1
|
Zhao ZZ, Guo P, Pang X, Shu XZ. Nickel-Catalyzed Reductive Alkenylation of Enol Derivatives: A Versatile Tool for Alkene Construction. Acc Chem Res 2024. [PMID: 39486055 DOI: 10.1021/acs.accounts.4c00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
ConspectusKetone-to-alkene transformations are essential in organic synthesis, and transition-metal-catalyzed cross-coupling reactions involving enol derivatives have become powerful tools to achieve this goal. While substantial progress has been made in nucleophile-electrophile reactions, recent developments in nickel-catalyzed reductive alkenylation reactions have garnered increasing attention. These methods accommodate a broad range of functional groups such as aldehyde, ketone, amide, alcohol, alkyne, heterocycles, and organotin compounds, providing an efficient strategy to access structurally diverse alkenes. This Account primarily highlights the contributions from our laboratory to this growing field while also acknowledging key contributions from other researchers.Our early efforts in this area focused on coupling radical-active substrates, such as α-chloroboronates. This method follows the conventional radical chain mechanism, resulting in facile access to valuable allylboronates. Encouraged by these promising results, we subsequently expanded the substrate scope to encompass radical-inactive compounds. By developing new strategies for controlling cross-selectivity, we enabled the coupling of Csp3 electrophiles (e.g., alcohols and sulfonates), Csp2 electrophiles (e.g., bromoalkenylboronates and acyl fluorides), and heavier group-14 electrophiles like chlorosilanes and chlorogermanes with alkenyl triflates. These advances have provided efficient synthetic routes to a wide range of valuable products, including aliphatic alkenes, enones, dienylboronates, and silicon- and germanium-containing alkenes. Notably, these methods are particularly effective for synthesizing functionalized cycloalkenes, which are traditionally challenging to obtain through conventional methods involving alkenyl halide or organometallic couplings. We have also extended the scope of enol derivatives from triflates to acetates. These compounds are among the most accessible, stable, cost-effective, and environmentally friendly reagents, while their application in cross-coupling has been hampered by low reactivity and selectivity challenges. We showcased that by the use of a Ni(I) catalyst, alkenyl acetates could undergo reductive alkylation with a broad range of alkyl bromides, yielding diverse cyclic and acyclic aliphatic alkenes.Furthermore, our work has demonstrated that reductive coupling of enol derivatives with alkenes provides a highly appealing alternative for alkene synthesis. Particularly, this approach offers opportunity to address the regioselectivity challenges encountered in conventional alkene transformations. For instance, achieving regioselective hydrocarbonation of aliphatic 1,3-dienes has been a longstanding challenge in synthetic chemistry. By using a phosphine-nitrile ligand, we developed a nickel-catalyzed reductive alkenylation of 1,3-dienes with alkenyl triflates, delivering a diverse array of 1,4-dienes with high 1,2-branch selectivity (>20:1) while preserving the geometry of the C3-C4 double bond. Additionally, our investigations laid the foundation for enantioselective reductive alkenylation methodologies, offering new pathways for constructing enantioenriched diketones as well as complex carbo- and heterocyclic compounds. The introduced alkenyl functionality can be further diversified, enhancing molecular diversity and complexity.
Collapse
Affiliation(s)
- Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
2
|
Panayides JL, Riley DL, Hasenmaile F, van Otterlo WAL. The role of silicon in drug discovery: a review. RSC Med Chem 2024; 15:3286-3344. [PMID: 39430101 PMCID: PMC11484438 DOI: 10.1039/d4md00169a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/07/2024] [Indexed: 10/22/2024] Open
Abstract
This review aims to highlight the role of silicon in drug discovery. Silicon and carbon are often regarded as being similar with silicon located directly beneath carbon in the same group in the periodic table. That being noted, in many instances a clear dichotomy also exists between silicon and carbon, and these differences often lead to vastly different physiochemical and biological properties. As a result, the utility of silicon in drug discovery has attracted significant attention and has grown rapidly over the past decade. This review showcases some recent advances in synthetic organosilicon chemistry and examples of the ways in which silicon has been employed in the drug-discovery field.
Collapse
Affiliation(s)
- Jenny-Lee Panayides
- Pharmaceutical Technologies, Future Production: Chemicals, Council for Scientific and Industrial Research (CSIR) Meiring Naude Road, Brummeria Pretoria South Africa
| | - Darren Lyall Riley
- Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria Lynnwood Road Pretoria South Africa
| | - Felix Hasenmaile
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Science, Stellenbosch University Matieland Stellenbosch 7600 South Africa
| |
Collapse
|
3
|
Yao QW, Yin K, Huang YY, Nie JP, Pang X, Shu XZ. Nickel-Catalyzed Enantioselective Reductive N-Cyclization-Thiolation Reaction of Alkene-Tethered Oxime Esters and Disulfides. Org Lett 2024. [PMID: 39331679 DOI: 10.1021/acs.orglett.4c03273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Asymmetric aza-Heck cyclization and coupling reactions offer efficient access to enantioenriched N-heterocycles, yet the current studies focus primarily on sequential C-N and C-C bond formation. Herein, we report an enantioselective reductive aza-Heck cyclization followed by a C-S coupling sequence, ultimately yielding sulfide-containing enantioenriched pyrrolines. The reaction is conducted under mild conditions and tolerates broad functionalities including alkynes, phenols, anilines, amides, nitriles, and bromides.
Collapse
Affiliation(s)
- Qi-Wei Yao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Kai Yin
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
- Zhejiang Nanjiao Chemistry Co., Ltd., Shaoxing 312369, China
| | - Yi-Yang Huang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jun-Peng Nie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
4
|
Yuan T, Chen XY, Ji T, Yue H, Murugesan K, Rueping M. Nickel-catalyzed selective disulfide formation by reductive cross-coupling of thiosulfonates. Chem Sci 2024:d4sc02969k. [PMID: 39246351 PMCID: PMC11376093 DOI: 10.1039/d4sc02969k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Developing innovative methodologies for disulfide preparation is of importance in contemporary organic chemistry. Despite significant advancements in nickel-catalyzed reductive cross-coupling reactions for forming carbon-carbon and carbon-heteroatom bonds, the synthesis of S-S bonds remains a considerable challenge. In this context, we present a novel approach utilizing nickel catalysts for the reductive cross-coupling of thiosulfonates. This method operates under mild conditions, offering a convenient and efficient pathway to synthesize a wide range of both symmetrical and unsymmetrical disulfides from readily available, bench-stable thiosulfonates with exceptional selectivity. Notably, this approach is highly versatile, allowing for the late-stage modification of pharmaceuticals and the preparation of various targeted compounds. A comprehensive mechanistic investigation has been conducted to substantiate the proposed hypothesis.
Collapse
Affiliation(s)
- Tingting Yuan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Xiang-Yu Chen
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
- School of Chemical Science, University of Chinese Academy of Science Beijing 10049 China
| | - Tengfei Ji
- Institute of Organic Chemistry, RWTH Aachen University Landoltweg 1 52074 Aachen Germany
| | - Huifeng Yue
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Kathiravan Murugesan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
5
|
Yang LY, Qin Y, Zhao Z, Zhao D. Nickel-Catalyzed Reductive Protocol to Access Silacyclobutanes with Unprecedented Functional Group Tolerance. Angew Chem Int Ed Engl 2024:e202407773. [PMID: 39172049 DOI: 10.1002/anie.202407773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
While significant progress has been made in the area of transition metal-catalyzed ring-opening and formal cycloaddition reactions of 1,1-disubstituted silacyclobutanes (SCBs), synthesizing these SCBs-particularly those bearing additional functional groups-continues to present synthetic challenges. In this context, we present a novel Ni-catalyzed reductive coupling reaction that combines 1-chloro-substituted silacyclobutanes with aryl or vinyl halides and pseudohalides, thereby obviating the need for organometallic reagents. This method facilitates the generation of 1,1-disubstituted silacyclobutanes with a remarkable tolerance for various functional groups. This approach serves as a complementary and more step-economical alternative to the commonly used yet moisture- and air-sensitive nucleophilic substitution reactions involving Grignard or lithium reagents. Our initial mechanistic studies indicate that this reaction is initiated by oxidative cleavage of the Si-Cl bond in 1-chlorosilacyclobutanes, which represents a distinct mechanism from the previously documented reductive coupling processes involving carbon electrophiles and chlorosilanes.
Collapse
Affiliation(s)
- Ling-Yun Yang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Ying Qin
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Zhihan Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
6
|
Wei XX, Zhao ZZ, Pang X, Shu XZ. Aliphatic Hydrosilanes via Nickel-Catalyzed Reductive Csp 3-Si Coupling of Primary Alkyl Bromides and Chlorohydrosilanes. Org Lett 2024; 26:6125-6129. [PMID: 38994746 DOI: 10.1021/acs.orglett.4c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The reductive C-Si coupling of chlorosilanes offers efficient access to organosilanes, but its potential for constructing aliphatic ones remains largely unexplored. This manuscript presents a nickel-catalyzed Csp3-Si coupling reaction of unactivated alkyl-Br and R2Si(H)Cl. This work establishes a new approach for synthesizing highly functionalized aliphatic hydrosilanes from readily available chemical feedstocks. The reaction is easily scalable and can accommodate various functional groups, including carboxylic acids, which are usually incompatible with basic conditions.
Collapse
Affiliation(s)
- Xiao-Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
7
|
Zhang D, Wang L, Zhang G. Organophotocatalyzed Cross Coupling of C- and Si-Radical to Access Dibenzylic Silanes from para-Quinone Methides and Silanecarboxylic Acids. J Org Chem 2024; 89:10379-10383. [PMID: 38923888 DOI: 10.1021/acs.joc.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Herein we present a catalytic cross-coupling strategy between C-radicals and Si-radicals, enabling the efficient, gentle, and versatile synthesis of dibenzylic silanes from para-quinone methides and silanecarboxylic acids as the stable silyl radical precursors. The reaction is facilitated by an inexpensive organophotocatalyst and exhibits broad compatibility with various electron-donating and electron-withdrawing functional groups. Notably, mechanistic investigations suggest the involvement of dibenzylic and silyl radicals, underscoring a novel radical coupling mechanism that introduces a fresh perspective on C-Si bond formation.
Collapse
Affiliation(s)
- Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, 545006 Liuzhou, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, P. R. China
| | - Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, P. R. China
| |
Collapse
|
8
|
Wu K, Wang TZ, Zhang CP, Guan YQ, Liang YF. N-Alkoxyphthalimides as Nitrogen Electrophiles to Construct C-N Bonds via Reductive Cross-Coupling. J Org Chem 2024; 89:10004-10011. [PMID: 38935867 DOI: 10.1021/acs.joc.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
N-Alkoxyphthalimides, one kind of phthalimide derivative, have great importance in synthesis, mainly used as free radical precursors. While the phthalimide unit, for a long time, was treated as part of the waste stream. Construction of C-N bonds has always been a hot spot, especially in reductive cross-coupling. Herein, a nickel-catalyzed reductive cross-coupling reaction of N-methoxyphthalimides with alkyl halides is described, where N-methoxyphthalimides serve as nitrogen electrophiles. This tactic provides a new approach to construct C-N bonds under mild neutral conditions. Alkyl chlorides, bromides, iodides, and sulfonates are all fit to this transformation. Moreover, the reaction could tolerate a broad substrate scope, especially base-sensitive functional groups (boron or silicon groups), as well as competitive nucleophilic groups (phenols and amides), which are incompatible with traditional Gabriel synthesis under basic conditions, demonstrating a complementary role of this work to Gabriel synthesis.
Collapse
Affiliation(s)
- Kang Wu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chao-Peng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
9
|
Chen ZH, Zheng YQ, Huang HG, Wang KH, Gong JL, Liu WB. From Quaternary Carbon to Tertiary C(sp 3)-Si and C(sp 3)-Ge Bonds: Decyanative Coupling of Malononitriles with Chlorosilanes and Chlorogermanes Enabled by Ni/Ti Dual Catalysis. J Am Chem Soc 2024; 146:14445-14452. [PMID: 38739877 DOI: 10.1021/jacs.4c04495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Transition-metal-catalyzed C-Si/Ge cross-coupling offers promising avenues for the synthesis of organosilanes/organogermanes, yet it is fraught with long-standing challenges. A Ni/Ti-catalyzed strategy is reported here, allowing the use of disubstituted malononitriles as tertiary C(sp3) coupling partners to couple with chlorosilanes and chlorogermanes, respectively. This method enables the catalytic cleavage of the C(sp3)-CN bond of the quaternary carbon followed by the formation of C(sp3)-Si/C(sp3)-Ge bonds from ubiquitously available starting materials. The efficiency and generality are showcased by a broad scope for both of the coupling partners, therefore holding the potential to synthesize structurally diverse quaternary organosilanes and organogermanes that were difficult to access previously.
Collapse
Affiliation(s)
- Zi-Hao Chen
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu-Qing Zheng
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Hong-Gui Huang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Ke-Hao Wang
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jun-Lin Gong
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wen-Bo Liu
- Hubei Research Center of Fundamental Science-Chemistry, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Xing D, Liu J, Cai D, Huang B, Jiang H, Huang L. Cobalt-catalyzed cross-electrophile coupling of alkynyl sulfides with unactivated chlorosilanes. Nat Commun 2024; 15:4502. [PMID: 38802390 PMCID: PMC11130142 DOI: 10.1038/s41467-024-48873-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Herein, we disclose a highly efficient cobalt-catalyzed cross-electrophile alkynylation of a broad range of unactivated chlorosilanes with alkynyl sulfides as a stable and practical alkynyl electrophiles. Strategically, employing easily synthesized alkynyl sulfides as alkynyl precursors allows access to various alkynylsilanes in good to excellent yields. Notably, this method avoids the utilization of strong bases, noble metal catalysts, high temperature and forcing reaction conditions, thus presenting apparent advantages, such as broad substrate scope (72 examples, up to 97% yield), high Csp-S chemo-selectivity and excellent functional group compatibility (Ar-X, X = Cl, Br, I, OTf, OTs). Moreover, the utilities of this method are also illustrated by downstream transformations and late-stage modification of structurally complex natural products and pharmaceuticals. Mechanistic studies elucidated that the cobalt catalyst initially reacted with alkynyl sulfides, and the activation of chlorosilanes occurred via an SN2 process instead of a radical pathway.
Collapse
Affiliation(s)
- Donghui Xing
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Jinlin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Dingxin Cai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Bin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
11
|
Geng S, Pu Y, Wang S, Ji Y, Feng Z. Advances in disilylation reactions to access cis/ trans-1,2-disilylated and gem-disilylated alkenes. Chem Commun (Camb) 2024; 60:3484-3506. [PMID: 38469709 DOI: 10.1039/d4cc00288a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Organosilane compounds are widely used in both organic synthesis and materials science. Particularly, 1,2-disilylated and gem-disilylated alkenes, characterized by a carbon-carbon double bond and multiple silyl groups, exhibit significant potential for subsequently diverse transformations. The versatility of these compounds renders them highly promising for applications in materials, enabling them to be valuable and versatile building blocks in organic synthesis. This review provides a comprehensive summary of methods for the preparation of cis/trans-1,2-disilylated and gem-disilylated alkenes. Despite notable advancements in this field, certain limitations persist, including challenges related to regioselectivity in the incorporation and chemoselectivity in the transformation of two nearly identical silyl groups. The primary objective of this review is to outline synthetic methodologies for the generation of these alkenes through disilylation reactions, employing silicon reagents, specifically disilanes, hydrosilanes, and silylborane reagents. The review places particular emphasis on investigating the practical applications of the C-Si bond of disilylalkenes and delves into an in-depth discussion of reaction mechanisms, particularly those reactions involving the activation of Si-Si, Si-H, and Si-B bonds, as well as the C-Si bond formation.
Collapse
Affiliation(s)
- Shasha Geng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Yu Pu
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| | - Siyu Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
| | - Yanru Ji
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| | - Zhang Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.
- Sichuan Key Laboratory of Medical Imaging, North Sichuan Medical College, Nanchong, Sichuan 637000, P. R. China
| |
Collapse
|
12
|
Meng CF, Zhang BB, Liu Q, Chen KQ, Wang ZX, Chen XY. Achieving Nickel-Catalyzed Reductive C(sp 2)-B Coupling of Bromoboranes via Reversing the Activation Sequence. J Am Chem Soc 2024; 146:7210-7215. [PMID: 38437461 DOI: 10.1021/jacs.4c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Transition metal-catalyzed reductive cross-couplings to build C-C/Si bonds have been developed, but the reductive cross-coupling to create the C(sp2)-B bond has not been explored. Herein, we describe a nickel-catalyzed reductive cross-coupling between aryl halides and bromoboranes to construct a C(sp2)-B bond. This protocol offers a convenient approach for the synthesis of a wide range of aryl boronate esters, using readily available starting materials. Mechanistic studies indicate that the key to the success of the reaction is the activation of the B-Br bond of bromoboranes with a Lewis base such as 2-MeO-py. The activation ensures that bromoboranes will react with the active nickel(I) catalyst prior to aryl halides, which is different from the sequence of the general nickel-catalyzed reductive C(sp2)-C/Si cross-coupling, where the oxidative addition of an aryl halide proceeds first. Notably, this approach minimizes the production of undesired homocoupling byproduct without the requirement of excessive quantities of either substrate.
Collapse
Affiliation(s)
- Chun-Fu Meng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bei-Bei Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kun-Quan Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
13
|
Xu CH, Xiong ZQ, Qin JH, Xu XH, Li JH. Nickel-Catalyzed Reductive Cross-Coupling of Propargylic Acetates with Chloro(vinyl)silanes: Access to Silylallenes. J Org Chem 2024; 89:2885-2894. [PMID: 38355424 DOI: 10.1021/acs.joc.3c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Because of their various reactivities, propargyl acetates are refined chemical intermediates that are extensively applied in pharmaceutical synthesis. Currently, reactions between propargyl acetates and chlorosilanes may be the most effective method for synthesizing silylallenes. Nevertheless, owing to the adaptability and selectivity of substrates, transition metal catalysis is difficult to achieve. Herein, nickel-catalyzed reductive cross-coupling reactions between propargyl acetates and substituted vinyl chlorosilanes for the synthesis of tetrasubstituted silylallenes are described. Therein, metallic zinc is a crucial reductant that effectively enables two electrophilic reagents to selectively construct C(sp2)-Si bonds. Additionally, a Ni-catalyzed reductive mechanism involving a radical process is proposed on the basis of deuteration-labeled experiments.
Collapse
Affiliation(s)
- Chong-Hui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin-Hua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 475004, Henan, China
| |
Collapse
|
14
|
Li J, Hong C, Niu Y, Wang B, Jiang H. Palladium-Catalyzed Cyclization/Alkenylation of Ynone Oximes with Vinylsilanes for the Assembly of Isoxazolyl Vinylsilanes. Chem Asian J 2024:e202301122. [PMID: 38224122 DOI: 10.1002/asia.202301122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
A palladium-catalyzed cascade cyclization/alkenylation for the assembly of synthetically valuable isoxazolyl vinylsilane derivative has been accomplished. Easily accessible ynone oximes, and available vinylsilane agents were used as the reaction starting materials This protocol features broad substrate scope, good functional group tolerance, and good step- and atom-economy. Remarkably, this approach provides a new approach for the construction of structurally diverse isoxazolyl-containing vinylsilanes with high molecular complexity, showing a promising application in synthetic and pharmaceutical chemistry.
Collapse
Affiliation(s)
- Jianxiao Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
- Guangdong Province Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, 512005, Shaoguan, P. R. China
| | - Chenjing Hong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
| | - Yanan Niu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
| | - Bowen Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, 510640, Guangzhou, P. R China
| |
Collapse
|
15
|
Le L, Yin M, Zeng H, Xie W, Zhou W, Chen Y, Xiong B, Yin SF, Kambe N, Qiu R. Nickel-Catalyzed C(sp 3)-Sb Coupling of Chlorostibines with Unactivated Alkyl Chlorides and In Vitro Anticancer Activity of Products. Org Lett 2024; 26:344-349. [PMID: 38147593 DOI: 10.1021/acs.orglett.3c04008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
In this study, we present a nickel-catalyzed reductive C(sp3)-Sb coupling of unactivated alkyl chlorides with chlorostibines. This approach is highly versatile, tolerating various functional groups such as acetal, alkene, nitrile, amine, ester, silyl ether, thioether, and various heterocyclic compounds. Notably, the late-stage modification of bioactive molecules and the satisfactory anticancer activity against cancerous MDA-MB-231 also demonstrate the potential application.
Collapse
Affiliation(s)
- Liyuan Le
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Mingming Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Huifan Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Wuxing Xie
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, P. R. China
| | - Wenjun Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yi Chen
- Department of Physiology, School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, P. R. China
| | - Biquan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- College of Science, Central South University of Forestry and Technology, Changsha, 410004, P. R. China
| | - Nobuaki Kambe
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
16
|
Liu Q, Lin T, Wang YE, Liang W, Cao L, Sheng X, Xiong D, Mao J. Nickel-Catalyzed Reductive Arylation of α-Bromo Sulfoxide. Org Lett 2023; 25:9153-9157. [PMID: 38096429 DOI: 10.1021/acs.orglett.3c03619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
A nickel-catalyzed cross-electrophile coupling of aryl iodides with α-bromo sulfoxide to access a diverse array of aryl benzyl sulfoxides has been discovered. These reactions occurred under mild conditions with excellent functional group tolerance so that optically enriched sulfoxides could be coupled with aryl iodides, generating corresponding sulfoxides with excellent stereochemical integrity. Furthermore, the scalability of this transformation was demonstrated. Initial mechanistic studies revealed that the reaction undergoes a radical pathway.
Collapse
Affiliation(s)
- Qiang Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Tingzhi Lin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Wenbiao Liang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Liuying Cao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xutao Sheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
17
|
Zhao S, Ding L, Sun Y, Wang M, Zhao D. Synergistic Palladium/Lewis Acid-Catalyzed Regio- and Stereo-divergent Bissilylation of Alkynoates: Scope, Mechanism, and Origin of Selectivity. Angew Chem Int Ed Engl 2023; 62:e202309169. [PMID: 37477636 DOI: 10.1002/anie.202309169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
Transition metal-catalyzed bissilylation reactions of alkynes with disilane reagents have become one of the most straightforward and efficient protocols to rapidly produce structurally diverse alkenyl silicon derivatives. In these reactions, the utilization of unsymmetrical disilane reagents provided the possibilities for reactivity enhancement as well as the synthetic merits in contrast to symmetrical disilane reagents. However, a major yet challenging objective is achieving precise control over the selectivity including the regioselectivity and the cis/trans-selectivity. Herein we realized the first divergent bissilylation of alkynoates with our developed air-stable disilane reagent 8-(2-substituted-1,1,2,2-tetramethyldisilanyl)quinoline (TMDQ) by means of synergistic Pd/Lewis acid catalytic system. The catalytic system precisely dictates the selectivity, resulting in the divergent synthesis of 1,2-bissilyl alkenes. The power of these 1,2-bissilyl alkenes serving as the key synthetic intermediates has been clearly demonstrated by rapid construction of diverse motifs and densely functionalized biologically active compounds. In addition, the origins of the switchable selectivities were well elucidated by experimental and computational studies on the reaction mechanism and were mainly attributed to different ligand steric effects, the use of the specific disilane reagent TMDQ and the different coordination modes of different Lewis acid with alkynoates.
Collapse
Affiliation(s)
- Shuang Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Linlin Ding
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yingman Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| |
Collapse
|
18
|
Tang M, Zhu W, Sun H, Wang J, Jing S, Wang M, Shi Z, Hu J. Facile preparation of organosilanes from benzylboronates and gem-diborylalkanes mediated by KO tBu. Chem Sci 2023; 14:7355-7360. [PMID: 37416710 PMCID: PMC10321478 DOI: 10.1039/d3sc02461j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Methods to efficiently synthesize organosilanes are valuable in the fields of synthetic chemistry and materials science. During the past decades, boron conversion has become a generic and powerful approach for constructing carbon-carbon and other carbon-heteroatom bonds, but its potential application in forming carbon-silicon remains unexplored. Herein, we describe an alkoxide base-promoted deborylative silylation of benzylic organoboronates, geminal bis(boronates) or alkyltriboronates, allowing for straightforward access to synthetically valuable organosilanes. This selective deborylative methodology exhibits operational simplicity, broad substrate scope, excellent functional group compatibility and convenient scalability, providing an effective and complementary platform for the generation of diversified benzyl silanes and silylboronates. Detailed experimental results and calculated studies revealed an unusual mechanistic feature of this C-Si bond formation.
Collapse
Affiliation(s)
- Man Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Wenyan Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Huaxing Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jing Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jiefeng Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
19
|
Qi L, Pan QQ, Wei XX, Pang X, Liu Z, Shu XZ. Nickel-Catalyzed Reductive [4 + 1] Sila-Cycloaddition of 1,3-Dienes with Dichlorosilanes. J Am Chem Soc 2023. [PMID: 37285283 DOI: 10.1021/jacs.3c04209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Transition-metal-catalyzed sila-cycloaddition has been a promising tool for accessing silacarbocycle derivatives, but the approach has been limited to a selection of well-defined sila-synthons. Herein, we demonstrate the potential of chlorosilanes, which are industrial feedstock chemicals, for this type of reaction under reductive nickel catalysis. This work extends the scope of reductive coupling from carbocycle to silacarbocycle synthesis and from single C-Si bond formation to sila-cycloaddition reactions. The reaction proceeds under mild conditions and shows good substrate scope and functionality tolerance, and it offers new access to silacyclopent-3-enes and spiro silacarbocycles. The optical properties of several spiro dithienosiloles as well as structural variations of the products are demonstrated.
Collapse
Affiliation(s)
- Liangliang Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qiu-Quan Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiao-Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
20
|
Ye ZH, Gou FH, Wu Y, Li CY, Wang P. Diverse Synthesis of Alkenylsilanes via Pd-Catalyzed Alkenyl C-H Silylation. Org Lett 2023; 25:2145-2150. [PMID: 36921249 DOI: 10.1021/acs.orglett.3c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Here, we disclose a general approach for the diverse synthesis of alkenylsilanes in a highly efficient, stereoselective, and atom-economic manner by leveraging the palladium-catalyzed disilylation reaction of 2-bromostyrene derivatives with hexamethyldisilane, which is suitable for the preparation of a series of disubstituted, trisubstituted, and tetrasubstituted alkenylsilanes. Furthermore, the resulting tetrasubstituted alkenylsilanes could be readily transformed into the corresponding diarylated benzosiloles, which have been proven to be a potential AIE material and a fluorene material.
Collapse
Affiliation(s)
- Zi-Hang Ye
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Fei-Hu Gou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Chuan-Ying Li
- Department of Chemistry, Key Laboratory of Surface and Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Xiasha West Higher Education District, Hangzhou 310018, P. R. China
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, P. R. China.,CAS Key Laboratory of Energy Regulation Materials, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, P. R. China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, P. R. China
| |
Collapse
|
21
|
Xu Y, Liu Y, Zhang Y, Yang K, Wang Y, Peng J, Shao X, Bai Y. Nonbasic Synthesis of Thioethers via Nickel-Catalyzed Reductive Thiolation Utilizing NBS-Like N-Thioimides as Electrophilic Sulfur Donors. J Org Chem 2023; 88:2773-2783. [PMID: 36758172 DOI: 10.1021/acs.joc.2c02360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The nonbasic synthesis of unsymmetrical thioethers via nickel-catalyzed reductive thiolation between aryl(hetero) iodides and N-thioimides is illustrated. N-Bromosuccinimide (NBS)-like N-thioimides were found quite reactive toward thiolation with carbon electrophiles, and a series of structurally varied thioethers were successfully prepared under mild reaction conditions. The transformation was featured with the new application of the NBS-like reagents, good functional group tolerance, and late-stage modification of biologically active scaffolds, thus providing an expeditious and efficient platform to construct polyfunctional thioethers.
Collapse
Affiliation(s)
- Yuenian Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yong Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Kefang Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yan Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Jiajian Peng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Ying Bai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
22
|
Transition-Metal-Catalyzed Cross-Coupling of Chlorosilanes. SYNTHESIS-STUTTGART 2023. [DOI: 10.1055/s-0042-1751398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
AbstractChlorosilanes are the most accessible feedstock chemical in the organosilicon world. Cross-coupling involving chlorosilanes by transition metal catalysis offers a promising way for the production of organosilanes, which play essential roles in many important research areas, including agriculture, medicinal chemistry, and material science. This chemistry is firstly realized by coupling chlorosilanes with organometallic species and then extended to the silyl-Heck reaction with alkenes. Very recently, the cross-electrophile coupling of chlorosilanes has also been established. In this review, we summarize the progress of this chemistry.1 Introduction2 Cross-Coupling of Chlorosilanes with Organometallic Reagents3 The Silyl-Heck Reaction of Chlorosilanes and Alkenes4 Reductive Cross-Coupling of Chlorosilanes with Electrophiles5 Summary and Outlook
Collapse
|
23
|
Pang X, Shu XZ. Nickel-Catalyzed Reductive Coupling of Chlorosilanes. Chemistry 2023; 29:e202203362. [PMID: 36426828 DOI: 10.1002/chem.202203362] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
Organosilanes play essential roles in many important research areas. The use of readily available chlorosilanes to catalytically access these compounds is synthetically appealing but remains a long-standing challenge. Nickel-catalyzed reductive cross-coupling reaction has recently emerged as a promising protocol to arrive at this goal. This strategy allows the chlorosilanes to be coupled with various carbon electrophiles under mild conditions. These reactions afford organosilanes with improved molecular diversity, structural complexity, and functional group compatibility. This Concept article summarizes the recent advance on nickel-catalyzed reductive C-Si couplings of chlorosilanes.
Collapse
Affiliation(s)
- Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) and, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) and, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
24
|
Pan QQ, Qi L, Pang X, Shu XZ. Nickel-Catalyzed Cross-Electrophile 1,2-Silyl-Arylation of 1,3-Dienes with Chlorosilanes and Aryl Bromides. Angew Chem Int Ed Engl 2023; 62:e202215703. [PMID: 36428246 DOI: 10.1002/anie.202215703] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/28/2022]
Abstract
Catalytic, three-component, cross-electrophile reactions have recently emerged as a promising tool for molecular diversification, but studies have focused mainly on the alkyl-carbonations of alkenes. Herein, the scope of this method has been extended to conjugated dienes and silicon chemistry through silylative difunctionalization of 1,3-dienes with chlorosilanes and aryl bromides. The reaction proceeds under mild conditions to afford 1,2-linear-silylated products, a selectivity that is different to those obtained from conventional methods via an intermediary of H(C)-η3 -π-allylmetal species. Preliminary mechanistic studies reveal that chlorosilane reacts with 1,3-diene first and then couples with aryl bromide.
Collapse
Affiliation(s)
- Qiu-Quan Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, China
| | - Liangliang Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, China
| |
Collapse
|
25
|
Photoredox/Nickel Cooperatively Catalyzed Radical Allylic Silylation of Allyl Acetates – Scope and Mechanism. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
26
|
Ji H, Lin D, Tai L, Li X, Shi Y, Han Q, Chen LA. Nickel-Catalyzed Enantioselective Coupling of Acid Chlorides with α-Bromobenzoates: An Asymmetric Acyloin Synthesis. J Am Chem Soc 2022; 144:23019-23029. [DOI: 10.1021/jacs.2c10072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Haiting Ji
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Dengkai Lin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lanzhu Tai
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xinyu Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuxuan Shi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Qiaorong Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Liang-An Chen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
27
|
Sun J, Zhou Y, Gu R, Li X, Liu A, Zhang X. Regioselective Ni-Catalyzed reductive alkylsilylation of acrylonitrile with unactivated alkyl bromides and chlorosilanes. Nat Commun 2022; 13:7093. [PMID: 36402772 PMCID: PMC9675790 DOI: 10.1038/s41467-022-34901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Transition-metal catalyzed carbosilylation of alkenes using carbon electrophiles and silylmetal (-B, -Zn) reagents as the nucleophiles offers a powerful strategy for synthesizing organosilicones, by incorporating carbon and silyl groups across on C-C double bonds in one step. However, to the best of our knowledge, the study of silylative alkenes difunctionalization based on carbon and silyl electrophiles remains underdeveloped. Herein, we present an example of silylative alkylation of activated olefins with unactivated alkyl bromides and chlorosilanes as electrophiles under nickel catalysis. The main feature of this protocol is employing more easily accessible substrates including primary, secondary and tertiary alkyl bromides, as well as various chlorosilanes without using pre-generated organometallics. A wide range of alkylsilanes with diverse structures can be efficiently assembled in a single step, highlighting the good functionality tolerance of this approach. Furthermore, successful functionalization of bioactive molecules and synthetic applications using this method demonstrate its practicability.
Collapse
Affiliation(s)
- Jinwei Sun
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Yongze Zhou
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Rui Gu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Xin Li
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Ao Liu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China
| | - Xuan Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing, 210044, China.
| |
Collapse
|
28
|
Abstract
Transition-metal-catalyzed reductive coupling of electrophiles has emerged as a powerful tool for the construction of molecules. While major achievements have been made in the field of cross-couplings between organic halides and pseudohalides, an increasing number of reports demonstrates reactions involving more readily available, low-cost, and stable, but unreactive electrophiles. This account summarizes the recent results in our laboratory focusing on this topic. These findings typically include deoxygenative C-C coupling of alcohols, reductive alkylation of alkenyl acetates, reductive C-Si coupling of chlorosilanes, and reductive C-Ge coupling of chlorogermanes.The reductive deoxygenative coupling of alcohols with electrophiles is synthetically appealing, but the potential of this chemistry remains to be disclosed. Our initial study focused on the reaction of allylic alcohols and aryl bromides by the combination of nickel and Lewis acid catalysis. This method offers a selectivity that is opposite to that of the classic Tsuji-Trost reactions. Further investigation on the reaction of benzylic alcohols led to the foundation of a dynamic kinetic cross-coupling strategy with applications in the nickel-catalyzed reductive arylation of benzylic alcohols and cobalt-catalyzed enantiospecific reductive alkenylation of allylic alcohols. The titanium catalysis was later established to produce carbon radicals directly from unactivated tertiary alcohols via C-OH cleavage. The development of their coupling reactions with carbon fragments delivers new methods for the construction of all-carbon quaternary centers. These reactions have shown high selectivity for the functionalization of tertiary alcohols, leaving primary and secondary alcohols intact. Alkenyl acetates are inexpensive, stable, and environmentally friendly and are considered the most attractive alkenyl reagents. The development of reductive alkylation of alkenyl acetates with benzyl ammoniums and alkyl bromides offers mild approaches for the conversion of ketones into aliphatic alkenes.Extensive studies in this field have enabled us to extend the cross-electrophile coupling from carbon to silicon and germanium chemistry. These reactions harness the ready availability of chlorosilanes and chlorogermanes but suffer from the challenge of their low reactivity toward transition metals. Under reductive nickel catalysis, a broad range of alkenyl and aryl electrophiles couple well with vinyl- and hydrochlorosilanes. The use of alkyl halides as coupling partners led to the formation of functionalized alkylsilanes. The C-Ge coupling seems less substrate-dependent, and various common chlorogermanes couple well with aryl, alkenyl, and alkyl electrophiles. In general, functionalities such as Grignard-sensitive groups (e.g., acid, amide, alcohol, ketone, and ester), acid-sensitive groups (e.g., ketal and THP protection), alkyl fluoride and chloride, aryl bromide, alkyl tosylate and mesylate, silyl ether, and amine are tolerated. These methods provide new access to organosilicon and organogermanium compounds, some of which are challenging to obtain otherwise.
Collapse
Affiliation(s)
- Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou730000, China
| | - Pei-Feng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou730000, China
| |
Collapse
|
29
|
Jia XG, Yao QW, Shu XZ. Enantioselective Reductive N-Cyclization-Alkylation Reaction of Alkene-Tethered Oxime Esters and Alkyl Iodides by Nickel Catalysis. J Am Chem Soc 2022; 144:13461-13467. [PMID: 35877185 DOI: 10.1021/jacs.2c05523] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Asymmetric cross-electrophile difunctionalization of tethered alkenes has become a powerful tool for the production of chiral cyclic scaffolds; however, the current studies all focus on carbocyclization reactions. Herein, we report an N-cyclization-alkylation reaction and thus showcase the potential of heterocyclization for accessing new enantioenriched cyclic architectures. This work establishes a new approach for enantioselective aza-Heck cyclization/cross-coupling sequence, which remains a long-standing unsolved challenge for the synthetic community. The reaction proceeds with primary, secondary, and a few tertiary alkyl iodides, and the use of newly defined ligands gave highly enantioenriched pyrrolines with improved molecular diversity under mild conditions. The presence of imine functionality allows for further structural variations.
Collapse
Affiliation(s)
- Xue-Gong Jia
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qi-Wei Yao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
30
|
Lu Q, Guan H, Wang YE, Xiong D, Lin T, Xue F, Mao J. Nickel/Photoredox-Catalyzed Enantioselective Reductive Cross-Coupling between Vinyl Bromides and Benzyl Chlorides. J Org Chem 2022; 87:8048-8058. [PMID: 35666844 DOI: 10.1021/acs.joc.2c00707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light-promoted nickel/photoredox-catalyzed reductive cross-coupling reaction between vinyl bromides and benzyl chlorides is reported. A diverse array of enantioenriched allylic centers containing products could be achieved in good yields (up to 90%) and high enantioselectivities (up to 95% ee). The mechanistic studies show that this reductive cross-coupling involves a radical pathway.
Collapse
Affiliation(s)
- Qianqian Lu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Haixing Guan
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China.,Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Tingzhi Lin
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
31
|
Zhao ZZ, Pang X, Wei XX, Liu XY, Shu XZ. Nickel-Catalyzed Reductive C(sp 2 )-Si Coupling of Chlorohydrosilanes via Si-Cl Cleavage. Angew Chem Int Ed Engl 2022; 61:e202200215. [PMID: 35263015 DOI: 10.1002/anie.202200215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 02/06/2023]
Abstract
We report here a new method for the synthesis of organohydrosilanes from phenols and ketones. This method is established through reductive C-Si coupling of chlorohydrosilanes via unconventional Si-Cl cleavage. The reaction offers access to aryl- and alkenylhydrosilanes with a scope that is complementary to those of the established methods. Electron-rich, electron-poor, and ortho-/meta-/para-substituted (hetero)aryl electrophiles, as well as cyclic and acyclic alkenyl electrophiles, were coupled successfully. Functionalities, including Grignard-sensitive groups (e.g., primary amine, amide, phenol, ketone, ester, and free indole), acid-sensitive groups (e.g., ketal and THP protection), alkyl-Cl, pyridine, furan, thiophene, Ar-Bpin, and Ar-SiMe3 , were tolerated. Gram-scale reaction, incorporation of -Si(H)R2 into complex biologically active molecules, and derivatization of formed organohydrosilanes are demonstrated.
Collapse
Affiliation(s)
- Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xiao-Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
32
|
Zhao Z, Pang X, Wei X, Liu X, Shu X. Nickel‐Catalyzed Reductive C(sp
2
)−Si Coupling of Chlorohydrosilanes via Si−Cl Cleavage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhen‐Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xiao‐Xue Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xing‐Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| |
Collapse
|
33
|
Qi L, Pang X, Yin K, Pan QQ, Wei XX, Shu XZ. Mn-mediated reductive C(sp3)–Si coupling of activated secondary alkyl bromides with chlorosilanes. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.03.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
34
|
Guo P, Pang X, Wang K, Su PF, Pan QQ, Han GY, Shen Q, Zhao ZZ, Zhang W, Shu XZ. Nickel-Catalyzed Reductive Csp 3-Ge Coupling of Alkyl Bromides with Chlorogermanes. Org Lett 2022; 24:1802-1806. [PMID: 35209712 DOI: 10.1021/acs.orglett.2c00207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reductive cross-coupling provides facile access to organogermanes, but it remains largely unexplored. Herein we report a nickel-catalyzed reductive Csp3-Ge coupling of alkyl bromides with chlorogermanes. This work has established a new method for producing alkylgermanes. The reaction proceeds under very mild conditions and tolerates various functionalities including ether, alcohol, alkene, nitrile, amine, ester, phosphonates, amides, ketone, and aldehyde. The application of this method to the modification of bioactive molecules is demonstrated.
Collapse
Affiliation(s)
- Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China.,School of Life Science, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Ke Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Pei-Feng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qiu-Quan Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Guan-Yu Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Qian Shen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Wenhua Zhang
- School of Life Science, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
35
|
He R, Bai Y, Han G, Zhao Z, Pang X, Pan X, Liu X, Shu X. Reductive Alkylation of Alkenyl Acetates with Alkyl Bromides by Nickel Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rong‐De He
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Yunfei Bai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Guan‐Yu Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Zhen‐Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xue‐Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xing‐Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| |
Collapse
|
36
|
Naganawa Y, Nakajima Y, Sakaki S, Kameo H. Theoretical Study on Si‒Cl Bond Activation in Pd‐Catalyzed Cross‐Coupling of Chlorosilanes with Organoaluminum. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuki Naganawa
- National Institute of Advanced Industrial Science and Technology Interdisciplinary research center for catalytic chemistry JAPAN
| | - Yumiko Nakajima
- National institute of advanced industrial science and technology Interdisciplinary research center for catalytic chemistry JAPAN
| | | | - Hajime Kameo
- Osaka Prefecture University Department of Chemistry, Graduate School of Science Gakuen-cho 1-1, Naka-ku 599-8531 Sakai JAPAN
| |
Collapse
|
37
|
Xu Q, Wei L, Zhang Z, Xiao B. Copper Promoted Synthesis of Tetraalkylgermanes from Germanium Electrophiles and Alkyl Bromides ※. ACTA CHIMICA SINICA 2022. [DOI: 10.6023/a21120608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Cui H, Niu C, Xing M, Zhang C. NiH-catalyzed C(sp 3)–Si coupling of alkenes with vinyl chlorosilanes. Chem Commun (Camb) 2022; 58:11989-11992. [DOI: 10.1039/d2cc04232k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel NiH-catalyzed highly selective cross-coupling of alkenes with vinyl chlorosilanes is developed. Using this practical chemistry, various benzyl organosilanes could be produced with good functional group tolerance.
Collapse
Affiliation(s)
- Huanhuan Cui
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Changhao Niu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Mimi Xing
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Rd. 92, Tianjin 300072, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
39
|
shao X, Liu Y, Xing S, Zhang J, Liu W, Xu Y, Zhang Y, Yang KF, Yang L, Jiang K. Construction of Diverse C–S/C-Se Bonds via Nickel Catalyzed Reductive Coupling Employing Thiosulfonates and A Selennofonate Under Mild Conditions. Org Chem Front 2022. [DOI: 10.1039/d1qo01873f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nickel-catalyzed reductive cross coupling between organic iodides and thiosulfonates and a selennofonate under mild conditions is disclosed. This pracitical method provides facile access to a series of unsymmetrical thioethers...
Collapse
|
40
|
Liu Y, Xu Y, Zhang Y, Gao WC, Shao X. “Thiol-free synthesized” and sustainable thiolating synthons for nickel-catalyzed reductive assembly of sulfides with high efficiency. Org Chem Front 2022. [DOI: 10.1039/d2qo01317g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Unsymmetrical sulfides are widely found in the pharmaceutical industry, organic synthesis, and materials science.
Collapse
Affiliation(s)
- Yong Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yuenian Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yan Zhang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Wen-Chao Gao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, People's Republic of China
| | - Xinxin Shao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
41
|
Reactions of a Bis(pentalene)dititanium complex with alkenes; the molecular structure of the butadiene complex [Ti2(µ: η5,η5-Pn††)2(μ: η2,η2-s-trans-C4H6)] (Pn†† = 1,4-(Si Pr3)2-C8H4). Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
He F, Wu J. Nickel-Catalyzed Reductive C—Ge Coupling of Carbon Electrophiles with Chlorogermanes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Cong S, Liu M, Peng S, Zheng Q, Li M, Guo Y, Luo F. Cross-Coupling of C—Si Bond by Using of Silyl Electrophiles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Song KL, Wu B, Gan WE, Zeng Y, Zhang YJ, Cao J, Xu LW. Stereo-divergent synthesis of silyl-enynes via palladium-catalyzed coupling of alkynes and iodosilanes. Org Chem Front 2022. [DOI: 10.1039/d2qo00622g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a palladium-catalyzed coupling reaction of alkynes and silicon electrophiles, affording stereodefined silyl-enynes. Either E- or Z-enynes can be formed in high yields and in a highly stereoselective manner...
Collapse
|
45
|
Su P, Wang K, Peng X, Pang X, Guo P, Shu X. Nickel‐Catalyzed Reductive C−Ge Coupling of Aryl/Alkenyl Electrophiles with Chlorogermanes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Pei‐Feng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Ke Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xuejing Peng
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Xing‐Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University 222 South Tianshui Road Lanzhou 730000 China
| |
Collapse
|
46
|
Su PF, Wang K, Peng X, Pang X, Guo P, Shu XZ. Nickel-Catalyzed Reductive C-Ge Coupling of Aryl/Alkenyl Electrophiles with Chlorogermanes. Angew Chem Int Ed Engl 2021; 60:26571-26576. [PMID: 34693605 DOI: 10.1002/anie.202112876] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/22/2021] [Indexed: 12/17/2022]
Abstract
Cross-electrophile coupling has emerged as a promising tool for molecular synthesis; however, current studies have focused mainly on forging C-C bonds. We report a cross-electrophile C-Ge coupling reaction and thereby demonstrate the possibility of constructing organogermanes from carbon electrophiles and chlorogermanes. The reaction proceeds under mild conditions and offers access to both aryl and alkenyl germanes. Electron-rich, electron-poor, and ortho-/meta-/para-substituted (hetero)aryl electrophiles, as well as cyclic and acyclic alkenyl electrophiles, were coupled. Gram-scale reaction, incorporation of the -GeR3 moiety into complex biologically active molecules, and derivatization of formed organogermanes are demonstrated.
Collapse
Affiliation(s)
- Pei-Feng Su
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Ke Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xuejing Peng
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
47
|
Chandrasekaran R, Pulikkottil FT, Elama KS, Rasappan R. Direct synthesis and applications of solid silylzinc reagents. Chem Sci 2021; 12:15719-15726. [PMID: 35003603 PMCID: PMC8654096 DOI: 10.1039/d1sc06038d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/19/2021] [Indexed: 01/29/2023] Open
Abstract
The increased synthetic utility of organosilanes has motivated researchers to develop milder and more practical synthetic methods. Silylzinc reagents, which are typically the most functional group tolerant, are notoriously difficult to synthesize because they are obtained by a pyrophoric reaction of silyllithium, particularly Me3SiLi which is itself prepared by the reaction of MeLi and disilane. Furthermore, the dissolved LiCl in silylzinc may have a detrimental effect. A synthetic method that can avoid silyllithium and involves a direct synthesis of silylzinc reagents from silyl halides is arguably the simplest and most economical strategy. We describe, for the first time, the direct synthesis of PhMe2SiZnI and Me3SiZnI reagents by employing a coordinating TMEDA ligand, as well as single crystal XRD structures. Importantly, they can be obtained as solids and stored for longer periods at 4 °C. We also demonstrate their significance in cross-coupling of various free alkyl/aryl/alkenyl carboxylic acids with broader functional group tolerance and API derivatives. The general applicability and efficiency of solid Me3SiZnI are shown in a wide variety of reactions including alkylation, arylation, allylation, 1,4-addition, acylation and more.
Collapse
Affiliation(s)
- Revathi Chandrasekaran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| | - Feba Thomas Pulikkottil
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| | - Krishna Suresh Elama
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram Vithura Thiruvananthapuram Kerala 695551 India
| |
Collapse
|
48
|
He RD, Bai Y, Han GY, Zhao ZZ, Pang X, Pan X, Liu XY, Shu XZ. Reductive Alkylation of Alkenyl Acetates with Alkyl Bromides by Nickel Catalysis. Angew Chem Int Ed Engl 2021; 61:e202114556. [PMID: 34862693 DOI: 10.1002/anie.202114556] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/07/2023]
Abstract
Catalytic alkylation of stable alkenyl C-O electrophiles is synthetically appealing, but studies to date have typically focused on the reactions with alkyl Grignard reagents. We report herein a cross-electrophile reaction of alkenyl acetates with alkyl bromides. This work has enabled a new method for the synthesis of aliphatic alkenes from alkenyl acetates to be established that can be used to add more structural complexity and molecular diversity with enhanced functionality tolerance. The method allows for a gram-scale reaction and modification of biologically active molecules, and it affords access to useful building blocks. Preliminary mechanistic studies reveal that the NiI species plays an essential role for the success of the coupling of these two reactivity-mismatched electrophiles.
Collapse
Affiliation(s)
- Rong-De He
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Yunfei Bai
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Guan-Yu Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Zhen-Zhen Zhao
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xiaobo Pan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xue-Yuan Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
49
|
Duan J, Wang Y, Qi L, Guo P, Pang X, Shu XZ. Nickel-Catalyzed Cross-Electrophile C(sp 3)-Si Coupling of Unactivated Alkyl Bromides with Vinyl Chlorosilanes. Org Lett 2021; 23:7855-7859. [PMID: 34608801 DOI: 10.1021/acs.orglett.1c02874] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cross-electrophile C-Si coupling has emerged as a promising tool for the construction of organosilanes, but the potential of this method remains largely unexplored. Herein, we report a C(sp3)-Si coupling of unactivated alkyl bromides with vinyl chlorosilanes. The reaction proceeds under mild conditions, and it offers a new approach to alkylsilanes. Functionalities such as Grignard-sensitive groups (e.g., acid, amide, alcohol, ketone, and ester), acid-sensitive groups (e.g., ketal and THP protection), alkyl fluoride and chloride, aryl bromide, alkyl tosylate and mesylate, silyl ether, and amine were tolerated. Incorporation of the -Si(vinyl)R2 moiety into complex molecules and the immobilization of a glass surface by formed organosilanes were demonstrated.
Collapse
Affiliation(s)
- Jicheng Duan
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Yuquan Wang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Liangliang Qi
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Peng Guo
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xiaobo Pang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Xing-Zhong Shu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| |
Collapse
|
50
|
Xing M, Cui H, Zhang C. Nickel-Catalyzed Reductive Cross-Coupling of Alkyl Bromides and Chlorosilanes. Org Lett 2021; 23:7645-7649. [PMID: 34551258 DOI: 10.1021/acs.orglett.1c02887] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel nickel-catalyzed highly selective reductive cross-coupling of alkyl bromides and chlorosilanes to construct the C-Si bond has been developed. Under benign reaction conditions, a series of structurally interesting organosilanes can be accessed without Ni-catalyzed isomerization. The utility of this chemistry is illustrated by further transformations of the product. Moreover, the radical mechanism of the reaction is illustrated by control experiments.
Collapse
Affiliation(s)
- Mimi Xing
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Huanhuan Cui
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China.,Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
| |
Collapse
|