidates that may be considered 'privileged' in both reactivity models.
Collapse
Affiliation(s)
- Carina Onneken
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Tobias Morack
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Julia Soika
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Olga Sokolova
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Niklas Niemeyer
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Christian Mück-Lichtenfeld
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Constantin G Daniliuc
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany
| | - Johannes Neugebauer
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
| | - Ryan Gilmour
- Institute of Organic Chemistry, Westfälische Wilhelms-Universität (WWU) Münster, Münster, Germany.
| |
Collapse
|
13
|
Abstract
Deracemization, which converts a racemate into its single enantiomer without separation of the intermediate, has gained renewed interest in asymmetric synthesis with its inherent atomic economy and high efficiency. However, this ideal process requires selective energy input and delicate reaction design to surmount the thermodynamical and kinetical constraints. With the rapid development of asymmetric catalysis, many catalytic strategies in concert with exogenous energy input have been exploited to facilitate this nonspontaneous enantioenrichment. In this perspective, we will discuss the basic ideas to accomplish catalytic deracemization, categorized by the three major exogenous energy sources including chemical (redox)-, photo- and mechanical energy from attrition. Emphasis will be given to the catalytic features and the underlying deracemization mechanism together with perspectives on future development.
Collapse
Affiliation(s)
- Mouxin Huang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Department of Medicinal Chemistry, Third Military of Medical University, Chongqing 400038, China
| | - Tianrun Pan
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xieyang Jiang
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Sanzhong Luo
- Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
14
|
Guillet SG, Logvinov AA, Voloshkin VA, Martynova EA, Nolan SP. Access to Azetidines via Gold Mediated Energy Transfer Photocatalysis. Org Lett 2023; 25:1403-1408. [PMID: 36847204 DOI: 10.1021/acs.orglett.3c00136] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The area of energy transfer photocatalysis to generate four-membered rings is experiencing an unprecedented level of activity. Here, we report an operationally simple method toward azetidines from 2-isoxasoline-3-carboxylates and alkenes, using [Au(cbz)(NHC)] complexes as photocatalysts. The procedure enables the reaction for a wide range of substrates. Mechanistic studies confirm the energy transfer pathway. This contribution adds to the earlier reported use of these gold catalysts as a potentially versatile tool in energy transfer chemistry and catalysis.
Collapse
Affiliation(s)
- Sébastien G Guillet
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Campus Sterre, Building S-3, Krijgslaan 281, 9000 Ghent, Belgium
| | - Aleksei A Logvinov
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Campus Sterre, Building S-3, Krijgslaan 281, 9000 Ghent, Belgium
| | - Vladislav A Voloshkin
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Campus Sterre, Building S-3, Krijgslaan 281, 9000 Ghent, Belgium
| | - Ekaterina A Martynova
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Campus Sterre, Building S-3, Krijgslaan 281, 9000 Ghent, Belgium
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry, Ghent University, Campus Sterre, Building S-3, Krijgslaan 281, 9000 Ghent, Belgium
| |
Collapse
|
15
|
Chen Q, Zhu Y, Shi X, Huang R, Jiang C, Zhang K, Liu G. Light-driven redox deracemization of indolines and tetrahydroquinolines using a photocatalyst coupled with chiral phosphoric acid. Chem Sci 2023; 14:1715-1723. [PMID: 36819858 PMCID: PMC9930931 DOI: 10.1039/d2sc06340a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/09/2023] [Indexed: 01/11/2023] Open
Abstract
The integration of oxidation and enantioselective reduction enables a redox deracemization to directly access enantioenriched products from their corresponding racemates. However, the solution of the kinetically microscopic reversibility of substrates used in this oxidation/reduction unidirectional event is a great challenge. To address this issue, we have developed a light-driven strategy to enable an efficient redox deracemization of cyclamines. The method combines a photocatalyst and a chiral phosphoric acid in a toluene/aqueous cyclodextrin emulsion biphasic co-solvent system to drive the cascade out-of-equilibrium. Systemic optimizations achieve a feasible oxidation/reduction cascade sequence, and mechanistic investigations demonstrate a unidirectional process. This single-operation cascade route, which involves initial photocatalyzed oxidation of achiral cyclamines to cyclimines and subsequent chiral phosphoric acid-catalyzed enantioselective reduction of cyclimines to chiral cyclamines, is suitable for constructing optically pure indolines and tetrahydroquinolines.
Collapse
Affiliation(s)
- Qipeng Chen
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Yuanli Zhu
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Xujing Shi
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Renfu Huang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Chuang Jiang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Kun Zhang
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| | - Guohua Liu
- International Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University Shanghai 200234 P. R. China
| |
Collapse
|
16
|
Kutta RJ, Großkopf J, van Staalduinen N, Seitz A, Pracht P, Breitenlechner S, Bannwarth C, Nuernberger P, Bach T. Multifaceted View on the Mechanism of a Photochemical Deracemization Reaction. J Am Chem Soc 2023; 145:2354-2363. [PMID: 36660908 DOI: 10.1021/jacs.2c11265] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Upon irradiation in the presence of a chiral benzophenone catalyst (5 mol %), a racemic mixture of a given chiral imidazolidine-2,4-dione (hydantoin) can be converted almost quantitatively into the same compound with high enantiomeric excess (80-99% ee). The mechanism of this photochemical deracemization reaction was elucidated by a suite of mechanistic experiments. It was corroborated by nuclear magnetic resonance titration that the catalyst binds the two enantiomers by two-point hydrogen bonding. In one of the diastereomeric complexes, the hydrogen atom at the stereogenic carbon atom is ideally positioned for hydrogen atom transfer (HAT) to the photoexcited benzophenone. Detection of the protonated ketyl radical by transient absorption revealed hydrogen abstraction to occur from only one but not from the other hydantoin enantiomer. Quantum chemical calculations allowed us to visualize the HAT within this complex and, more importantly, showed that the back HAT does not occur to the carbon atom of the hydantoin radical but to its oxygen atom. The achiral enol formed in this process could be directly monitored by its characteristic transient absorption signal at λ ≅ 330 nm. Subsequent tautomerization leads to both hydantoin enantiomers, but only one of them returns to the catalytic cycle, thus leading to an enrichment of the other enantiomer. The data are fully consistent with deuterium labeling experiments and deliver a detailed picture of a synthetically useful photochemical deracemization reaction.
Collapse
Affiliation(s)
- Roger Jan Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, RegensburgD-93053, Germany
| | - Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747Garching, Germany
| | - Nils van Staalduinen
- Institut für Physikalische Chemie, RWTH Aachen University, D-52074Aachen, Germany
| | - Antonia Seitz
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747Garching, Germany
| | - Philipp Pracht
- Institut für Physikalische Chemie, RWTH Aachen University, D-52074Aachen, Germany.,Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Stefan Breitenlechner
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747Garching, Germany
| | - Christoph Bannwarth
- Institut für Physikalische Chemie, RWTH Aachen University, D-52074Aachen, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, RegensburgD-93053, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), School of Natural Sciences, Technische Universität München, D-85747Garching, Germany
| |
Collapse
|
17
|
Abstract
Creating, conserving and modifying the stereochemistry of organic compounds has been the subject of significant research efforts in synthetic chemistry. Most synthetic routes are designed according to the stereoselectivity-determining step. Stereochemical editing is an alternative strategy, wherein the chiral-defining or geometry-defining steps are independent of the construction of the major scaffold or complexity. It enables late-stage alterations of stereochemistry and can generate isomers from a single compound. However, in many instances, stereochemical editing processes are contra-thermodynamic, meaning the transformation is unfavourable. To overcome this barrier, photocatalysis uses photogenerated radical species and introduces thermochemical biases. A range of synthetically valuable contra-thermodynamic stereochemical editing processes have been invented, including deracemization of chiral molecules, positional alkene isomerization and dynamic epimerization of sugars and diols. In this Review, we highlight the fundamental mechanisms of visible-light photocatalysis and the general reactivity modes of the photogenerated radical intermediates towards contra-thermodynamic stereochemical editing processes.
Collapse
|
18
|
Schmidt TA, Sparr C. Photocatalytic deracemisation of cobalt(III) complexes with fourfold stereogenicity. Chem Commun (Camb) 2022; 58:12172-12175. [PMID: 36254723 PMCID: PMC9623447 DOI: 10.1039/d2cc05196f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/05/2022] [Indexed: 08/25/2023]
Abstract
The deracemisation of fourfold stereogenic cobalt(III) diketonates with a chiral photocatalyst is described. With only 0.5 mol% menthyl Ru(bpy)32+ photocatalyst, an enantiomeric enrichment of up to 88 : 12 e.r. was obtained for the major meridional diastereomers. Moreover, a distribution of configurationally stable diastereomers distinct from the thermodynamic ratio was observed upon reaching the photostationary state.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel CH-4056, Switzerland.
| | - Christof Sparr
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, Basel CH-4056, Switzerland.
| |
Collapse
|
19
|
Liu J, Hao T, Qian L, Shi M, Wei Y. Construction of Benzocyclobutenes Enabled by Visible‐Light‐Induced Triplet Biradical Atom Transfer of Olefins. Angew Chem Int Ed Engl 2022; 61:e202204515. [DOI: 10.1002/anie.202204515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jiaxin Liu
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- CAS Key Laboratory of Energy Regulation Materials Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Tonggang Hao
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Ling Qian
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Min Shi
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- Key Laboratory for Advanced Materials & Institute of Fine Chemicals Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center School of Chemistry & Molecular Engineering East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry University of Chinese Academy of Sciences Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
20
|
Liu J, Hao T, Qian L, Shi M, Wei Y. Construction of Benzocyclobutenes Enabled by Visible‐Light‐Induced Triplet Biradical Atom Transfer of Olefins. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jiaxin Liu
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry Shanghai CHINA
| | - Tonggang Hao
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry Shanghai CHINA
| | - Ling Qian
- East China University of Science and Technology School of Chemistry & Molecular Engineering Shanghai CHINA
| | - Min Shi
- Shanghai Institute of Organic Chemistry State Key Laboratory of Organometallic Chemistry Shanghai CHINA
| | - Yin Wei
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences State Key Laboratory of Organometallic Chemistry 345 Lingling Road 200032 Shanghai CHINA
| |
Collapse
|
21
|
DeHovitz JS, Hyster TK. Photoinduced Dynamic Radical Processes for Isomerizations, Deracemizations, and Dynamic Kinetic Resolutions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jacob S. DeHovitz
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Todd K. Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
22
|
Zhang H, Huang C, Yuan XA, Yu S. Photoexcited Chiral Copper Complex-Mediated Alkene E → Z Isomerization Enables Kinetic Resolution. J Am Chem Soc 2022; 144:10958-10967. [PMID: 35675512 DOI: 10.1021/jacs.2c04040] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
While asymmetric synthesis has been established as a powerful synthetic tool for the construction of versatile enantioenriched molecules in the most efficient and practical manner, the resolution of racemates is still the most universal industrial approach to the synthesis of chiral compounds. However, the direct formation of enantiopure Z-isomers through the catalytic nonenzymatic kinetic resolution of racemic E-alkenes remains challenging. Herein, we disclose an unprecedented enantioselective E → Z isomerization mediated by a photoexcited chiral copper complex. This catalytic system enables kinetic resolution of 2-styrylpyrrolidines. This process is difficult to realize under thermal conditions. Mechanistic experiments and density functional theory (DFT) calculations revealed that different overall sensitization rates of the substrate-catalyst complex of the two enantiomers led to the observed excellent kinetic resolution efficiency. This photochemical transformation expands the potential of kinetic resolution beyond their established ground-state reactivity, furnishing a novel reaction mode for enantioselective catalysis at its excited state.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Congcong Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
23
|
Martynova EA, Voloshkin VA, Guillet SG, Bru F, Beliš M, Van Hecke K, Cazin CSJ, Nolan SP. Energy transfer (EnT) photocatalysis enabled by gold-N-heterocyclic carbene (NHC) complexes. Chem Sci 2022; 13:6852-6857. [PMID: 35774168 PMCID: PMC9200118 DOI: 10.1039/d2sc00864e] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
We present the use of gold sensitizers [Au(SIPr)(Cbz)] (PhotAu 1) and [Au(IPr)(Cbz)] (PhotAu 2) as attractive alternatives to state-of-the-art iridium-based systems. These novel photocatalysts are deployed in [2 + 2] cycloadditions of diallyl ethers and N-tosylamides. The reactions proceed in short reaction times and in environmentally friendly solvents. [Au(SIPr)Cbz] and [Au(IPr)(Cbz)] have higher triplet energy (E T) values (66.6 and 66.3 kcal mol-1, respectively) compared to commonly used iridium photosensitizers. These E T values permit the use of these gold complexes as sensitizers enabling energy transfer catalysis involving unprotected indole derivatives, a substrate class previously inaccessible with state-of-the-art Ir photocatalysts. The photosynthesis of unprotected tetracyclic spiroindolines via intramolecular [2 + 2] cycloaddition using our simple mononuclear gold sensitizer is readily achieved. Mechanistic studies support the involvement of triplet-triplet energy transfer (TTEnT) for both [2 + 2] photocycloadditions.
Collapse
Affiliation(s)
- Ekaterina A Martynova
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S3 9000 Ghent Belgium
| | - Vladislav A Voloshkin
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S3 9000 Ghent Belgium
| | - Sébastien G Guillet
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S3 9000 Ghent Belgium
| | - Francis Bru
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S3 9000 Ghent Belgium
| | - Marek Beliš
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S3 9000 Ghent Belgium
| | - Kristof Van Hecke
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S3 9000 Ghent Belgium
| | - Catherine S J Cazin
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S3 9000 Ghent Belgium
| | - Steven P Nolan
- Department of Chemistry, Centre for Sustainable Chemistry, Ghent University Krijgslaan 281, S3 9000 Ghent Belgium
| |
Collapse
|
24
|
Kratz T, Steinbach P, Breitenlechner S, Storch G, Bannwarth C, Bach T. Photochemical Deracemization of Chiral Alkenes via Triplet Energy Transfer. J Am Chem Soc 2022; 144:10133-10138. [PMID: 35658423 DOI: 10.1021/jacs.2c02511] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A visible-light-mediated, enantioselective approach to axially chiral alkenes is described. Starting from a racemic mixture, a major alkene enantiomer is formed due to selective triplet energy transfer from a catalytically active chiral sensitizer. A catalyst loading of 2 mol % was sufficient to guarantee consistently high enantioselectivities and yields (16 examples, 51%-quant., 81-96% ee). NMR studies and DFT computations revealed that triplet energy transfer is more rapid within the substrate-catalyst complex of the minor alkene enantiomer. Since this enantiomer is continuously racemized, the major enantiomer is enriched in the photostationary state.
Collapse
Affiliation(s)
- Thilo Kratz
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Pit Steinbach
- Institut für Physikalische Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Stefan Breitenlechner
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Golo Storch
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Christoph Bannwarth
- Institut für Physikalische Chemie, RWTH Aachen University, 52074 Aachen, Germany
| | - Thorsten Bach
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
25
|
Mechanistic insights into photochemical nickel-catalyzed cross-couplings enabled by energy transfer. Nat Commun 2022; 13:2737. [PMID: 35585041 PMCID: PMC9117274 DOI: 10.1038/s41467-022-30278-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/19/2022] [Indexed: 12/26/2022] Open
Abstract
Various methods that use a photocatalyst for electron transfer between an organic substrate and a transition metal catalyst have been established. While triplet sensitization of organic substrates via energy transfer from photocatalysts has been demonstrated, the sensitization of transition metal catalysts is still in its infancy. Here, we describe the selective alkylation of C(sp3)-H bonds via triplet sensitization of nickel catalytic intermediates with a thorough elucidation of its reaction mechanism. Exergonic Dexter energy transfer from an iridium photosensitizer promotes the nickel catalyst to the triplet state, thus enabling C-H functionalization via the release of bromine radical. Computational studies and transient absorption experiments support that the reaction proceeds via the formation of triplet states of the organometallic nickel catalyst by energy transfer.
Collapse
|
26
|
Photochemical α-Deracemization of Carbonyl Compounds. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Genzink MJ, Kidd JB, Swords WB, Yoon TP. Chiral Photocatalyst Structures in Asymmetric Photochemical Synthesis. Chem Rev 2022; 122:1654-1716. [PMID: 34606251 PMCID: PMC8792375 DOI: 10.1021/acs.chemrev.1c00467] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asymmetric catalysis is a major theme of research in contemporary synthetic organic chemistry. The discovery of general strategies for highly enantioselective photochemical reactions, however, has been a relatively recent development, and the variety of photoreactions that can be conducted in a stereocontrolled manner is consequently somewhat limited. Asymmetric photocatalysis is complicated by the short lifetimes and high reactivities characteristic of photogenerated reactive intermediates; the design of catalyst architectures that can provide effective enantiodifferentiating environments for these intermediates while minimizing the participation of uncontrolled racemic background processes has proven to be a key challenge for progress in this field. This review provides a summary of the chiral catalyst structures that have been studied for solution-phase asymmetric photochemistry, including chiral organic sensitizers, inorganic chromophores, and soluble macromolecules. While some of these photocatalysts are derived from privileged catalyst structures that are effective for both ground-state and photochemical transformations, others are structural designs unique to photocatalysis and offer insight into the logic required for highly effective stereocontrolled photocatalysis.
Collapse
Affiliation(s)
- Matthew J Genzink
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jesse B Kidd
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Wesley B Swords
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Enantioselective Radical Reactions Using Chiral Catalysts. Chem Rev 2022; 122:5842-5976. [DOI: 10.1021/acs.chemrev.1c00582] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shovan Mondal
- Department of Chemistry, Syamsundar College, Shyamsundar 713424, West Bengal, India
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University, Fargo, North Dakota 58108, United States
| | - Michèle P. Bertrand
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Malek Nechab
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| |
Collapse
|
29
|
Su Y, Zou Y, Xiao W. Recent Advances in Photocatalytic Deracemization. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202207046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Großkopf J, Plaza M, Seitz A, Breitenlechner S, Storch G, Bach T. Photochemical Deracemization at sp 3-Hybridized Carbon Centers via a Reversible Hydrogen Atom Transfer. J Am Chem Soc 2021; 143:21241-21245. [PMID: 34902253 DOI: 10.1021/jacs.1c11266] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A photochemical deracemization of 5-substituted 3-phenylimidazolidine-2,4-diones (hydantoins) is reported (27 examples, 69%-quant., 80-99% ee). The reaction is catalyzed by a chiral diarylketone which displays a two-point hydrogen bonding site. Mechanistic evidence (DFT calculations, radical clock experiments, H/D labeling) suggests the reaction to occur by selective hydrogen atom transfer (HAT). Upon hydrogen binding, one substrate enantiomer displays the hydrogen atom at the stereogenic center to the photoexcited catalyst allowing for a HAT from the substrate and eventually for its conversion into the product enantiomer. The product enantiomer is not processed by the catalyst and is thus enriched in the photostationary state.
Collapse
Affiliation(s)
- Johannes Großkopf
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Manuel Plaza
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Antonia Seitz
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Stefan Breitenlechner
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Golo Storch
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Thorsten Bach
- School of Natural Sciences, Department Chemie, and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|
31
|
Reactivity and selectivity modulation within a molecular assembly: recent examples from photochemistry. Photochem Photobiol Sci 2021; 21:719-737. [PMID: 34914081 PMCID: PMC9174329 DOI: 10.1007/s43630-021-00146-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/17/2021] [Indexed: 12/05/2022]
Abstract
In recent years, photochemical reactions have emerged as powerful transformations which significantly expand the repertoire of organic synthesis. However, a certain lack of selectivity can hamper their application and limit their scope. In this context, a major research effort continues to focus on an improved control over stereo- and chemoselectivity that can be achieved in molecular assemblies between photosubstrates and an appropriate host molecule. In this tutorial review, some recent, representative examples of photochemical reactions have been collected whose unique outcome is dictated by the formation of a molecular assembly driven by non-covalent weak interactions.
Collapse
|
32
|
Wortmann S, Schloeglmann S, Nuernberger P. Sensitivity of Isomerization Kinetics of 1,3,5-Triphenylformazan on Cosolvents Added to Toluene. J Org Chem 2021; 87:1745-1755. [PMID: 34843237 DOI: 10.1021/acs.joc.1c01928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formazan molecules exhibit photochromism because isomerization processes following excitation may occur in both the azo group and the hydrazone group; thus, each formazan may be present in various forms with different colors. The ratio of these forms depends on the illumination conditions and the environment of the formazan with a most incisive sensibility of the thermal anti-syn relaxation of the C═N toward slight traces of impurities in toluene solutions, as reported most prominently for 1,3,5-triphenylformazan. Here, we study the latter compound with transient absorption spectroscopy to investigate the role of these traces by adding small amounts of both protic and aprotic cosolvents. Whereas the activation barrier decreases if the binary solvent mixture has a higher polarity, the role of hydrogen bonding can have a reverse impact on the thermal isomerization rate. Both the addition of an aprotic cosolvent and the addition of a protic cosolvent can slow the reaction due to their hydrogen-bond accepting and hydrogen-bond donating properties, respectively. In the case of methanol as a cosolvent, this effect outweighed that of the polarity increase for small concentrations, which was not observed for the fluorinated alcohol hexafluoroisopropanol. The results are explained in the context of a competition between solute-cosolvent and cosolvent-cosolvent hydrogen bonding.
Collapse
Affiliation(s)
- Svenja Wortmann
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Sylvia Schloeglmann
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
33
|
Struwe J, Korvorapun K, Zangarelli A, Ackermann L. Photo-Induced Ruthenium-Catalyzed C-H Benzylations and Allylations at Room Temperature. Chemistry 2021; 27:16237-16241. [PMID: 34435716 PMCID: PMC9293244 DOI: 10.1002/chem.202103077] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 11/30/2022]
Abstract
The ruthenium-catalyzed synthesis of diarylmethane compounds was realized under exceedingly mild photoredox conditions without the use of exogenous photocatalysts. The versatility and robustness of the ruthenium-catalyzed C-H benzylation was reflected by an ample scope, including multifold C-H functionalizations, as well as transformable pyrazoles, imidates and sensitive nucleosides. Mechanistic studies were indicative of a photoactive cyclometalated ruthenium complex, which also enabled versatile C-H allylations.
Collapse
Affiliation(s)
- Julia Struwe
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Korkit Korvorapun
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität GöttingenTammannstrasse 237077GöttingenGermany
| |
Collapse
|
34
|
Oddy MJ, Kusza DA, Petersen WF. Visible-Light Mediated Metal-Free 6π-Photocyclization of N-Acrylamides: Thioxanthone Triplet Energy Transfer Enables the Synthesis of 3,4-Dihydroquinolin-2-ones. Org Lett 2021; 23:8963-8967. [PMID: 34756046 DOI: 10.1021/acs.orglett.1c03487] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An efficient thioxanthone-catalyzed triplet energy transfer process for the synthesis of 3,4-dihydroquinolin-2-ones via a 6π-photocyclization is reported. Featuring a rare example of a metal-free formal C(sp2)-H/C(sp3)-H arylation mediated by visible-light, this work hopes to inspire further interest in these small molecules as sustainable alternatives to existing transition-metal photocatalysts in related processes.
Collapse
Affiliation(s)
- Meghan J Oddy
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Daniel A Kusza
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| | - Wade F Petersen
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, 7700, South Africa
| |
Collapse
|
35
|
Zhang Z, Hu X. Visible-Light-Driven Catalytic Deracemization of Secondary Alcohols. Angew Chem Int Ed Engl 2021; 60:22833-22838. [PMID: 34397164 PMCID: PMC8519112 DOI: 10.1002/anie.202107570] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/14/2021] [Indexed: 11/18/2022]
Abstract
Deracemization of racemic chiral compounds is an attractive approach in asymmetric synthesis, but its development has been hindered by energetic and kinetic challenges. Here we describe a catalytic deracemization method for secondary benzylic alcohols which are important synthetic intermediates and end products for many industries. Driven by visible light only, this method is based on sequential photochemical dehydrogenation followed by enantioselective thermal hydrogenation. The combination of a heterogeneous dehydrogenation photocatalyst and a chiral molecular hydrogenation catalyst is essential to ensure two distinct pathways for the forward and reverse reactions. These reactions convert a large number of racemic aryl alkyl alcohols into their enantiomerically enriched forms in good yields and enantioselectivities.
Collapse
Affiliation(s)
- Zhikun Zhang
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Poly-technique Fédérale de Lausanne (EPFL)ISIC-LSCI, BCH 3305Lausanne1015Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Poly-technique Fédérale de Lausanne (EPFL)ISIC-LSCI, BCH 3305Lausanne1015Switzerland
| |
Collapse
|
36
|
Zhang Z, Hu X. Visible‐Light‐Driven Catalytic Deracemization of Secondary Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zhikun Zhang
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Poly-technique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 Lausanne 1015 Switzerland
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Poly-technique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 Lausanne 1015 Switzerland
| |
Collapse
|
37
|
Malý P, Brixner T. Fluoreszenz‐detektierte Pump‐Probe‐Spektroskopie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pavel Malý
- Institut für Physikalische und Theoretische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie Universität Würzburg Am Hubland 97074 Würzburg Deutschland
- Center for Nanosystems Chemistry (CNC) Universität Würzburg Theodor-Boveri-Weg 97074 Würzburg Deutschland
| |
Collapse
|
38
|
Malý P, Brixner T. Fluorescence-Detected Pump-Probe Spectroscopy. Angew Chem Int Ed Engl 2021; 60:18867-18875. [PMID: 34152074 PMCID: PMC8457154 DOI: 10.1002/anie.202102901] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Indexed: 12/11/2022]
Abstract
We introduce a new approach to transient spectroscopy, fluorescence-detected pump-probe (F-PP) spectroscopy, that overcomes several limitations of traditional PP. F-PP suppresses excited-state absorption, provides background-free detection, removes artifacts resulting from pump-pulse scattering, from non-resonant solvent response, or from coherent pulse overlap, and allows unique extraction of excited-state dynamics under certain conditions. Despite incoherent detection, time resolution of F-PP is given by the duration of the laser pulses, independent of the fluorescence lifetime. We describe the working principle of F-PP and provide its theoretical description. Then we illustrate specific features of F-PP by direct comparison with PP, theoretically and experimentally. For this purpose, we investigate, with both techniques, a molecular squaraine heterodimer, core-shell CdSe/ZnS quantum dots, and fluorescent protein mCherry. F-PP is broadly applicable to chemical systems in various environments and in different spectral regimes.
Collapse
Affiliation(s)
- Pavel Malý
- Institut für Physikalische und Theoretische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Tobias Brixner
- Institut für Physikalische und Theoretische ChemieUniversität WürzburgAm Hubland97074WürzburgGermany
- Center for Nanosystems Chemistry (CNC)Universität WürzburgTheodor-Boveri-Weg97074WürzburgGermany
| |
Collapse
|
39
|
Plaza M, Großkopf J, Breitenlechner S, Bannwarth C, Bach T. Photochemical Deracemization of Primary Allene Amides by Triplet Energy Transfer: A Combined Synthetic and Theoretical Study. J Am Chem Soc 2021; 143:11209-11217. [PMID: 34279085 DOI: 10.1021/jacs.1c05286] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The photochemical deracemization of 2,4-disubstituted 2,3-butadienamides (allene amides) was investigated both experimentally and theoretically. The reaction was catalyzed by a thioxanthone which is covalently linked to a chiral 1,5,7-trimethyl-3-azabicyclo[3.3.1]nonan-2-one skeleton providing a U-shaped arrangement of the sensitizing unit relative to a potential hydrogen-bonding site. Upon irradiation at λ = 420 nm in the presence of the sensitizer (2.5 mol %), the amides reached at -10 °C a photostationary state in which one enantiomer prevailed. The enantioenriched allene amides (70-93% ee) were isolated in 74% to quantitative yield (19 examples). Based on luminescence data and DFT calculations, energy transfer from the thioxanthone to the allene amides is thermodynamically feasible, and the achiral triplet allene intermediate was structurally characterized. Hydrogen bonding of the amide enantiomers to the sensitizer was monitored by NMR titration. The experimental association constants (Ka) were similar (59.8 vs 25.7 L·mol-1). DFT calculations, however, revealed a significant difference in the binding properties of the two enantiomers. The major product enantiomer exhibits a noncovalent dispersion interaction of its arylmethyl group to the external benzene ring of the thioxanthone, thus moving away the allene from the carbonyl chromophore. The minor enantiomer displays a CH-π interaction of the hydrogen atom at the terminal allene carbon atom to the same benzene ring, thus forcing the allene into close proximity to the chromophore. The binding behavior explains the observed enantioselectivity which, as corroborated by additional calculations, is due to a rapid triplet energy transfer within the substrate-catalyst complex of the minor enantiomer.
Collapse
Affiliation(s)
- Manuel Plaza
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, D-85747 Garching, Germany
| | - Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, D-85747 Garching, Germany
| | - Stefan Breitenlechner
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, D-85747 Garching, Germany
| | - Christoph Bannwarth
- Institute of Physical Chemistry, RWTH Aachen University, D-52056 Aachen, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
40
|
Großkopf J, Kratz T, Rigotti T, Bach T. Enantioselective Photochemical Reactions Enabled by Triplet Energy Transfer. Chem Rev 2021; 122:1626-1653. [PMID: 34227803 DOI: 10.1021/acs.chemrev.1c00272] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For molecules with a singlet ground state, the population of triplet states is mainly possible (a) by direct excitation and subsequent intersystem crossing or (b) by energy transfer from an appropriate sensitizer. The latter scenario enables a catalytic photochemical reaction in which the sensitizer adopts the role of a catalyst undergoing several cycles of photon absorption and subsequent energy transfer to the substrate. If the product molecule of a triplet-sensitized process is chiral, this process can proceed enantioselectively upon judicious choice of a chiral triplet sensitizer. An enantioselective reaction can also occur in a dual catalytic approach in which, apart from an achiral sensitizer, a second chiral catalyst activates the substrate toward sensitization. Although the idea of enantioselective photochemical reactions via triplet intermediates has been pursued for more than 50 years, notable selectivities exceeding 90% enantiomeric excess (ee) have only been realized in the past decade. This review attempts to provide a comprehensive survey on the various photochemical reactions which were rendered enantioselective by triplet sensitization.
Collapse
Affiliation(s)
- Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, D-85747 Garching, Germany
| | - Thilo Kratz
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, D-85747 Garching, Germany
| | - Thomas Rigotti
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, D-85747 Garching, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
41
|
Li X, Großkopf J, Jandl C, Bach T. Enantioselective, Visible Light Mediated Aza Paternò–Büchi Reactions of Quinoxalinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xinyao Li
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) Technische Universität München Lichtenbergstrasse 4 85747 Garching Germany
| |
Collapse
|
42
|
Schiwek CH, Jandl C, Bach T. Diastereoselective Rhodium-Catalyzed Hydrogenation of 2-Oxindoles and 3,4-Dihydroquinolones. Org Lett 2020; 22:9468-9472. [PMID: 33200605 DOI: 10.1021/acs.orglett.0c03427] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The benzene ring of indolin-2-ones (2-oxindoles) and 3,4-dihydroquinol-2-ones was converted to a saturated cyclohexane ring by hydrogenation in the presence of the rhodium complex Cy(CAAC)Rh(cod)Cl. The stereoselectivity of the process was found to be high with respect to both external substituent R1 within the saturated part of the heterocyclic ring and substituent X on the benzene ring. Twenty-one hexahydroindolin-2(3H)-ones (70-99% yield, dr = 83/17 to >99/1) and twelve octahydro-2(1H)-quinolinones (87-96% yield, dr = 64/36 to >99/1) were obtained with the major diastereoisomer exhibiting the hydrogen atoms in an all-cis arrangement. The high tolerance toward functional groups and the compatibility with existing stereogenic centers are key features of the hydrogenation protocol presented here.
Collapse
Affiliation(s)
- Christian H Schiwek
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
43
|
Li X, Großkopf J, Jandl C, Bach T. Enantioselective, Visible Light Mediated Aza Paternò-Büchi Reactions of Quinoxalinones. Angew Chem Int Ed Engl 2020; 60:2684-2688. [PMID: 33084097 PMCID: PMC7898282 DOI: 10.1002/anie.202013276] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Indexed: 02/04/2023]
Abstract
3-Substituted quinoxalin-2(1H)-ones and various aryl-substituted or tethered olefins underwent an enantioselective, inter- or intramolecular aza Paternò-Büchi reaction upon irradiation at λ=420 nm in the presence of a chiral sensitizer (10 mol %). For the intermolecular reaction with 1-arylethenes as olefin components, the scope of the reaction was studied (14 examples, 50-99 % yield, 86-98 % ee). The absolute and relative configuration of the products were elucidated by single-crystal X-ray crystallography. The reaction is suggested to occur by triplet energy transfer in a hydrogen-bonded 1:1 complex between the imine substrate and the catalyst. The intramolecular cycloaddition, consecutive reactions of the product azetidines, and an alternative reaction mode of quinoxalinones were investigated in preliminary experiments.
Collapse
Affiliation(s)
- Xinyao Li
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Johannes Großkopf
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
44
|
Li X, Kutta RJ, Jandl C, Bauer A, Nuernberger P, Bach T. Photochemically Induced Ring Opening of Spirocyclopropyl Oxindoles: Evidence for a Triplet 1,3-Diradical Intermediate and Deracemization by a Chiral Sensitizer. Angew Chem Int Ed Engl 2020; 59:21640-21647. [PMID: 32757341 PMCID: PMC7756555 DOI: 10.1002/anie.202008384] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/23/2020] [Indexed: 12/17/2022]
Abstract
The photochemical deracemization of spiro[cyclopropane‐1,3′‐indolin]‐2′‐ones (spirocyclopropyl oxindoles) was studied. The corresponding 2,2‐dichloro compound is configurationally labile upon direct irradiation at λ=350 nm and upon irradiation at λ=405 nm in the presence of achiral thioxanthen‐9‐one as the sensitizer. The triplet 1,3‐diradical intermediate generated in the latter reaction was detected by transient absorption spectroscopy and its lifetime determined (τ=22 μs). Using a chiral thioxanthone or xanthone, with a lactam hydrogen bonding site as a photosensitizer, allowed the deracemization of differently substituted chiral spirocyclopropyl oxindoles with yields of 65–98 % and in 50–85 % ee (17 examples). Three mechanistic contributions were identified to co‐act favorably for high enantioselectivity: the difference in binding constants to the chiral thioxanthone, the smaller molecular distance in the complex of the minor enantiomer, and the lifetime of the intermediate 1,3‐diradical.
Collapse
Affiliation(s)
- Xinyao Li
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Roger J Kutta
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Andreas Bauer
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|