1
|
Wang H, Zhang F, Li Y, Pang Y, Zhao X, Song Z, Wang W, Sun J, Mao Y. Sn-modified Cu nanosheets catalyze CO 2 reduction to C 2H 4 efficiently by stabilizing CO intermediates and promoting CC coupling. J Colloid Interface Sci 2025; 678:506-514. [PMID: 39305618 DOI: 10.1016/j.jcis.2024.09.117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/27/2024]
Abstract
Electrocatalytic CO2 reduction reaction (CO2RR) is a process in which CO2 is reduced to high-value-added C1 and C2 energy sources, particularly ethylene (C2H4), thereby supporting carbon-neutral recycling with minimal consumption. This makes it a promising technology with significant potential. Nevertheless, the low selectivity for C2H4 remains a significant challenge in practical applications. In this paper, a strategy based on Cu-Sn bimetallic catalysts is proposed to improve the selectivity of electrocatalytic conversion of CO2 to C2H4 over Cu-based catalysts. The experimental results show that the Faradaic efficiency (FE) of C2H4 can reach up to 48.74 %, and the FE of C2 product reaches 60 %, at which time the local current density is 11.99 mA/cm2. Compared with pure Cu catalyst, the FE and local current density of C2H4 increased by 55.27 % and 35.33 %, respectively. Moreover, the FE of C2H4 remained above 40 % after 8 h over Cu10-Sn catalyst. The addition of Sn facilitates the transfer of local electrons from Cu to Sn, stabilizes the *CO intermediate, promotes CC coupling, significantly lowers the reaction energy barrier, and enables highly efficient CO2RR catalysis for C2H4 production.
Collapse
Affiliation(s)
- Hongfei Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Fusen Zhang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yang Li
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yingping Pang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Xiqiang Zhao
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China.
| | - Zhanlong Song
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Wenlong Wang
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Jing Sun
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Yanpeng Mao
- National Engineering Laboratory for Reducing Emissions from Coal Combustion, Engineering Research Center of Environmental Thermal Technology of Ministry of Education, Shandong Key Laboratory of Energy Carbon Reduction and Resource Utilization, School of Energy and Power Engineering, Shandong University, Jinan, Shandong 250061, China
| |
Collapse
|
2
|
Chai L, Li R, Sun Y, Zhou K, Pan J. MOF-derived Carbon-Based Materials for Energy-Related Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413658. [PMID: 39791306 DOI: 10.1002/adma.202413658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/23/2024] [Indexed: 01/12/2025]
Abstract
New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs. In this context, this review systematically summarizes the latest advances in tailored types, processing strategies, and energy-related applications of MOF-derived CMs and focuses on the structure-activity relationship of metal-free carbon, metal-doped carbon, and metallide-doped carbon. Particularly, the intrinsic correlation and evolutionary behavior between the synergistic interaction of micro/nanostructures and active species with electrochemical performances are emphasized. Finally, unique insights and perspectives on the latest relevant research are presented, and the future development prospects and challenges of MOF-derived CMs are discussed, providing valuable guidance to boost high-performance electrochemical electrodes for a broader range of application fields.
Collapse
Affiliation(s)
- Lulu Chai
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Rui Li
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanzhi Sun
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kun Zhou
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Woldu AR, Yohannes AG, Huang Z, Kennepohl P, Astruc D, Hu L, Huang XC. Experimental and Theoretical Insights into Single Atoms, Dual Atoms, and Sub-Nanocluster Catalysts for Electrochemical CO 2 Reduction (CO 2RR) to High-Value Products. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2414169. [PMID: 39593251 DOI: 10.1002/adma.202414169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Indexed: 11/28/2024]
Abstract
Electrocatalytic carbon dioxide (CO2) conversion into valuable chemicals paves the way for the realization of carbon recycling. Downsizing catalysts to single-atom catalysts (SACs), dual-atom catalysts (DACs), and sub-nanocluster catalysts (SNCCs) has generated highly active and selective CO2 transformation into highly reduced products. This is due to the introduction of numerous active sites, highly unsaturated coordination environments, efficient atom utilization, and confinement effect compared to their nanoparticle counterparts. Herein, recent Cu-based SACs are first reviewed and the newly emerged DACs and SNCCs expanding the catalysis of SACs to electrocatalytic CO2 reduction (CO2RR) to high-value products are discussed. Tandem Cu-based SAC-nanocatalysts (NCs) (SAC-NCs) are also discussed for the CO2RR to high-value products. Then, the non-Cu-based SACs, DACs, SAC-NCs, and SNCCs and theoretical calculations of various transition-metal catalysts for CO2RR to high-value products are summarized. Compared to previous achievements of less-reduced products, this review focuses on the double objective of achieving full CO2 reduction and increasing the selectivity and formation rate toward C-C coupled products with additional emphasis on the stability of the catalysts. Finally, through combined theoretical and experimental research, future outlooks are offered to further develop the CO2RR into high-value products over isolated atoms and sub-nanometal clusters.
Collapse
Affiliation(s)
- Abebe Reda Woldu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Asfaw G Yohannes
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Zanling Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
| | - Pierre Kennepohl
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Didier Astruc
- ISM, UMR CNRS 5255, University of Bordeaux, Talence, Cedex, 33405, France
| | - Liangsheng Hu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| | - Xiao-Chun Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Guangdong, 515063, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| |
Collapse
|
4
|
Mustapha A, Chen S, Xiang J, Jiang Y, Wang J, Zhao X, Chen F, Wang M, Zhou H, Zeng K, Wu L, Liu YN. Concurrent activation of CO 2 and H 2O on sulfur-doped CNT-supported nickel phthalocyanine for electrochemical CO 2 reduction to CO. Chem Commun (Camb) 2024; 60:13243-13246. [PMID: 39445443 DOI: 10.1039/d4cc03696d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Concurrent activation of CO2 and H2O is essential for CO2 electroreduction reaction, but challenging. A sulfur-doped carbon nanotubes-supported nickel phthalocyanine (NiPc/S-CNTs) can concurrently activate CO2 and H2O, promoting CO2 protonation to *COOH. The NiPc/S-CNTs achieves CO Faraday efficiency of >96% at current density from -20 to -140 mA cm-2.
Collapse
Affiliation(s)
- Abdulhadi Mustapha
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
- Department of Chemistry, Faculty of Science, Yusuf Maitama Sule University, Kano, Nigeria
| | - Shanyong Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangdong 511443, P. R. China
| | - Jiaqi Xiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Yifan Jiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Jingyu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Xiaojun Zhao
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Fei Chen
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Maoyu Wang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Hua Zhou
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Ke Zeng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Linlin Wu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China.
| |
Collapse
|
5
|
Zhang Y, Shen Y, Shan M, Wang M, Wang R, Yang S, Jiang S, Cong Y, Jiang B. Oxygen atom activated ZIF-67/carbon cloth in plasma system for CO 2 reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122589. [PMID: 39305879 DOI: 10.1016/j.jenvman.2024.122589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
ZIF-67 was grown in situ on carbon cloth (CC) using a simple one-step method. The prepared ZIF-67/CC electrodes exhibited excellent CO2 reduction reaction (CO2RR) performance in a dielectric barrier discharge plasma reactor. The highest concentrations of produced formic acid and formaldehyde were 9.16 and 0.068 mmol L-1 at a reaction time of 1 h, respectively. The high performance is related to the unique high aspect ratio structure and pad-like cavity of ZIF-67, which results not only in an increase in the specific surface area for CO2 adsorption but also in the hydrophobicity of the electrode. Unexpectedly, the superoxide radical (·O2-) greatly affects the reduction performance of the electrode. In addition, the ZIF-67/CC electrode maintained good CO2RR performance in the presence of different pollutants, and the production of formic acid and formaldehyde increased to 10.81 and 0.11 mmol L-1 at 1 h with the addition of 10 mg L-1 phenol. This research provides new directions in the field of plasma catalysis.
Collapse
Affiliation(s)
- Yi Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yiping Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Mengru Shan
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Man Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Run Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shiying Yang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Sihao Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yanqing Cong
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Boqiong Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
6
|
Ramadhany P, Luong Q, Zhang Z, Leverett J, Samorì P, Corrie S, Lovell E, Canbulat I, Daiyan R. State of Play of Critical Mineral-Based Catalysts for Electrochemical E-Refinery to Synthetic Fuels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405029. [PMID: 38838055 DOI: 10.1002/adma.202405029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/17/2024] [Indexed: 06/07/2024]
Abstract
The pursuit of decarbonization involves leveraging waste CO2 for the production of valuable fuels and chemicals (e.g., ethanol, ethylene, and urea) through the electrochemical CO2 reduction reactions (CO2RR). The efficacy of this process heavily depends on electrocatalyst performance, which is generally reliant on high loading of critical minerals. However, the supply of these minerals is susceptible to shortage and disruption, prompting concerns regarding their usage, particularly in electrocatalysis, requiring swift innovations to mitigate the supply risks. The reliance on critical minerals in catalyst fabrication can be reduced by implementing design strategies that improve the available active sites, thereby increasing the mass activity. This review seeks to discuss and analyze potential strategies, challenges, and opportunities for improving catalyst activity in CO2RR with a special attention to addressing the risks associated with critical mineral scarcity. By shedding light onto these aspects of critical mineral-based catalyst systems, this review aims to inspire the development of high-performance catalysts and facilitates the practical application of CO2RR technology, whilst mitigating adverse economic, environmental, and community impacts.
Collapse
Affiliation(s)
- Putri Ramadhany
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Quang Luong
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Ziling Zhang
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Josh Leverett
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Paolo Samorì
- Université de Strasbourg, CNRS, ISIS UMR 7006, Strasbourg, 67000, France
| | - Simon Corrie
- Chemical and Biological Engineering Department, Monash University, Clayton, VIC 3800, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Clayton, VIC 3800, Australia
| | - Emma Lovell
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ismet Canbulat
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| | - Rahman Daiyan
- School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence for Carbon Science and Innovation, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Wang C, Sun Y, Chen Y, Zhang Y, Yue L, Han L, Zhao L, Zhu X, Zhan D. In Situ Electropolymerizing Toward EP-CoP/Cu Tandem Catalyst for Enhanced Electrochemical CO 2-to-Ethylene Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404053. [PMID: 38973357 PMCID: PMC11425910 DOI: 10.1002/advs.202404053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Electrochemical CO2 reduction has garnered significant interest in the conversion of sustainable energy to valuable fuels and chemicals. Cu-based bimetallic catalysts play a crucial role in enhancing *CO concentration on Cu sites for efficient C─C coupling reactions, particularly for C2 product generation. To enhance Cu's electronic structure and direct its selectivity toward C2 products, a novel strategy is proposed involving the in situ electropolymerization of a nano-thickness cobalt porphyrin polymeric network (EP-CoP) onto a copper electrode, resulting in the creation of a highly effective EP-CoP/Cu tandem catalyst. The even distribution of EP-CoP facilitates the initial reduction of CO2 to *CO intermediates, which then transition to Cu sites for efficient C─C coupling. DFT calculations confirm that the *CO enrichment from Co sites boosts *CO coverage on Cu sites, promoting C─C coupling for C2+ product formation. The EP-CoP/Cu gas diffusion electrode achieves an impressive current density of 726 mA cm-2 at -0.9 V versus reversible hydrogen electrode (RHE), with a 76.8% Faraday efficiency for total C2+ conversion and 43% for ethylene, demonstrating exceptional long-term stability in flow cells. These findings mark a significant step forward in developing a tandem catalyst system for the effective electrochemical production of ethylene.
Collapse
Affiliation(s)
- Chao Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yifan Sun
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yuzhuo Chen
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Yiting Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liangliang Yue
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Lianhuan Han
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Liubin Zhao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Xunjin Zhu
- Department of Chemistry and State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Dongping Zhan
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Science & Technology Innovation Laboratory for Energy Materials of China, Engineering Research Center of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Senthilkumar AK, Kumar M, Samuel MS, Ethiraj S, Shkir M, Chang JH. Recent advancements in carbon/metal-based nano-catalysts for the reduction of CO 2 to value-added products. CHEMOSPHERE 2024; 364:143017. [PMID: 39103104 DOI: 10.1016/j.chemosphere.2024.143017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/11/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Due to the increased human activities in burning of fossil fuels and deforestation, the CO2 level in the atmosphere gets increased up to 415 ppm; although it is an essential component for plant growth, an increased level of CO2 in the atmosphere leads to global warming and catastrophic climate change. Various conventional methods are used to capture and utilize CO2, among that a feasible and eco-friendly technique for creating value-added products is the CO2RR. Photochemical, electrochemical, thermochemical, and biochemical approaches can be used to decrease the level of CO2 in the atmosphere. The introduction of nano-catalysts in the reduction process helps in the efficient conversion of CO2 with improved selectivity, increased efficiency, and also enhanced stability of the catalyst materials. Thus, in this mini-review of nano-catalysts, some of the products formed during the reduction process, like CH3OH, C2H5OH, CO, HCOOH, and CH4, are explained. Among different types of metal catalysts, carbonaceous, single-atom catalysts, and MOF based catalysts play a significant role in the CO2 RR process. The effects of the catalyst material on the surface area, composition, and structural alterations are covered in depth. To aid in the design and development of high-performance nano-catalysts for value-added products, the current state, difficulties, and future prospects are provided.
Collapse
Affiliation(s)
- Arun Kumar Senthilkumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan; Department of Applied Chemistry, Chaoyang University of Technology, Taichung City, 413310, Taiwan
| | - Mohanraj Kumar
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| | - Melvin S Samuel
- Department of Civil, Construction & Environmental Engineering, Marquette University, 1637 W Wisconsin Ave, Milwaukee, WI, 53233, USA
| | - Selvarajan Ethiraj
- Department of Genetic Engineering, School of Bioengineering, Faculty of Engineering and Technology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Mohd Shkir
- Department of Physics, College of Science, King Khalid University, P.O Box-9004, Abha, 61413, Saudi Arabia
| | - Jih-Hsing Chang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung City, 413310, Taiwan.
| |
Collapse
|
9
|
Liu Z, Ma A, Wang Z, Li C, Ding Z, Pang Y, Fan G, Xu H. Single-cluster anchored on PC 6 monolayer as high-performance electrocatalyst for carbon dioxide reduction reaction: First principles study. J Colloid Interface Sci 2024; 669:600-611. [PMID: 38729008 DOI: 10.1016/j.jcis.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/12/2024]
Abstract
Tremendous challenges remain to develop high-efficient catalysts for carbon dioxide reduction reaction (CO2RR) owing to the poor activity and low selectivity. However, the activity of catalyst with single active site is limited by the linear scaling relationship between the adsorption energy of intermediates. Motivated by the idea of multiple activity centers, triple metal clusters (M = Cr, Mn, Fe, Co, Ni, Cu, Pd, and Rh) doped PC6 monolayer (M3@PC6) were constructed in this study to investigate the CO2RR catalytic performance via density functional theory calculations. Results shows Mn3@PC6, Fe3@PC6, and Co3@PC6 exhibit high activity and selectivity for the reduction of CO2 to CH4 with limiting potentials of -0.32, -0.28, and -0.31 V, respectively. Analysis on the high-performance origin shows the more binding sites in M3@PC6 render the triple-atom anchored catalysts (TACs) high ability in regulating the binding strength with intermediates by self-adjusting the charges and conformation, leading to the improved performance of M3@PC6 than dual-atom doped PC6. This work manifests the huge application of PC6 based TACs in CO2RR, which hope to prove valuable guidance for the application of TACs in a broader range of electrochemical reactions.
Collapse
Affiliation(s)
- Zhiyi Liu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Aling Ma
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Zhenzhen Wang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Chenyin Li
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Zongpeng Ding
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - YuShan Pang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Guohong Fan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Hong Xu
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
10
|
Min S, Xu X, He J, Sun M, Lin W, Kang L. Construction of Cobalt Porphyrin-Modified Cu 2O Nanowire Array as a Tandem Electrocatalyst for Enhanced CO 2 Reduction to C 2 Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400592. [PMID: 38501796 DOI: 10.1002/smll.202400592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/27/2024] [Indexed: 03/20/2024]
Abstract
Here, the molecule-modified Cu-based array is first constructed as the self-supporting tandem catalyst for electrocatalytic CO2 reduction reaction (CO2RR) to C2 products. The modification of cuprous oxide nanowire array on copper mesh (Cu2O@CM) with cobalt(II) tetraphenylporphyrin (CoTPP) molecules is achieved via a simple liquid phase method. The systematical characterizations confirm that the formation of axial coordinated Co-O-Cu bond between Cu2O and CoTPP can significantly promote the dispersion of CoTPP molecules on Cu2O and the electrical properties of CoTPP-Cu2O@CM heterojunction array. Consequently, as compared to Cu2O@CM array, the optimized CoTPP-Cu2O@CM sample as electrocatalyst can realize the 2.08-fold C2 Faraday efficiency (73.2% vs 35.2%) and the 2.54-fold current density (‒52.9 vs ‒20.8 mA cm-2) at ‒1.1 V versus RHE in an H-cell. The comprehensive performance is superior to most of the reported Cu-based materials in the H-cell. Further study reveals that the CoTPP adsorption on Cu2O can restrain the hydrogen evolution reaction, improve the coverage of *CO intermediate, and maintain the existence of Cu(I) at low potential.
Collapse
Affiliation(s)
- Shihao Min
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Beijing, 100045, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
- University Chinese Academy of Science, Fujian College, Fuzhou, 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Xiao Xu
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Beijing, 100045, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
- University Chinese Academy of Science, Fujian College, Fuzhou, 350002, P. R. China
| | - Jiaxin He
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Beijing, 100045, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
- University Chinese Academy of Science, Fujian College, Fuzhou, 350002, P. R. China
- College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Miao Sun
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Beijing, 100045, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
- University Chinese Academy of Science, Fujian College, Fuzhou, 350002, P. R. China
| | - Wenlie Lin
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Beijing, 100045, P. R. China
| | - Longtian Kang
- Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Beijing, 100045, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
- University Chinese Academy of Science, Fujian College, Fuzhou, 350002, P. R. China
| |
Collapse
|
11
|
Liu Y, Wang D, Yang B, Li Z, Zhang T, Rodriguez RD, Lei L, Hou Y. Mechanistic insights into high-throughput screening of tandem catalysts for CO 2 reduction to multi-carbon products. Phys Chem Chem Phys 2024. [PMID: 39016092 DOI: 10.1039/d4cp01622j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
In carbon dioxide electrochemical reduction (CO2ER), since isolated catalysts encounter challenges in meeting the demands of intricate processes for producing multi-carbon (C2+) products, tandem catalysis is emerging as a promising approach. Nevertheless, there remains an insufficient theoretical understanding of designing tandem catalysts. Herein, we utilized density functional theory (DFT) to screen 80 tandem catalysts for efficient CO2ER to C2 products systematically, which combines the advantages of nitrogen-doped carbon-supported transition metal single-atom catalysts (M-N-C) and copper clusters. Three crucial criteria were designed to select structures for generation and transfer of *CO and facilitate C-C coupling. The optimal Cu/RuN4-pl catalyst exhibited an excellent ethanol production capacity. Additionally, the relationship between CO adsorption strength and transfer energy barrier was established, and the influence of the electronic structure on its adsorption strength was studied. This provided a novel and well-considered solution and theoretical guidance for the design of rational composition and structurally superior tandem catalysts.
Collapse
Affiliation(s)
- Yingnan Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Dashuai Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou 324000, China
| | - Bin Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Zhongjian Li
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Tao Zhang
- Ningbo Institute of Materials Technology & Engineering, University of Chinese Academy of Sciences, Ningbo 315200, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, 30 Lenin Ave, Tomsk 634050, Russia
| | - Lecheng Lei
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou 324000, China
| | - Yang Hou
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
- Institute of Zhejiang University - Quzhou, Quzhou 324000, China
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315100, China
- Hydrogen Energy Institute, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
12
|
Wang X, Yang H, Liu M, Liu Z, Liu K, Mu Z, Zhang Y, Cheng T, Gao C. Locally Varying Surface Binding Affinity on Pd-Au Nanocrystals Enhances Electrochemical Ethanol Oxidation Activity. ACS NANO 2024; 18:18701-18711. [PMID: 38941536 DOI: 10.1021/acsnano.4c06063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Noble metal nanocrystals face challenges in effectively catalyzing electrochemical ethanol oxidation reaction (EOR)-represented multistep, multielectron transfer processes due to the linear scaling relationship among binding energies of intermediates, impeding independent optimization of individual elemental steps. Herein, we develop noble metal nanocrystals with a range of local surface binding affinities in close proximity to overcome this challenge. Experimentally, this is demonstrated by applying tensile strain to a Pd surface and decorating it with discrete Au atoms, forming a diversity of binding sites with varying affinities in close proximity for guest molecules, as evidenced by CO probing and density functional theory calculations. Such a surface enables reaction intermediates to migrate between different binding sites as needed for each elemental step, thereby reducing the energy barrier for the overall EOR when compared to reactions at a single site. On these tailored surfaces, we attain specific and mass activities of 32.7 mA cm-2 and 47.8 A mgPd-1 in EOR, surpassing commercial Pd/C by 10.9 and 43.8 times, respectively, and outperforming state-of-the-art Pd-based catalysts. These results highlight the promise of this approach in improving a variety of multistep, multielectron transfer reactions, which are crucial for energy conversion applications.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hao Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Moxuan Liu
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhaojun Liu
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kai Liu
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zerui Mu
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yan Zhang
- State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Tao Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Chuanbo Gao
- Sate Key Laboratory of Multiphase Flow in Power Engineering, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Arjunan S, Sims JM, Duboc C, Maldivi P, Milet A. Investigating the interplay between charge transfer and CO 2 insertion in the adsorption of a NiFe catalyst for CO 2 electroreduction on a graphite support through DFT computational approaches. J Comput Chem 2024; 45:1690-1696. [PMID: 38563509 DOI: 10.1002/jcc.27355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/23/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Abstract
This article describes a density functional theory (DFT) study to explore a bio-inspired NiFe complex known for its experimental activity in electro-reducing CO2 to CH4 when adsorbed on graphite. The coordination properties of the complex are investigated in isolated form and when physisorbed on a graphene surface. A comparative analysis of DFT approaches for surface modeling is conducted, utilizing either a finite graphene flake or a periodic carbon surface. Results reveal that the finite model effectively preserves all crucial properties. By examining predicted structures arising from CO2 insertion within the mono-reduced NiFe species, whether isolated or adsorbed on the graphene flake, a potential species for subsequent electro-reduction steps is proposed. Notably, the DFT study highlights two positive effects of complex adsorption: facile electron transfers between graphene and the complex, finely regulated by the complex state, and a lowering of the thermodynamic demand for CO2 insertion.
Collapse
Affiliation(s)
- Subash Arjunan
- Université Grenoble Alpes, DCM, CNRS, Grenoble, France
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, Grenoble, France
| | - Joshua M Sims
- Université Grenoble Alpes, DCM, CNRS, Grenoble, France
- ENSL, CNRS, Lab Chim, UMR 5182, Lyon, France
| | - Carole Duboc
- Université Grenoble Alpes, DCM, CNRS, Grenoble, France
| | - Pascale Maldivi
- Université Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SyMMES, Grenoble, France
| | - Anne Milet
- Université Grenoble Alpes, DCM, CNRS, Grenoble, France
| |
Collapse
|
14
|
Zhang T, Jiang Z, Rappe AM. Hydrogenation of Covalent Organic Framework Induces Conjugated π Bonds and Electronic Topological Transition to Enhance Hydrogen Evolution Catalysis. J Am Chem Soc 2024; 146:15488-15495. [PMID: 38776284 DOI: 10.1021/jacs.4c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Recently, many topological materials have been discovered as promising electrocatalysts in chemical conversion processes and energy storage. However, it remains unclear how the topological electronic states specifically modulate the catalytic reaction. Here, the two-dimensional metal phthalocyanine-based covalent organic framework (MPc-COF) is studied by ab initio thermodynamic calculations to clearly reveal the promotional effect on the electrochemical hydrogen evolution reaction (HER) induced by topological gapless bands (TGBs). We find that the prehydrogenated (and fluorinated) H4CdPc-COF(F) shows the best HER performance, with 0.016 V (near zero) overpotential. By tracking changes to the electronic structure and free energy as the prehydrogenation and HER processes occur, we are able to separately attribute the high HER efficiency in part due to the increase of the electron bath by donating electrons to the conjugated π bonds and also to the existence of TGBs. Specifically, the significant catalytic promotion by TGBs is proven to decrease the free energy by 0.218 eV to near zero. When the TGBs are destroyed, e.g., by replacing N with P and opening a band gap, the HER efficiency is reduced. This study opens avenues for deterministically harnessing topological band features to improve electrocatalysis.
Collapse
Affiliation(s)
- Tan Zhang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Zhen Jiang
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
15
|
Wang H, Aslam MK, Nie Z, Yang K, Li X, Chen S, Li Q, Chao D, Duan J. Dual-Anion Regulation for Reversible and Energetic Aqueous Zn-CO 2 Batteries. SMALL METHODS 2024; 8:e2300867. [PMID: 37904326 DOI: 10.1002/smtd.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Indexed: 11/01/2023]
Abstract
Aqueous Zn-CO2 batteries can not only convert CO2 into high-value chemicals but also store/output electric energy for external use. However, their performance is limited by sluggish and complicated CO2 electroreduction at the cathode. Herein, a dual-anion regulated Bi electrocatalyst is developed to selectively reduce CO2 to formate with a Faradaic efficiency of up to 97% at a large current density of 250 mA cm-2. With O and/or F, the rate-determine step of CO2 electroreduction has been manipulated (from the first hydrogenation to *HCOOH desorption step) with a reduced energy barrier. Significantly, the fabricated Zn-CO2 battery exhibits a high discharge voltage of 1.2 V, optimal power density of 4.51 mW cm-2, remarkable energy density of 802 Wh kg-1, and energy-conversion efficiency of 70.74%, stability up to 200 cycles and 68 h. This study provides possible strategies to fabricate reversible and energetic aqueous Zn-CO2 batteries by addressing cathodic problems.
Collapse
Affiliation(s)
- Herui Wang
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Muhammad Kashif Aslam
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zhihao Nie
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Kang Yang
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Xinran Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Sheng Chen
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Qiang Li
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials College of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Jingjing Duan
- School of Energy and Power Engineering, MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
16
|
Jiang M, Wang H, Zhu M, Luo X, He Y, Wang M, Wu C, Zhang L, Li X, Liao X, Jiang Z, Jin Z. Review on strategies for improving the added value and expanding the scope of CO 2 electroreduction products. Chem Soc Rev 2024; 53:5149-5189. [PMID: 38566609 DOI: 10.1039/d3cs00857f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The electrochemical reduction of CO2 into value-added chemicals has been explored as a promising solution to realize carbon neutrality and inhibit global warming. This involves utilizing the electrochemical CO2 reduction reaction (CO2RR) to produce a variety of single-carbon (C1) and multi-carbon (C2+) products. Additionally, the electrolyte solution in the CO2RR system can be enriched with nitrogen sources (such as NO3-, NO2-, N2, or NO) to enable the synthesis of organonitrogen compounds via C-N coupling reactions. However, the electrochemical conversion of CO2 into valuable chemicals still faces challenges in terms of low product yield, poor faradaic efficiency (FE), and unclear understanding of the reaction mechanism. This review summarizes the promising strategies aimed at achieving selective production of diverse carbon-containing products, including CO, formate, hydrocarbons, alcohols, and organonitrogen compounds. These approaches involve the rational design of electrocatalysts and the construction of coupled electrocatalytic reaction systems. Moreover, this review presents the underlying reaction mechanisms, identifies the existing challenges, and highlights the prospects of the electrosynthesis processes. The aim is to offer valuable insights and guidance for future research on the electrocatalytic conversion of CO2 into carbon-containing products of enhanced value-added potential.
Collapse
Affiliation(s)
- Minghang Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Huaizhu Wang
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Mengfei Zhu
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| | - Xiaojun Luo
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Yi He
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Mengjun Wang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Caijun Wu
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Liyun Zhang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
| | - Xiao Li
- College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi, 537000, China.
| | - Xuemei Liao
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhenju Jiang
- Department of Chemistry, School of Science, Xihua University, Chengdu, Sichuan 610039, China.
- School of Food and Biological Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Zhong Jin
- State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
17
|
Guo Z, Zhou P, Jiang L, Liu S, Yang Y, Li Z, Wu P, Zhang Z, Li H. Electron Localization-Triggered Proton Pumping Toward Cu Single Atoms for Electrochemical CO 2 Methanation of Unprecedented Selectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311149. [PMID: 38153318 DOI: 10.1002/adma.202311149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Slow multi-proton coupled electron transfer kinetics and unexpected desorption of intermediates severely hinder the selectivity of CO2 methanation. In this work, a one-stone-two-bird strategy of pumping protons and improving adsorption configuration/capability enabled by electron localization is developed to be highly efficient for CH4 electrosynthesis over Cu single atoms anchored on bismuth vacancies of BiVO4 (Bi1-xVO4─Cu), with superior kinetic isotope effect and high CH4 Faraday efficiency (92%), far outperforming state-of-the-art electrocatalysts for CO2 methanation. Control experiments and theoretical calculations reveal that the bismuth vacancies (VBi) not only act as active sites for H2O dissociation but also induce electron transfer toward Cu single-atom sites. The VBi-induced electron localization pumps *H from VBi sites to Cu single atoms, significantly promoting the generation and stabilization of the pivotal intermediate (*CHO) for highly selective CH4 electrosynthesis. The metal vacancies as new initiators show enormous potential in the proton transfer-involved hydrogenative conversion processes.
Collapse
Affiliation(s)
- Zhenyan Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Peng Zhou
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Liqun Jiang
- Guangdong Engineering Laboratory of Biomass High-value Utilization, Guangdong Plant Fiber Comprehensive Utilization Engineering Technology Research and Development Center, Guangzhou Key Laboratory of Biomass Comprehensive Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Shengqi Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Ying Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zhengyi Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Peidong Wu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education, South-Central University for Nationalities, Wuhan, 430074, China
| | - Hu Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, Guizhou, 550025, China
| |
Collapse
|
18
|
Chen W, Jin X, Zhang L, Wang L, Shi J. Modulating the Structure and Composition of Single-Atom Electrocatalysts for CO 2 reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304424. [PMID: 38044311 PMCID: PMC10916602 DOI: 10.1002/advs.202304424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/05/2023] [Indexed: 12/05/2023]
Abstract
Electrochemical CO2 reduction reaction (eCO2 RR) is a promising strategy to achieve carbon cycling by converting CO2 into value-added products under mild reaction conditions. Recently, single-atom catalysts (SACs) have shown enormous potential in eCO2 RR due to their high utilization of metal atoms and flexible coordination structures. In this work, the recent progress in SACs for eCO2 RR is outlined, with detailed discussions on the interaction between active sites and CO2 , especially the adsorption/activation behavior of CO2 and the effects of the electronic structure of SACs on eCO2 RR. Three perspectives form the starting point: 1) Important factors of SACs for eCO2 RR; 2) Typical SACs for eCO2 RR; 3) eCO2 RR toward valuable products. First, how different modification strategies can change the electronic structure of SACs to improve catalytic performance is discussed; Second, SACs with diverse supports and how supports assist active sites to undergo catalytic reaction are introduced; Finally, according to various valuable products from eCO2 RR, the reaction mechanism and measures which can be taken to improve the selectivity of eCO2 RR are discussed. Hopefully, this work can provide a comprehensive understanding of SACs for eCO2 RR and spark innovative design and modification ideas to develop highly efficient SACs for CO2 conversion to various valuable fuels/chemicals.
Collapse
Affiliation(s)
- Weiren Chen
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Xixiong Jin
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| | - Lingxia Zhang
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of Sciences1 Sub‐lane XiangshanHangzhou310024P. R. China
| | - Lianzhou Wang
- Nanomaterials CentreSchool of Chemical Engineering and Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQLD4072Australia
| | - Jianlin Shi
- Shanghai Institute of CeramicsChinese Academy of Sciences1295 Dingxi RoadShanghai200050P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences19A Yuquan RoadBeijing100049P. R. China
| |
Collapse
|
19
|
Shao P, Wan YM, Yi L, Chen S, Zhang HX, Zhang J. Enhancing Electroreduction CO 2 to Hydrocarbons via Tandem Electrocatalysis by Incorporation Cu NPs in Boron Imidazolate Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305199. [PMID: 37775943 DOI: 10.1002/smll.202305199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/15/2023] [Indexed: 10/01/2023]
Abstract
Due to the higher value of deeply-reduced products, electrocatalytic CO2 reduction reaction (CO2 RR) to multi-electron-transfer products has received more attention. One attractive strategy is to decouple individual steps within the complicated pathway via multi-component catalysts design in the concept of tandem catalysts. Here, a composite of Cu@BIF-144(Zn) (BIF = boron imidazolate framework) is synthesized by using an anion framework BIF-144(Zn) as host to impregnate Cu2+ ions that are further reduced to Cu nanoparticles (NPs) via in situ electrochemical transformation. Due to the microenvironment modulation by functional BH(im)3 - on the pore surfaces, the Cu@BIF-144(Zn) catalyst exhibits a perfect synergetic effect between the BIF-144(Zn) host and the Cu NP guest during CO2 RR. Electrochemistry results show that Cu@BIF-144(Zn) catalysts can effectively enhance the selectivity and activity for the CO2 reduction to multi-electron-transfer products, with the maximum FECH4 value of 41.8% at -1.6 V and FEC2H4 value of 12.9% at -1.5 V versus RHE. The Cu@BIF-144(Zn) tandem catalyst with CO-rich microenvironment generated by the Zn catalytic center in the BIF-144(Zn) skeleton enhanced deep reduction on the incorporated Cu NPs for the CO2 RR to multi-electron-transfer products.
Collapse
Affiliation(s)
- Ping Shao
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yu-Mei Wan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Luocai Yi
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Shumei Chen
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Hai-Xia Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
20
|
Wang H, Deng N, Li X, Chen Y, Tian Y, Cheng B, Kang W. Recent insights on the use of modified Zn-based catalysts in eCO 2RR. NANOSCALE 2024; 16:2121-2168. [PMID: 38206085 DOI: 10.1039/d3nr05344j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Converting CO2 into valuable chemicals can provide a new path to mitigate the greenhouse effect, achieving the aim of "carbon neutrality" and "carbon peaking". Among numerous electrocatalysts, Zn-based materials are widely distributed and cheap, making them one of the most promising electrocatalyst materials to replace noble metal catalysts. Moreover, the Zn metal itself has a certain selectivity for CO. After appropriate modification, such as oxide derivatization, structural reorganization, reconstruction of the surfaces, heteroatom doping, and so on, the Zn-based electrocatalysts can expose more active sites and adjust the d-band center or electronic structure, and the FE and stability of them can be effectively improved, and they can even convert CO2 to multi-carbon products. This review aims to systematically describe the latest progresses of modified Zn-based electrocatalyst materials (including organic and inorganic materials) in the electrocatalytic carbon dioxide reduction reaction (eCO2RR). The applications of modified Zn-based catalysts in improving product selectivity, increasing current density and reducing the overpotential of the eCO2RR are reviewed. Moreover, this review describes the reasonable selection and good structural design of Zn-based catalysts, presents the characteristics of various modified zinc-based catalysts, and reveals the related catalytic mechanisms for the first time. Finally, the current status and development prospects of modified Zn-based catalysts in eCO2RR are summarized and discussed.
Collapse
Affiliation(s)
- Hao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Nanping Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Xinyi Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Yiyang Chen
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Ying Tian
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| |
Collapse
|
21
|
Pan F, Fang L, Li B, Yang X, O'Carroll T, Li H, Li T, Wang G, Chen KJ, Wu G. N and OH-Immobilized Cu 3 Clusters In Situ Reconstructed from Single-Metal Sites for Efficient CO 2 Electromethanation in Bicontinuous Mesochannels. J Am Chem Soc 2024; 146:1423-1434. [PMID: 38171910 DOI: 10.1021/jacs.3c10524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Cu-based catalysts hold promise for electrifying CO2 to produce methane, an extensively used fuel. However, the activity and selectivity remain insufficient due to the lack of catalyst design principles to steer complex CO2 reduction pathways. Herein, we develop a concept to design carbon-supported Cu catalysts by regulating Cu active sites' atomic-scale structures and engineering the carbon support's mesoscale architecture. This aims to provide a favorable local reaction microenvironment for a selective CO2 reduction pathway to methane. In situ X-ray absorption and Raman spectroscopy analyses reveal the dynamic reconstruction of nitrogen and hydroxyl-immobilized Cu3 (N,OH-Cu3) clusters derived from atomically dispersed Cu-N3 sites under realistic CO2 reduction conditions. The N,OH-Cu3 sites possess moderate *CO adsorption affinity and a low barrier for *CO hydrogenation, enabling intrinsically selective CO2-to-CH4 reduction compared to the C-C coupling with a high energy barrier. Importantly, a block copolymer-derived carbon fiber support with interconnected mesopores is constructed. The unique long-range mesochannels offer an H2O-deficient microenvironment and prolong the transport path for the CO intermediate, which could suppress the hydrogen evolution reaction and favor deep CO2 reduction toward methane formation. Thus, the newly developed catalyst consisting of in situ constructed N,OH-Cu3 active sites embedded into bicontinuous carbon mesochannels achieved an unprecedented Faradaic efficiency of 74.2% for the CO2 reduction to methane at an industry-level current density of 300 mA cm-2. This work explores effective concepts for steering desirable reaction pathways in complex interfacial catalytic systems via modulating active site structures at the atomic level and engineering pore architectures of supports on the mesoscale to create favorable microenvironments.
Collapse
Affiliation(s)
- Fuping Pan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China
| | - Lingzhe Fang
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
| | - Boyang Li
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Thomas O'Carroll
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Haoyang Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tao Li
- Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115, United States
- Chemistry and Material Science Group, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Guofeng Wang
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kai-Jie Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
22
|
Zhu HL, Huang JR, Zhang MD, Yu C, Liao PQ, Chen XM. Continuously Producing Highly Concentrated and Pure Acetic Acid Aqueous Solution via Direct Electroreduction of CO 2. J Am Chem Soc 2024; 146:1144-1152. [PMID: 38164902 DOI: 10.1021/jacs.3c12423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
It is crucial to achieve continuous production of highly concentrated and pure C2 chemicals through the electrochemical CO2 reduction reaction (eCO2RR) for artificial carbon cycling, yet it has remained unattainable until now. Despite one-pot tandem catalysis (dividing the eCO2RR to C2 into two catalytical reactions of CO2 to CO and CO to C2) offering the potential for significantly enhancing reaction efficiency, its mechanism remains unclear and its performance is unsatisfactory. Herein, we selected different CO2-to-CO catalysts and CO-to-acetate catalysts to construct several tandem catalytic systems for the eCO2RR to acetic acid. Among them, a tandem catalytic system comprising a covalent organic framework (PcNi-DMTP) and a metal-organic framework (MAF-2) as CO2-to-CO and CO-to-acetate catalysts, respectively, exhibited a faradaic efficiency of 51.2% with a current density of 410 mA cm-2 and an ultrahigh acetate yield rate of 2.72 mmol m-2 s-1 under neutral conditions. After electrolysis for 200 h, 1 cm-2 working electrode can continuously produce 20 mM acetic acid aqueous solution with a relative purity of 95+%. Comprehensive studies revealed that the performance of tandem catalysts is influenced not only by the CO supply-demand relationship and electron competition between the two catalytic processes in the one-pot tandem system but also by the performance of the CO-to-C2 catalyst under diluted CO conditions.
Collapse
Affiliation(s)
- Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Meng-Di Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Can Yu
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515021, China
| |
Collapse
|
23
|
Yang S, Wei Y, Li X, Mao J, Mei B, Xu Q, Li X, Jiang Z. Construction of High-Density Binuclear Site Catalysts from Double Framework Interfaces at the Cooling Stage. Angew Chem Int Ed Engl 2023; 62:e202313029. [PMID: 37823848 DOI: 10.1002/anie.202313029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/13/2023]
Abstract
Low-nuclear site catalysts with dual atoms have the potential for applications in energy and catalysis chemistry. Understanding the formation mechanism of dual metal sites is crucial for optimizing local structures and designing desired binuclear sites catalysts. In this study, we demonstrate for the first time the formation process of dual atoms through the pyrolysis of the interface of a double framework using Zn atoms in metal-organic frameworks and Co atoms in covalent organic frameworks. We unambiguously revealed that the cooling stage is the key point to form the binuclear sites by employing the in situ synchrotron radiation X-ray absorption spectrum technique. The binuclear site catalysts show higher activity and selectivity than single dispersed atom catalysts for electrocatalytic oxygen reduction. This work guides us to synthesize and optimize the various binuclear sites for extensive catalytic applications.
Collapse
Affiliation(s)
- Shuai Yang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P.R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P.R. China
| | - Yao Wei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Xuewen Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jianing Mao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P.R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai, 201210, P.R. China
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P.R. China
| | - Zheng Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P.R. China
| |
Collapse
|
24
|
Sato S, Sekizawa K, Shirai S, Sakamoto N, Morikawa T. Enhanced performance of molecular electrocatalysts for CO 2 reduction in a flow cell following K + addition. SCIENCE ADVANCES 2023; 9:eadh9986. [PMID: 37939196 PMCID: PMC10631738 DOI: 10.1126/sciadv.adh9986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Electrocatalytic CO2 reduction is a key aspect of artificial photosynthesis systems designed to produce fuels. Although some molecular catalysts have good performance for CO2 reduction, these compounds also suffer from poor durability and energy efficiency. The present work demonstrates the improved CO2 reduction activity exhibited by molecular catalysts in a flow cell. These catalysts were composed of a cobalt-tetrapyridino-porphyrazine complex supported on carbon black together with potassium salt and were both stable and efficient. These systems were found to promote electrocatalytic CO2 reduction with a current density of 100 mA/cm2 and generated CO over at least 1 week with a selectivity of approximately 95%. The optimal catalyst gave a turnover number of 3,800,000 and an energy conversion efficiency of more than 62% even at 200 mA/cm2.
Collapse
Affiliation(s)
- Shunsuke Sato
- Toyota Central Research and Development Laboratories, Incorporated, Nagakute, Aichi 480-1192, Japan
| | - Keita Sekizawa
- Toyota Central Research and Development Laboratories, Incorporated, Nagakute, Aichi 480-1192, Japan
| | - Soichi Shirai
- Toyota Central Research and Development Laboratories, Incorporated, Nagakute, Aichi 480-1192, Japan
| | - Naonari Sakamoto
- Toyota Central Research and Development Laboratories, Incorporated, Nagakute, Aichi 480-1192, Japan
| | - Takeshi Morikawa
- Toyota Central Research and Development Laboratories, Incorporated, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
25
|
An Z, Yang P, Duan D, Li J, Wan T, Kong Y, Caratzoulas S, Xiang S, Liu J, Huang L, Frenkel AI, Jiang YY, Long R, Li Z, Vlachos DG. Highly active, ultra-low loading single-atom iron catalysts for catalytic transfer hydrogenation. Nat Commun 2023; 14:6666. [PMID: 37863924 PMCID: PMC10589291 DOI: 10.1038/s41467-023-42337-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023] Open
Abstract
Highly effective and selective noble metal-free catalysts attract significant attention. Here, a single-atom iron catalyst is fabricated by saturated adsorption of trace iron onto zeolitic imidazolate framework-8 (ZIF-8) followed by pyrolysis. Its performance toward catalytic transfer hydrogenation of furfural is comparable to state-of-the-art catalysts and up to four orders higher than other Fe catalysts. Isotopic labeling experiments demonstrate an intermolecular hydride transfer mechanism. First principles simulations, spectroscopic calculations and experiments, and kinetic correlations reveal that the synthesis creates pyrrolic Fe(II)-plN3 as the active center whose flexibility manifested by being pulled out of the plane, enabled by defects, is crucial for collocating the reagents and allowing the chemistry to proceed. The catalyst catalyzes chemoselectively several substrates and possesses a unique trait whereby the chemistry is hindered for more acidic substrates than the hydrogen donors. This work paves the way toward noble-metal free single-atom catalysts for important chemical reactions.
Collapse
Affiliation(s)
- Zhidong An
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Piaoping Yang
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA
| | - Delong Duan
- School of Chemistry and Materials Science, Frontiers Science Center for Planetary Exploration and Emerging Technologies, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiang Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Tong Wan
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Yue Kong
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Stavros Caratzoulas
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA
| | - Shuting Xiang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Jiaxing Liu
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Lei Huang
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yuan-Ye Jiang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Ran Long
- School of Chemistry and Materials Science, Frontiers Science Center for Planetary Exploration and Emerging Technologies, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Zhenxing Li
- College of New Energy and Materials, China University of Petroleum (Beijing), Beijing, 102249, China.
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering and Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, DE, 19716, USA.
| |
Collapse
|
26
|
Wang J, Deng D, Wu Q, Liu M, Wang Y, Jiang J, Zheng X, Zheng H, Bai Y, Chen Y, Xiong X, Lei Y. Insight on Atomically Dispersed Cu Catalysts for Electrochemical CO 2 Reduction. ACS NANO 2023; 17:18688-18705. [PMID: 37725796 DOI: 10.1021/acsnano.3c07307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Electrochemical CO2 reduction (ECO2R) with renewable electricity is an advanced carbon conversion technology. At present, copper is the only metal to selectively convert CO2 into multicarbon (C2+) products. Among them, atomically dispersed (AD) Cu catalysts have received great attention due to the relatively single chemical environment, which are able to minimize the negative impact of morphology, valence state, and crystallographic properties, etc. on product selectivity. Furthermore, the completely exposed atomic Cu sites not only provide space and bonding electrons for the adsorption of reactants in favor of better catalytic activity but also provide an ideal platform for studying its reaction mechanism. This review summarizes the recent progress of AD Cu catalysts as a chemically tunable platform for ECO2R, including the atomic Cu sites dynamic evolution, the catalytic performance, and mechanism. Furthermore, the prospects and challenges of AD Cu catalysts for ECO2R are carefully discussed. We sincerely hope that this review can contribute to the rational design of AD Cu catalysts with enhanced performance for ECO2R.
Collapse
Affiliation(s)
- Jinxian Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Danni Deng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Qiumei Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Mengjie Liu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yuchao Wang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Jiabi Jiang
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Xinran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Huanran Zheng
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yu Bai
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yingbi Chen
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Xiang Xiong
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| | - Yongpeng Lei
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
27
|
Heng JM, Zhu HL, Zhao ZH, Yu C, Liao PQ, Chen XM. Dicopper(I) Sites Confined in a Single Metal-Organic Layer Boosting the Electroreduction of CO 2 to CH 4 in a Neutral Electrolyte. J Am Chem Soc 2023; 145:21672-21678. [PMID: 37732812 DOI: 10.1021/jacs.3c08571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
It is challenging and important to achieve high performance for an electrochemical CO2 reduction reaction (eCO2RR) to yield CH4 under neutral conditions. So far, most of the reported active sites for eCO2RR to yield CH4 are single metal sites; the performances are far below the commercial requirements. Herein, we reported a nanosheet metal-organic layer in single-layer, namely, [Cu2(obpy)2] (Cuobpy-SL, Hobpy = 1H-[2,2']bipyridinyl-6-one), possessing dicopper(I) sites for eCO2RR to yield CH4 in a neutral aqueous solution. Detailed examination of Cuobpy-SL revealed high performance for CH4 production with a faradic efficiency of 82(1)% and a current density of ∼90 mA cm-2 at -1.4 V vs. reversible hydrogen electrode (RHE). No obvious degradation was observed over 100 h of continuous operation, representing a remarkable performance to date. Mechanism studies showed that compared with the conventional single-copper sites and completely exposed dicopper(I) sites, the dicopper(I) sites in the confined space formed by the molecular stacking have a strong affinity to key C1 intermediates such as *CO, *CHO, and *CH2O to facilitate the CH4 production, yet inhibiting C-C coupling.
Collapse
Affiliation(s)
- Jin-Meng Heng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Can Yu
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
28
|
Yang J, Liu Q, Chen S, Ding X, Chen Y, Cai D, Wang X. Single-Atom and Dual-Atom Electrocatalysts: Synthesis and Applications. Chempluschem 2023; 88:e202300407. [PMID: 37666797 DOI: 10.1002/cplu.202300407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/06/2023]
Abstract
Distinguishing themselves from nanostructured catalysts, single-atom catalysts (SACs) typically consist of positively charged single metal and coordination atoms without any metal-metal bonds. Dual-atom catalysts (DACs) have emerged as extended family members of SACs in recent years. Both SACs and DACs possess characteristics that combine both homogeneous and heterogeneous catalysis, offering advantages such as uniform active sites and adjustable interactions with ligands, while also inheriting the high stability and recyclability associated with heterogeneous catalyst systems. They offer numerous advantages and are extensively utilized in the field of electrocatalysis, so they have emerged as one of the most prominent material research platforms in the direction of electrocatalysis. This review provides a comprehensive review of SACs and DACs in the field of electrocatalysis: encompassing economic production, elucidating electrocatalytic reaction pathways and associated mechanisms, uncovering structure-performance relationships, and addressing major challenges and opportunities within this domain. Our objective is to present novel ideas for developing advanced synthesis strategies, precisely controlling the microstructure of catalytic active sites, establishing accurate structure-activity relationships, unraveling potential mechanisms underlying electrocatalytic reactions, identifying more efficient reaction paths, and enhancing overall performance in electrocatalytic reactions.
Collapse
Affiliation(s)
- Jianjian Yang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Qiang Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Shian Chen
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Xiangnong Ding
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Yuqi Chen
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Dongsong Cai
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
| | - Xi Wang
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P. R. China
- Department of Physics, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| |
Collapse
|
29
|
Lin W, Lin J, Zhang X, Zhang L, Borse RA, Wang Y. Decoupled Artificial Photosynthesis via a Catalysis-Redox Coupled COF||BiVO 4 Photoelectrochemical Device. J Am Chem Soc 2023; 145:18141-18147. [PMID: 37549025 DOI: 10.1021/jacs.3c06687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Artificial photosynthesis is an attractive approach to direct fuel production from sunlight. However, the simultaneous O2 evolution reaction (OER) and CO2 reduction reaction (CDRR) present challenges for product separation and safety. Herein, we propose a strategy to temporally decouple artificial photosynthesis through photoelectrochemical energy storage. We utilized a covalent organic framework (DTCo-COF) with redox-active electron donors (-C-OH moieties) and catalytically active electron acceptors (cobalt-porphyrin) to enable reversible -C-OH/-C═O redox reaction and redox-promoted CO2-to-CO photoreduction. Integrating the COF photocathode with an OER photoanode in a photoelectrochemical device allows the effective storage of OER-generated electrons and protons by -C═O groups. These stored charges can be later employed for CDRR while regenerating -C═O to complete the loop, thus enabling on-demand and separate production of O2 or solar fuels. Our work sets the stage for advancements in decoupled artificial photosynthesis and the development of more efficient solar fuel production technologies.
Collapse
Affiliation(s)
- Wan Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Xiang Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Linlin Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Rahul Anil Borse
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, P. R. China
| |
Collapse
|
30
|
Ren X, Zhao J, Li X, Shao J, Pan B, Salamé A, Boutin E, Groizard T, Wang S, Ding J, Zhang X, Huang WY, Zeng WJ, Liu C, Li Y, Hung SF, Huang Y, Robert M, Liu B. In-situ spectroscopic probe of the intrinsic structure feature of single-atom center in electrochemical CO/CO 2 reduction to methanol. Nat Commun 2023; 14:3401. [PMID: 37296132 DOI: 10.1038/s41467-023-39153-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
While exploring the process of CO/CO2 electroreduction (COxRR) is of great significance to achieve carbon recycling, deciphering reaction mechanisms so as to further design catalytic systems able to overcome sluggish kinetics remains challenging. In this work, a model single-Co-atom catalyst with well-defined coordination structure is developed and employed as a platform to unravel the underlying reaction mechanism of COxRR. The as-prepared single-Co-atom catalyst exhibits a maximum methanol Faradaic efficiency as high as 65% at 30 mA/cm2 in a membrane electrode assembly electrolyzer, while on the contrary, the reduction pathway of CO2 to methanol is strongly decreased in CO2RR. In-situ X-ray absorption and Fourier-transform infrared spectroscopies point to a different adsorption configuration of *CO intermediate in CORR as compared to that in CO2RR, with a weaker stretching vibration of the C-O bond in the former case. Theoretical calculations further evidence the low energy barrier for the formation of a H-CoPc-CO- species, which is a critical factor in promoting the electrochemical reduction of CO to methanol.
Collapse
Affiliation(s)
- Xinyi Ren
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Zhao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xuning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Junming Shao
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Binbin Pan
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Aude Salamé
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Etienne Boutin
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Thomas Groizard
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Shifu Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Jie Ding
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China
| | - Xiong Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen-Yang Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Chengyu Liu
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France
| | - Yanguang Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China
- Jiangsu Key Laboratory for Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan.
| | - Yanqiang Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Marc Robert
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS, F-75006, Paris, France.
- Institut Universitaire de France (IUF), F-75005, Paris, France.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, 999077, China.
| |
Collapse
|
31
|
Wang Y, Zheng M, Zhou X, Pan Q, Li M. CO Electroreduction Mechanism on Single-Atom Zn (101) Surfaces: Pathway to C2 Products. Molecules 2023; 28:4606. [PMID: 37375161 DOI: 10.3390/molecules28124606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Electrocatalytic reduction of carbon dioxide (CO2RR) employs electricity to store renewable energy in the form of reduction products. The activity and selectivity of the reaction depend on the inherent properties of electrode materials. Single-atom alloys (SAAs) exhibit high atomic utilization efficiency and unique catalytic activity, making them promising alternatives to precious metal catalysts. In this study, density functional theory (DFT) was employed to predict stability and high catalytic activity of Cu/Zn (101) and Pd/Zn (101) catalysts in the electrochemical environment at the single-atom reaction site. The mechanism of C2 products (glyoxal, acetaldehyde, ethylene, and ethane) produced by electrochemical reduction on the surface was elucidated. The C-C coupling process occurs through the CO dimerization mechanism, and the formation of the *CHOCO intermediate proves beneficial, as it inhibits both HER and CO protonation. Furthermore, the synergistic effect between single atoms and Zn results in a distinct adsorption behavior of intermediates compared to traditional metals, giving SAAs unique selectivity towards the C2 mechanism. At lower voltages, the Zn (101) single-atom alloy demonstrates the most advantageous performance in generating ethane on the surface, while acetaldehyde and ethylene exhibit significant certain potential. These findings establish a theoretical foundation for the design of more efficient and selective carbon dioxide catalysts.
Collapse
Affiliation(s)
- Yixin Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Ming Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xin Zhou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Qingjiang Pan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| | - Mingxia Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
32
|
Hermawan A, Amrillah T, Alviani VN, Raharjo J, Seh ZW, Tsuchiya N. Upcycling air pollutants to fuels and chemicals via electrochemical reduction technology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117477. [PMID: 36780811 DOI: 10.1016/j.jenvman.2023.117477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
The intensification of fossil fuel usage results in significant air pollution levels. Efforts have been put into developing efficient technologies capable of converting air pollution into valuable products, including fuels and valuable chemicals (e.g., CO2 to hydrocarbon and syngas and NOx to ammonia). Among the strategic efforts to mitigate the excessive concentration of CO2 and NOx pollutants in the atmosphere, the electrochemical reduction technology of CO2 (CO2RR) and NOx (NOxRR) emerges as one of the most promising approaches. It is even more attractive if CO2RR and NOxRR are paired with renewables to store intermittent electricity in the form of chemical feedstocks. This review provides an overview of the electrochemical reduction process to convert CO2 to C1 and/or C2+ chemicals and NOx to ammonia (NH3) with a focus on electrocatalysts, electrolytes, electrolyzer, and catalytic reactor designs toward highly selective electrochemical conversion of the desired products. While the attempts in these aspects are enormous, economic consideration and environmental feasibility for actual implementation are not comprehensively provided. We discuss CO2RR and NOxRR from the life cycle and techno-economic analyses to perceive the feasibility of the current achievements. The remaining challenges associated with the industrial implementation of electrochemical CO2 and NOx reduction are additionally provided.
Collapse
Affiliation(s)
- Angga Hermawan
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang City, Banten, 15314, Indonesia.
| | - Tahta Amrillah
- Department of Nanotechnology, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Vani Novita Alviani
- Graduate School of Environmental Studies, Tohoku University, Sendai, 9808579, Japan
| | - Jarot Raharjo
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang City, Banten, 15314, Indonesia
| | - Zhi Wei Seh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, 138634, Singapore
| | - Noriyoshi Tsuchiya
- Graduate School of Environmental Studies, Tohoku University, Sendai, 9808579, Japan
| |
Collapse
|
33
|
Hu Y, Wu T, Li Y, Zhang Y, Lin W. Mechanism of CO 2 photoreduction by selenium-doped carbon nitride with cobalt clusters as cocatalysts. Phys Chem Chem Phys 2023; 25:8705-8713. [PMID: 36896660 DOI: 10.1039/d2cp05872c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Doping is an efficient strategy for improving the photocatalytic activity and tuning the electronic structure of carbon nitride. Selenium-doped melon carbon nitride (Se-doped melon CN) as a promising photocatalyst for CO2 reduction is investigated using density functional theory calculations. In addition, considering the special role of a cocatalyst in CO2 reduction, we have explored the electronic and optical properties of Co4 clusters loaded on the Se-doped melon CN surface. After loading cobalt clusters, CO2 activation is significantly improved, with preference for the 8-electron product CH4, as the 2-electron products have higher desorption energies. Overall, this work provides a microscopic understanding of the CO2 reduction mechanism on Se-doped melon CN with cobalt as the co-catalyst.
Collapse
Affiliation(s)
- Yuanyuan Hu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Ting Wu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
| | - Yi Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yongfan Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, P. R. China.
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
34
|
Tan X, Zhuang Z, Zhang Y, Sun K, Chen C. Rational design of atomic site catalysts for electrochemical CO 2 reduction. Chem Commun (Camb) 2023; 59:2682-2696. [PMID: 36749619 DOI: 10.1039/d2cc06503g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Renewable-energy-powered electrochemical CO2 reduction (ECR) is a promising way of transforming CO2 to value-added products and achieving sustainable carbon recycling. By virtue of the extremely high exposure rate of active sites and excellent catalytic performance, atomic site catalysts (ASCs), including single-atomic site catalysts and diatomic site catalysts, have attracted considerable attention. In this feature article, we focus on the rational design strategies of ASCs developed in recent years for the ECR reaction. The influence of these strategies on the activity and selectivity of ASCs for ECR is further discussed in terms of electronic regulation, synergistic activation, microenvironmental regulation and tandem catalytic system construction. Finally, the challenges and future directions are indicated. We hope that this feature article will be helpful in the development of novel ASCs for ECR.
Collapse
Affiliation(s)
- Xin Tan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zewen Zhuang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China. .,College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yu Zhang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Kaian Sun
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Yan T, Wang P, Sun WY. Single-Site Metal-Organic Framework and Copper Foil Tandem Catalyst for Highly Selective CO 2 Electroreduction to C 2 H 4. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206070. [PMID: 36538751 DOI: 10.1002/smll.202206070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Tandem catalysis is a promising way to break the limitation of linear scaling relationship for enhancing efficiency, and the desired tandem catalysts for electrochemical CO2 reduction reaction (CO2 RR) are urgent to be developed. Here, a tandem electrocatalyst created by combining Cu foil (CF) with a single-site Cu(II) metal-organic framework (MOF), named as Cu-MOF-CF, to realize improved electrochemical CO2 RR performance, is reported. The Cu-MOF-CF shows suppression of CH4 , great increase in C2 H4 selectivity (48.6%), and partial current density of C2 H4 at -1.11 V versus reversible hydrogen electrode. The outstanding performance of Cu-MOF-CF for CO2 RR results from the improved microenvironment of the Cu active sites that inhibits CH4 production, more CO intermediate produced by single-site Cu-MOF in situ for CF, and the enlarged active surface area by porous Cu-MOF. This work provides a strategy to combine MOFs with copper-based electrocatalysts to establish high-efficiency electrocatalytic CO2 RR.
Collapse
Affiliation(s)
- Tingting Yan
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Peng Wang
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| | - Wei-Yin Sun
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
36
|
Wang C, Lv Z, Yang W, Feng X, Wang B. A rational design of functional porous frameworks for electrocatalytic CO 2 reduction reaction. Chem Soc Rev 2023; 52:1382-1427. [PMID: 36723190 DOI: 10.1039/d2cs00843b] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The electrocatalytic CO2 reduction reaction (ECO2RR) is considered one of the approaches with the most potential to achieve lower carbon emissions in the future, but a huge gap still exists between the current ECO2RR technology and industrial applications. Therefore, the design and preparation of catalysts with satisfactory activity, selectivity and stability for the ECO2RR have attracted extensive attention. As a classic type of functional porous framework, crystalline porous materials (e.g., metal organic frameworks (MOFs) and covalent organic frameworks (COFs)) and derived porous materials (e.g., MOF/COF composites and pyrolysates) have been regarded as superior catalysts for the ECO2RR due to their advantages such as designable porosity, modifiable skeleton, flexible active site structure, regulable charge transfer pathway and controllable morphology. Meanwhile, with the rapid development of nano-characterization and theoretical calculation technologies, the structure-activity relationships of functional porous frameworks have been comprehensively considered, i.e., metallic element type, local coordination environment, and microstructure, corresponding to selectivity, activity and mass transfer efficiency for the ECO2RR, respectively. In this review, the rational design strategy for functional porous frameworks is briefly but precisely generalized based on three key factors including metallic element type, local coordination environment, and microstructure. Then, details about the structure-activity relationships for functional porous frameworks are illustrated in the order of MOFs, COFs, composites and pyrolysates to analyze the effect of the above-mentioned three factors on their ECO2RR performance. Finally, the challenges and perspectives of functional porous frameworks for the further development of the ECO2RR are reasonably proposed, aiming to offer insights for future studies in this intriguing and significant research field.
Collapse
Affiliation(s)
- Changli Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Zunhang Lv
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Wenxiu Yang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Xiao Feng
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| | - Bo Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Advanced Technology Research Institute (Jinan), Advanced Research Institute of Multidisciplinary Science, School of Materials Science and Engineering, School of Chemistry and Chemical Engineering Beijing Institute of Technology No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China.
| |
Collapse
|
37
|
Abstract
ConspectusPorous materials have wide applications in the fields of catalysis, separation, and energy conversion and storage. Porous materials contain pores that are specifically designed to achieve expectant performance. The solid phases in porous materials are normally completely continuous to form the basic porous frame while the pores are fluid phase within the solid phase. Single crystals are macroscopic materials in three spatial dimensions with the constituent atoms, ions, molecules, or molecular assemblies arranged in an orderly repeating pattern with the ordered structures. The growth of single crystals is indeed a process to arrange these constituents in three dimensions into a repeating pattern within the materials. Today the applications of single crystals are exponentially growing in wide fields, and single crystals are therefore unacknowledged as the pillars of our modern technology. Introducing porosity into single crystals would be expected to create a new kind of porous material in which the basic porous frames are single-crystalline and free of grain boundaries. The structural symmetry is completely maintained within the basic porous frames which are a continuous solid phase, but it is completely lost inside the pores. The porous architecture is free of grain boundaries, and the fully interconnected skeletons are in single-crystalline states within the basic porous frames. Single crystals with porosities can therefore be considered to be a new kind of porous material, but they are single-crystal-like because the structural symmetry is maintained only in the skeletons and completely lost within the pores. We therefore call them porous single crystals or consider them in porous single-crystalline states to stand out with their structural features. Porous single crystals at the macroscale combine the advantages of porous materials and single crystals to incorporate both porosity and structural coherence in a porous architecture, leading to invaluable opportunities to alter the material's properties by controlling the unique structural features to enhance its performance. However, the growth of single crystals in three dimensions reduces the formation of porosities, leading to a fundamental challenge for introducing porosity into single crystals in a traditional process of crystal growth. In this Account, we report the rational design, growth methodology, and microstructural engineering of porous single crystals in a solid-solid transformation. We rationally design a high-density mother phase in a single-crystalline state and transform it into a low-density new phase in a single-crystalline state to introduce porosities into single crystals even incorporating the removal of specific compositions from the mother phase during the growth of porous single crystals. The porosity can be tailored by controlling the change in relative densities from the mother phase to the porous single crystals while the pore size can be engineered by controlling the fabrication conditions. Considering the unique structural features, we explore their functionalities and applications in photoelectrochemical energy conversion, electrochemical alkane conversion, and electrochemical energy storage. We believe that the materials, if tailored into porous single-crystalline states, would not only find a broad range of applications in other fields but also enable a new path for material innovations.
Collapse
Affiliation(s)
- Wenting Li
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Kui Xie
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
38
|
Zhao J, Lyu H, Wang Z, Ma C, Jia S, Kong W, Shen B. Phthalocyanine and porphyrin catalysts for electrocatalytic reduction of carbon dioxide: progress in regulation strategies and applications. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
39
|
Cao Y, Shi L, Li M, You B, Liao R. Deciphering the Selectivity of the Electrochemical CO 2 Reduction to CO by a Cobalt Porphyrin Catalyst in Neutral Aqueous Solution: Insights from DFT Calculations. ChemistryOpen 2023; 12:e202200254. [PMID: 36744721 PMCID: PMC9900731 DOI: 10.1002/open.202200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/09/2023] [Indexed: 02/07/2023] Open
Abstract
Density functional theory (DFT) calculations were conducted to investigate the cobalt porphyrin-catalyzed electro-reduction of CO2 to CO in an aqueous solution. The results suggest that CoII -porphyrin (CoII -L) undertakes a ligand-based reduction to generate the active species CoII -L⋅- , where the CoII center antiferromagnetically interacts with the ligand radical anion. CoII -L⋅- then performs a nucleophilic attack on CO2 , followed by protonation and a reduction to give CoII -L-COOH. An intermolecular proton transfer leads to the heterolytic cleavage of the C-O bond, producing intermediate CoII -L-CO. Subsequently, CO is released from CoII -L-CO, and CoII -L is regenerated to catalyze the next cycle. The rate-determining step of this CO2 RR is the nucleophilic attack on CO2 by CoII -L⋅- , with a total barrier of 20.7 kcal mol-1 . The competing hydrogen evolution reaction is associated with a higher total barrier. A computational investigation regarding the substituent effects of the catalyst indicates that the CoPor-R3 complex is likely to display the highest activity and selectivity as a molecular catalyst.
Collapse
Affiliation(s)
- Yu‐Chen Cao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHubei Key Laboratory of Materials Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Le‐Le Shi
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHubei Key Laboratory of Materials Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHubei Key Laboratory of Materials Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHubei Key Laboratory of Materials Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| | - Rong‐Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Bioinorganic Chemistry and Materia MedicaHubei Key Laboratory of Materials Chemistry and Service FailureSchool of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhan430074P. R. China
| |
Collapse
|
40
|
Hou X, Ding J, Liu W, Zhang S, Luo J, Liu X. Asymmetric Coordination Environment Engineering of Atomic Catalysts for CO 2 Reduction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13020309. [PMID: 36678060 PMCID: PMC9866045 DOI: 10.3390/nano13020309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 05/14/2023]
Abstract
Single-atom catalysts (SACs) have emerged as well-known catalysts in renewable energy storage and conversion systems. Several supports have been developed for stabilizing single-atom catalytic sites, e.g., organic-, metal-, and carbonaceous matrices. Noticeably, the metal species and their local atomic coordination environments have a strong influence on the electrocatalytic capabilities of metal atom active centers. In particular, asymmetric atom electrocatalysts exhibit unique properties and an unexpected carbon dioxide reduction reaction (CO2RR) performance different from those of traditional metal-N4 sites. This review summarizes the recent development of asymmetric atom sites for the CO2RR with emphasis on the coordination structure regulation strategies and their effects on CO2RR performance. Ultimately, several scientific possibilities are proffered with the aim of further expanding and deepening the advancement of asymmetric atom electrocatalysts for the CO2RR.
Collapse
Affiliation(s)
- Xianghua Hou
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin 300384, China
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Nanning 530004, China
| | - Junyang Ding
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin 300384, China
- Correspondence: (J.D.); (W.L.); (X.L.)
| | - Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Correspondence: (J.D.); (W.L.); (X.L.)
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Luo
- Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies, School of Materials, Tianjin University of Technology, Tianjin 300384, China
| | - Xijun Liu
- MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, School of Resource, Environments and Materials, Nanning 530004, China
- Correspondence: (J.D.); (W.L.); (X.L.)
| |
Collapse
|
41
|
Rodenas T, Prieto G. Solid Single-Atom Catalysts in Tandem Catalysis: Lookout, Opportunities and Challenges. ChemCatChem 2022; 14:e202201058. [PMID: 37063812 PMCID: PMC10099464 DOI: 10.1002/cctc.202201058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Indexed: 11/13/2022]
Abstract
Tandem catalysis stands out as a major instrument towards the intensification of existing and future chemical processes. Initially formulated in the field of homogeneous catalysis, the concept relies on the single-pot integration of two (or more) catalysts showing high specificity for mechanistically decoupled reactions, while being operational and compatible under a single set of operation conditions. Isolated metal atoms stabilized on solid carriers in single-atom catalysts (SACs) hold the potential to reconcile the high reaction specificities of mononuclear sites in molecular catalysts with an intrinsic catalyst compartmentalization on inorganic matrices. Understandably, SACs have started to be considered as platforms in tandem catalysis. Tandem (electro)catalytic processes based on SACs have been showcased recently. While this sets excellent prospects for the expansion of this research subarea, challenges are faced, particularly as to the verification of the tandem nature of the processes.
Collapse
Affiliation(s)
- Tania Rodenas
- ITQ Instituto de Tecnología QuímicaUniversitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC)Av. Los Naranjos s/n46022ValenciaSpain
| | - Gonzalo Prieto
- ITQ Instituto de Tecnología QuímicaUniversitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC)Av. Los Naranjos s/n46022ValenciaSpain
| |
Collapse
|
42
|
Zhao Y, Yuan Q, Fan M, Wang A, Sun K, Wang Z, Jiang J. Fabricating pyridinic N-B sites in porous carbon as efficient metal-free electrocatalyst in conversion CO2 into CH4. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Liu C, Zhang XD, Huang JM, Guan MX, Xu M, Gu ZY. In Situ Reconstruction of Cu–N Coordinated MOFs to Generate Dispersive Cu/Cu 2O Nanoclusters for Selective Electroreduction of CO 2 to C 2H 4. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chang Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Xiang-Da Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Jian-Mei Huang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Meng-Xue Guan
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
44
|
Wang M, Nikolaou V, Loiudice A, Sharp ID, Llobet A, Buonsanti R. Tandem electrocatalytic CO 2 reduction with Fe-porphyrins and Cu nanocubes enhances ethylene production. Chem Sci 2022; 13:12673-12680. [PMID: 36519057 PMCID: PMC9645407 DOI: 10.1039/d2sc04794b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/18/2022] [Indexed: 08/23/2024] Open
Abstract
Copper-based tandem schemes have emerged as promising strategies to promote the formation of multi-carbon products in the electrocatalytic CO2 reduction reaction. In such approaches, the CO-generating component of the tandem catalyst increases the local concentration of CO and thereby enhances the intrinsic carbon-carbon (C-C) coupling on copper. However, the optimal characteristics of the CO-generating catalyst for maximizing the C2 production are currently unknown. In this work, we developed tunable tandem catalysts comprising iron porphyrin (Fe-Por), as the CO-generating component, and Cu nanocubes (Cucub) to understand how the turnover frequency for CO (TOFCO) of the molecular catalysts impacts the C-C coupling on the Cu surface. First, we tuned the TOFCO of the Fe-Por by varying the number of orbitals involved in the π-system. Then, we coupled these molecular catalysts with the Cucub and assessed the current densities and faradaic efficiencies. We discovered that all of the designed Fe-Por boost ethylene production. The most efficient Cucub/Fe-Por tandem catalyst was the one including the Fe-Por with the highest TOFCO and exhibited a nearly 22-fold increase in the ethylene selectivity and 100 mV positive shift of the onset potential with respect to the pristine Cucub. These results reveal that coupling the TOFCO tunability of molecular catalysts with copper nanocatalysts opens up new possibilities towards the development of Cu-based catalysts with enhanced selectivity for multi-carbon product generation at low overpotential.
Collapse
Affiliation(s)
- Min Wang
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| | - Vasilis Nikolaou
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) 43007 Tarragona Spain
| | - Anna Loiudice
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
- Walter Schottky Institute and Physics Department, Technische Universität München Am Coulombwall 4 85748 Garching Germany
| | - Ian D Sharp
- Walter Schottky Institute and Physics Department, Technische Universität München Am Coulombwall 4 85748 Garching Germany
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST) 43007 Tarragona Spain
- Departament de Química, Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès 08193 Barcelona Spain
| | - Raffaella Buonsanti
- Laboratory of Nanochemistry for Energy (LNCE), Institute of Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne CH-1950 Sion Switzerland
| |
Collapse
|
45
|
Zang Y, Wei P, Li H, Gao D, Wang G. Catalyst Design for Electrolytic CO2 Reduction Toward Low-Carbon Fuels and Chemicals. ELECTROCHEM ENERGY R 2022. [DOI: 10.1007/s41918-022-00140-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Xie J, Xu W, Shu Y, Xu M, Xu J, Cao Z, Huang T, Li Y, Dong H. Computational insight into electro-catalytic reduction of carbon monoxide by two-dimensional metal-embedded poly-phthalocyanine. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
47
|
Shi LL, Li M, You B, Liao RZ. Theoretical Study on the Electro-Reduction of Carbon Dioxide to Methanol Catalyzed by Cobalt Phthalocyanine. Inorg Chem 2022; 61:16549-16564. [PMID: 36216788 DOI: 10.1021/acs.inorgchem.2c00739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Density functional theory (DFT) calculations have been conducted to investigate the mechanism of cobalt(II) tetraamino phthalocyanine (CoPc-NH2) catalyzed electro-reduction of CO2. Computational results show that the catalytically active species 1 (4[CoII(H4L)]0) is formed by a four-electron-four-proton reduction of the initial catalyst CoPc-NH2. Complex 1 can attack CO2 after a one-electron reduction to give a [CoIII-CO22-]- intermediate, followed by a protonation and a one-electron reduction to give intermediate [CoII-COOH]- (4). Complex 4 is then protonated on its hydroxyl group by a carbonic acid to generate the critical species 6 (CoIII-L•--CO), which can release the carbon monoxide as an intermediate (and also as a product). In parallel, complex 6 can go through a successive four-electron-four-proton reduction to produce the targeted product methanol without forming formaldehyde as an intermediate product. The high-lying π orbital and the low-lying π* orbital of the phthalocyanine endow the redox noninnocent nature of the ligand, which could be a dianion, a radical monoanion, or a radical trianion during the catalysis. The calculated results for the hydrogen evolution reaction indicate a higher energy barrier than the carbon dioxide reduction. This is consistent with the product distribution in the experiments. Additionally, the amino group on the phthalocyanine ligand was found to have a minor effect on the barriers of critical steps, and this accounts for the experimentally observed similar activity for these two catalysts, namely, CoPc-NH2 and CoPc.
Collapse
Affiliation(s)
- Le-Le Shi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Man Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan430074, China
| |
Collapse
|
48
|
Liang X, Fu N, Yao S, Li Z, Li Y. The Progress and Outlook of Metal Single-Atom-Site Catalysis. J Am Chem Soc 2022; 144:18155-18174. [PMID: 36175359 DOI: 10.1021/jacs.1c12642] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Single-atom-site catalysts (SASCs) featuring maximized atom utilization and isolated active sites have progressed tremendously in recent years as a highly prosperous branch of catalysis research. Varieties of SASCs have been developed that show excellent performance in many catalytic applications. The major goal of SASC research is to establish feasible synthetic strategies for the preparation of high-performance catalysts, to achieve an in-depth understanding of the active-site structures and catalytic mechanisms, and to develop practical catalysts with industrial value. This Perspective describes the up-to-date development of SASCs and related catalysts, such as dual-atom-site catalysts (DASCs) and nano-single-atom-site catalysts (NSASCs), analyzes the current challenges encountered by these catalysts for industrial applications, and proposes their possible future development path.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ninghua Fu
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Shuangchao Yao
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.,Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
49
|
Lv J, Yin R, Zhou L, Li J, Kikas R, Xu T, Wang Z, Jin H, Wang X, Wang S. Microenvironment Engineering for the Electrocatalytic CO
2
Reduction Reaction. Angew Chem Int Ed Engl 2022; 61:e202207252. [DOI: 10.1002/anie.202207252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jing‐Jing Lv
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Ruonan Yin
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Limin Zhou
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Jun Li
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Reddu Kikas
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Ting Xu
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Zheng‐Jun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Huile Jin
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| | - Xin Wang
- School of Chemical and Biomedical Engineering Nanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Shun Wang
- Key Laboratory of Carbon Materials of Zhejiang Province Institute of New Materials and Industrial Technologies Wenzhou University Wenzhou Zhejiang 325035 China
| |
Collapse
|
50
|
Shao B, Chen X, Xu YT, Li GQ, Zhong JP, Meng T, Zhang Z, Huang FP, Huang J. Low-potential-driven electrocatalytic reduction of CO2 to hydrocarbons by cobalt-based metal-organic nanosheets. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|