1
|
Cao W, Guo J, Wang X. Probing the Mechanism of Ni-Catalyzed Asymmetric Reppe Carbonylation of Cyclopropenes with CO and ROH. J Org Chem 2024; 89:12858-12863. [PMID: 39188096 DOI: 10.1021/acs.joc.4c01553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
There is ongoing intense interest in catalysis with the Earth-abundant metal nickel. This DFT study reveals a plausible mechanism for the first Ni-catalyzed asymmetric Reppe carbonylation of cyclopropenes with carbon monoxide and phenols/alcohols. The RO-H bond undergoes a distinct heterolytic cleavage rather than the proposed oxidative addition, transferring a proton to a nickel-bound anionic carbon atom in a stereoselective manner. This and other novel insights gained can have implications for developing new asymmetric Reppe reactions.
Collapse
Affiliation(s)
- Wanxin Cao
- Institute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jiandong Guo
- Institute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaotai Wang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
2
|
Imamoto T. P-Stereogenic Phosphorus Ligands in Asymmetric Catalysis. Chem Rev 2024; 124:8657-8739. [PMID: 38954764 DOI: 10.1021/acs.chemrev.3c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Chiral phosphorus ligands play a crucial role in asymmetric catalysis for the efficient synthesis of useful optically active compounds. They are largely categorized into two classes: backbone chirality ligands and P-stereogenic phosphorus ligands. Most of the reported ligands belong to the former class. Privileged ones such as BINAP and DuPhos are frequently employed in a wide range of catalytic asymmetric transformations. In contrast, the latter class of P-stereogenic phosphorus ligands has remained a small family for many years mainly because of their synthetic difficulty. The late 1990s saw the emergence of novel P-stereogenic phosphorus ligands with their superior enantioinduction ability in Rh-catalyzed asymmetric hydrogenation reactions. Since then, numerous P-stereogenic phosphorus ligands have been synthesized and used in catalytic asymmetric reactions. This Review summarizes P-stereogenic phosphorus ligands reported thus far, including their stereochemical and electronic properties that afford high to excellent enantioselectivities. Examples of reactions that use this class of ligands are described together with their applications in the construction of key intermediates for the synthesis of optically active natural products and therapeutic agents. The literature covered dates back to 1968 up until December 2023, centering on studies published in the late 1990s and later years.
Collapse
Affiliation(s)
- Tsuneo Imamoto
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
- Division of Applied Chemistry, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| |
Collapse
|
3
|
Yang L, Liang X, Ding Y, Li X, Li X, Zeng Q. Transition Metal-Catalyzed Enantioselective Synthesis of Chiral Five- and Six-Membered Benzo O-heterocycles. CHEM REC 2023; 23:e202300173. [PMID: 37401804 DOI: 10.1002/tcr.202300173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Enantiomerically enriched five- and six-membered benzo oxygen heterocycles are privileged architectures in functional organic molecules. Over the last several years, many effective methods have been established to access these compounds. However, comprehensive documents cover updated methodologies still in highly demand. In this review, recent transition metal catalyzed transformations lead to chiral five- and six-membered benzo oxygen heterocycles are presented. The mechanism and chirality transfer or control processes are also discussed in details.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| | - Yuyang Ding
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xinran Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| |
Collapse
|
4
|
Shui L, Liu F, Wang X, Ma C, Qiang Q, Shen M, Fang Y, Ni SF, Rong ZQ. Ligand-Induced chemodivergent nickel-catalyzed annulations via tandem isomerization/esterification and direct O-allylic substitution: Divergent access to 3,4-dihydrocoumarins and 2H-chromenes. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
5
|
Ma ZC, Wei LW, Huang Y. Stereodivergent Access to [6.7]-Fused N-Heterocycles Bearing 1,3-Nonadjacent Stereogenic Centers by Pd-Catalyzed [4 + 2] Annulations. Org Lett 2023; 25:1661-1666. [PMID: 36862582 DOI: 10.1021/acs.orglett.3c00269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
We describe a highly efficient stereodivergent [4 + 2] annulation reaction of vinyl benzoxazinaones and seven-membered cyclic N-sulfonyl aldimines for the synthesis of a wide array of N-heterocycles with 1,3-nonadjacent stereogenic centers via palladium catalysis. The polarity of solvents was found to play a key role in the switch of diastereoselectivity. Furthermore, good enantioselectivities of these reactions were achieved by the employment of commercially available Wingphos as the chiral ligand.
Collapse
Affiliation(s)
- Zhan-Cai Ma
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong Univeristy, Xi'an 710061, China
| | - Lin-Wen Wei
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong Univeristy, Xi'an 710061, China
| | - Yuan Huang
- Department of Medicinal Chemistry, School of Pharmacy, Xi'an Jiaotong Univeristy, Xi'an 710061, China
| |
Collapse
|
6
|
Li Q, Zhang Y, Liu P, Zhong J, Gong B, Yao H, Lin A. Pd-Catalyzed Asymmetric 5-exo-trig Cyclization/Cyclopropanation/Carbonylation of 1,6-Enynes for the Construction of Chiral 3-Azabicyclo[3.1.0]hexanes. Angew Chem Int Ed Engl 2023; 62:e202211988. [PMID: 36426561 DOI: 10.1002/anie.202211988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022]
Abstract
We herein disclose a mild and efficient access to chiral 3-azabicyclo[3.1.0]hexanes via a Pd-catalyzed asymmetric 5-exo-trig cyclization/cyclopropanation/carbonylation of 1,6-enynes. Various nucleophiles, such as alcohols, phenols, amines and water, are well compatible with the reaction system. This reaction forms three C-C bonds, two rings, two adjacent quaternary carbon stereocenters as well as one C-O/C-N bond with excellent regio- and enantioselectivities. The products could be further functionalized to generate a library of 3-azabicyclo[3.1.0]hexane frameworks.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yunchu Zhang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Pengyun Liu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Jing Zhong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Baihui Gong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, P. R. China
| |
Collapse
|
7
|
Synthesis and properties of substituted oxo- and thioxohexahydropyrimidine-5-carboxylic acids. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3653-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Shi Z, Ji X, Shen C, Dong K. Pd-Catalyzed Enantioselective Hydroamidocarbonylation of α-Substituted Acrylamides to Chiral Succinimides. J Org Chem 2022; 88:5036-5043. [PMID: 36123168 DOI: 10.1021/acs.joc.2c01614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the aid of an innate amide group, an intramolecular Pd-catalyzed enantioselective hydroamidocarbonylation reaction of α-substituted acrylamides was developed, and a series of chiral 2-substituted succinimides were obtained in moderate to high yields and enantioselectivities. The generality of this approach was demonstrated by the carbonylation of both aryl- and alkyl-substituted acrylamides containing numerous functional groups.
Collapse
Affiliation(s)
- Zhanglin Shi
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Xiaolei Ji
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Chaoren Shen
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| | - Kaiwu Dong
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People's Republic of China
| |
Collapse
|
9
|
Yu R, Cai S, Li C, Fang X. Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022; 61:e202200733. [DOI: 10.1002/anie.202200733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Song‐Zhou Cai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Can Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs School of Chemistry and Chemical Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| |
Collapse
|
10
|
Li J, Shi Y. Progress on transition metal catalyzed asymmetric hydroesterification, hydrocarboxylation, and hydroamidation reactions of olefins. Chem Soc Rev 2022; 51:6757-6773. [PMID: 35852221 DOI: 10.1039/d2cs00150k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrocarboxylation, hydroesterification, and hydroamidation of olefins are fundamental transformations in organic synthesis. Asymmetric processes for these transformations provide an effective and straightforward approach to optically active carboxylic acids and their derivatives, which are highly useful compounds in pharmaceuticals, materials, fine chemicals, etc. This review provides a brief summary of the development of asymmetric hydroesterification, hydrocarboxylation, and hydroamidation with CO and its surrogates.
Collapse
Affiliation(s)
- Junhua Li
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, P. R. China.
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
11
|
Ji X, Shen C, Tian X, Zhang H, Ren X, Dong K. Asymmetric Double Hydroxycarbonylation of Alkynes to Chiral Succinic Acids Enabled by Palladium Relay Catalysis. Angew Chem Int Ed Engl 2022; 61:e202204156. [DOI: 10.1002/anie.202204156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Xiaolei Ji
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Chaoren Shen
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Xinxin Tian
- Institute of Molecular Science Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province Shanxi University Taiyuan 030006 P. R. China
| | - Hongru Zhang
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Xinyi Ren
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| | - Kaiwu Dong
- Shanghai Frontiers Science Center of Molecule Intelligent Syntheses Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 P. R. China
| |
Collapse
|
12
|
Nickel‐Catalyzed Asymmetric Hydroaryloxy‐ and Hydroalkoxycarbonylation of Cyclopropenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Ru-Catalyzed Asymmetric Addition of Arylboronic Acids to Aliphatic Aldehydes via P-Chiral Monophosphorous Ligands. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123898. [PMID: 35745017 PMCID: PMC9231018 DOI: 10.3390/molecules27123898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Chiral alcohols are among the most widely applied in fine chemicals, pharmaceuticals and agrochemicals. Herein, the Ru-monophosphine catalyst formed in situ was found to promote an enantioselective addition of aliphatic aldehydes with arylboronic acids, delivering the chiral alcohols in excellent yields and enantioselectivities and exhibiting a broad scope of aliphatic aldehydes and arylboronic acids. The enantioselectivities are highly dependent on the monophosphorous ligands. The utility of this asymmetric synthetic method was showcased by a large-scale transformation.
Collapse
|
14
|
Ji X, Shen C, Tian X, Zhang H, Ren X, Dong K. Asymmetric Double Hydroxycarbonylation of Alkynes to Chiral Succinic Acids Enabled by Palladium Relay Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaolei Ji
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Chaoren Shen
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xinin Tian
- Shanxi University Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province CHINA
| | - Hongru Zhang
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Xinyi Ren
- East China Normal University School of Chemistry and Molecular Engineering CHINA
| | - Kaiwu Dong
- East China Normal University Shanghai Key Laboratory of Green Chenistry and Chemical Process 500 Dongchuan Rd 200241 Shanghai CHINA
| |
Collapse
|
15
|
Chen C, Yang XX, Zhao Z, Han B, Du W, Chen YC. Asymmetric inverse-electron-demand 1,3-dipolar cycloadditions of cyclopentadienones and thiophene-1,1-dioxide with C, N-cyclic azomethine imines. Chem Commun (Camb) 2022; 58:5502-5505. [PMID: 35416818 DOI: 10.1039/d2cc01103d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The normal 1,3-dipolar cycloaddition between the carbonates of 4-hydroxy-2-cyclopentenones and C,N-cyclic azomethine imines can be switched to an inverse-electron-demand version under Pd(0) catalysis, by in situ generation of HOMO-raised η2-Pd(0)-cyclopentadienone complexes. An array of fused heterocyclic architectures are constructed with high levels of diastereo and enantioselectivity, and diastereodivergent synthesis is well realised by tuning the bifunctional phosphine ligands. In addition, similar reaction with in situ formed thiophene-1,1-dioxide is compatible by using a chiral bisphosphine ligand, and the fused cyclic sulfone frameworks are afforded with high stereoselectivity.
Collapse
Affiliation(s)
- Chen Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry and Sichuan province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Xing-Xing Yang
- Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry and Sichuan province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Zhi Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry and Sichuan province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry and Sichuan province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of Education Ministry and Sichuan province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. .,College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
16
|
Li Q, Zhang Y, Zeng Y, Fan Y, Lin A, Yao H. Palladium-Catalyzed Asymmetric Dearomative Carbonylation of Indoles. Org Lett 2022; 24:3033-3037. [PMID: 35436128 DOI: 10.1021/acs.orglett.2c00962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we disclose a strategy for the asymmetric dearomatization of N-arylacyl indoles via a palladium-catalyzed tandem Heck/carbonylation, leading to an array of indoline-3-carboxylates bearing vicinal C2-aza-quaternary and C3 tertiary stereocenters in high yields and excellent enantio- and diastereoselectivities. This study is an important advance in the field of asymmetric carbonylation and enantioselective dearomatization reactions.
Collapse
Affiliation(s)
- Qiuyu Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yunchu Zhang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yuye Zeng
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yujing Fan
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
17
|
Podyacheva E, Afanasyev OI, Ostrovskii VS, Chusov D. Syngas Instead of Hydrogen Gas as a Reducing Agent─A Strategy To Improve the Selectivity and Efficiency of Organometallic Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Evgeniya Podyacheva
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| | - Oleg I. Afanasyev
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Vladimir S. Ostrovskii
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St. 28, Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Miasnitskaya Str. 20, Moscow 101000, Russian Federation
| |
Collapse
|
18
|
Abstract
The strategy of embedding coordinative functional group into the starting material is frequently employed to enhance reactivity and enantioselectivity in various asymmetric catalytic reactions other than enantioselective hydrocarbonylation. Recent progress in palladium-catalyzed asymmetric hydrocarbonylation with this strategy for the synthesis of chiral heterocycles was highlighted. The merits of the innate coordinative functional group not only enhance the reactivity and boost the multiple selectivity, but also facilitates the synthesis of chiral heterocycles.
Collapse
|
19
|
Lai J, Yang C, Csuk R, Song B, Li S. Palladium Catalyzed Enantioselective Hayashi-Miyaura Reaction for Pharmaceutically Important 4-Aryl-3,4-dihydrocoumarins. Org Lett 2022; 24:1329-1334. [PMID: 35133842 DOI: 10.1021/acs.orglett.1c04366] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first palladium-catalyzed asymmetric addition of arylboronic acids to coumarins was successfully established, providing a straightforward asymmetric approach to achieving pharmaceutically important 4-aryl-3,4-dihydrocoumarins. This methodology features easily accessible and bench-stable ligands, a wide substrate scope, mild conditions, and accommodation of electron-withdrawing arylboronic acids.
Collapse
Affiliation(s)
- Jixing Lai
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chen Yang
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, D-06120 Halle (Saale), Germany
| | - Baoan Song
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shengkun Li
- Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
20
|
Abstract
AbstractCarbonylation, one of the most powerful approaches to the preparation of carbonylated compounds, has received significant attention from researchers active in various fields. Indeed, impressive progress has been made on this subject over the past few decades. Among the various types of carbonylation reactions, asymmetric carbonylation is a straightforward methodology for constructing chiral compounds. Although rhodium-catalyzed enantioselective hydroformylations have been discussed in several elegant reviews, a general review on palladium-catalyzed asymmetric carbonylations is still missing. In this review, we summarize and discuss recent achievements in palladium-catalyzed asymmetric carbonylation reactions. Notably, this review’s contents are categorized by reaction type.
Collapse
|
21
|
Yang P, Sun Y, Fu K, Zhang L, Yang G, Yue J, Ma Y, Zhou JS, Tang B. Enantioselective Synthesis of Chiral Carboxylic Acids from Alkynes and Formic Acid by Nickel‐Catalyzed Cascade Reactions: Facile Synthesis of Profens. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Peng Yang
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Yaxin Sun
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Kaiyue Fu
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Li Zhang
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Guang Yang
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Jieyu Yue
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Yu Ma
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics Key Laboratory of Chemical Genomics School of Chemical Biology and Biotechnology Peking University Shenzhen Graduate School, Room F312 2199 Lishui Road Nanshan District Shenzhen 518055 P. R. China
| | - Bo Tang
- College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong Institutes of Biomedical Sciences Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|
22
|
Yang P, Sun Y, Fu K, Zhang L, Yang G, Yue J, Ma Y, Zhou JS, Tang B. Enantioselective Synthesis of Chiral Carboxylic Acids from Alkynes and Formic Acid by Nickel-Catalyzed Cascade Reactions: Facile Synthesis of Profens. Angew Chem Int Ed Engl 2022; 61:e202111778. [PMID: 34676957 DOI: 10.1002/anie.202111778] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Indexed: 12/20/2022]
Abstract
We report a stereoselective conversion of terminal alkynes to α-chiral carboxylic acids using a nickel-catalyzed domino hydrocarboxylation-transfer hydrogenation reaction. A simple nickel/BenzP* catalyst displayed high activity in both steps of regioselective hydrocarboxylation of alkynes and subsequent asymmetric transfer hydrogenation. The reaction was successfully applied in enantioselective preparation of three nonsteroidal anti-inflammatory profens (>90 % ees) and the chiral fragment of AZD2716.
Collapse
Affiliation(s)
- Peng Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yaxin Sun
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Kaiyue Fu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Li Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Guang Yang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jieyu Yue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Yu Ma
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| | - Jianrong Steve Zhou
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Room F312, 2199 Lishui Road, Nanshan District, Shenzhen, 518055, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for, Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, P. R. China
| |
Collapse
|
23
|
Kang X, Qian C, Yang H, Shi J, Claverie J, Tang W. Protecting-group-free enantioselective tandem allylic substitution of o-phenylenediamines and o-aminophenols. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
24
|
Du M, Li Y. Pd-Catalyzed Asymmetric Double Hydroxycarbonylation of Alkynes to Chiral Succinic Acids. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Yi B, Wang Q, Tan J, Yi Z, Li D, Kang S, Zhang W, Tang H, Xie Y. Visible Light‐mediated, Iodine‐catalyzed Radical Cascade Sulfonylation/Cyclization for the Synthesis of Sulfone‐containing Coumarin under Photocatalyst‐free Conditions. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Bing Yi
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Qiang Wang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Jian‐Ping Tan
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. China
| | - Ziqi Yi
- CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Daiguang Li
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Shiyuan Kang
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| | - Wenhui Zhang
- College of Chemistry Xiangtan University Xiangtan 411105 P. R. China
| | - Huan Tang
- College of Chemistry Xiangtan University Xiangtan 411105 P. R. China
| | - Yanjun Xie
- Hunan Province Key Laboratory of Environmental Catalysis and Waste Recycling College of Materials and Chemical Engineering Hunan Institute of Engineering Xiangtan 411104 P. R. China
| |
Collapse
|
26
|
Ji X, Shen C, Tian X, Dong K. Palladium-Catalyzed Asymmetric Hydroesterification of α-Aryl Acrylic Acids to Chiral Substituted Succinates. Org Lett 2021; 23:8645-8649. [PMID: 34633824 DOI: 10.1021/acs.orglett.1c03361] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed asymmetric hydroesterification of α-aryl acrylic acids with CO and alcohol was developed, preparing a variety of chiral α-substituted succinates in moderate yields with high ee values. The kinetic profile of the reaction progress revealed that the alkene substrate first underwent the hydroesterification followed by esterification with alcohol. The origin of the enantioselectivity was elucidated by density functional theory computation.
Collapse
Affiliation(s)
- Xiaolei Ji
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Chaoren Shen
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Xinxin Tian
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan 030006, P. R. China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
27
|
Yao Y, Zou X, Wang Y, Yang H, Ren Z, Guan Z. Palladium‐Catalyzed Asymmetric Markovnikov Hydroxycarbonylation and Hydroalkoxycarbonylation of Vinyl Arenes: Synthesis of 2‐Arylpropanoic Acids. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ya‐Hong Yao
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Xian‐Jin Zou
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Yuan Wang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Hui‐Yi Yang
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Zhi‐Hui Ren
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| | - Zheng‐Hui Guan
- Key Laboratory of Synthetic and Nature Molecule Chemistry of Ministry of Education Department of Chemistry & Materials Science Northwest University Xi'an 710127 P. R. China
| |
Collapse
|
28
|
Yao YH, Zou XJ, Wang Y, Yang HY, Ren ZH, Guan ZH. Palladium-Catalyzed Asymmetric Markovnikov Hydroxycarbonylation and Hydroalkoxycarbonylation of Vinyl Arenes: Synthesis of 2-Arylpropanoic Acids. Angew Chem Int Ed Engl 2021; 60:23117-23122. [PMID: 34240535 DOI: 10.1002/anie.202107856] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 11/06/2022]
Abstract
Asymmetric hydroxycarbonylation is one of the most fundamental yet challenging methods for the synthesis of carboxylic acids. Herein, we reported the development of a palladium-catalyzed highly enantioselective Markovnikov hydroxycarbonylation of vinyl arenes with CO and water. A monodentate phosphoramidite ligand L6 plays vital role in the reaction. The reaction tolerates a range of functional groups, and provides a facile and atom-economical approach to an array of 2-arylpropanoic acids including several commonly used non-steroidal anti-inflammatory drugs. The catalytic system has also enabled an asymmetric Markovnikov hydroalkoxycarbonylation of vinyl arenes with alcohols to afford 2-arylpropanates. Mechanistic investigations suggested that the reactions proceed through a palladium-hydride pathway, the hydropalladation is irreversible and is the regio- and enantiodetermining step, while hydrolysis/alcoholysis is probably the rate-limiting step.
Collapse
Affiliation(s)
- Ya-Hong Yao
- Northwest University, Department of Chemistry, CHINA
| | - Xian-Jin Zou
- Northwest University, Department of Chemistry, CHINA
| | - Yuan Wang
- Northwest University, Department of Chemistry, CHINA
| | - Hui-Yi Yang
- Northwest University, Department of Chemistry, CHINA
| | - Zhi-Hui Ren
- Northwest University, Department of Chemistry, CHINA
| | - Zheng-Hui Guan
- Northwest University, Chemistry, #1 Xuefu Road, 710127, Xi'an, CHINA
| |
Collapse
|
29
|
Ren X, Wang Z, Shen C, Tian X, Tang L, Ji X, Dong K. Asymmetric Alkoxy‐ and Hydroxy‐Carbonylations of Functionalized Alkenes Assisted by β‐Carbonyl Groups. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xinyi Ren
- Chang-Kung Chuang Institute Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Zhen Wang
- Chang-Kung Chuang Institute Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Chaoren Shen
- Chang-Kung Chuang Institute Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xinxin Tian
- Institute of Molecular Science Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province Shanxi University Taiyuan 030006 China
| | - Lin Tang
- Chang-Kung Chuang Institute Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Xiaolei Ji
- Chang-Kung Chuang Institute Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute Shanghai Key Laboratory of Green Chemistry and Chemical Processes School of Chemistry and Molecular Engineering East China Normal University Shanghai 200062 China
| |
Collapse
|
30
|
Ren X, Wang Z, Shen C, Tian X, Tang L, Ji X, Dong K. Asymmetric Alkoxy- and Hydroxy-Carbonylations of Functionalized Alkenes Assisted by β-Carbonyl Groups. Angew Chem Int Ed Engl 2021; 60:17693-17700. [PMID: 34109712 DOI: 10.1002/anie.202105977] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 11/09/2022]
Abstract
As a fundamental type of carbonylation reaction, the alkoxy- and hydroxy-carbonylation of unsaturated hydrocarbons constitutes one of the most important industrial applications of homogeneous catalysis. However, owing to the difficulties in controlling multi-selectivities for asymmetric hydrocarbonylation of alkenes, this reaction is typically limited to vinylarenes and analogues. In this work, a highly efficient asymmetric alkoxy- and hydroxy-carbonylation of β-carbonyl functionalized alkenes was developed, providing practical and easy access to various densely functionalized chiral molecules with high optical purity from broadly available alkenes, CO, and nucleophiles (>90 examples, 84-99 % ee). This protocol features mild reaction conditions and a broad substrate scope, and the products can be readily transformed into a diverse array of chiral heterocycles. Control experiments revealed the key role of the β-carbonyl group in determining the enantioselectivity and promoting the activity, which facilitates chiral induction by coordination to the transition metal as rationalized by DFT calculations. The strategy of utilizing an innate functional group as the directing group on the alkene substrate might find further applications in catalytic asymmetric hydrocarbonylation reactions.
Collapse
Affiliation(s)
- Xinyi Ren
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Zhen Wang
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Chaoren Shen
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xinxin Tian
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan, 030006, China
| | - Lin Tang
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Xiaolei Ji
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China
| |
Collapse
|
31
|
Zhao QK, Wu X, Yang F, Yan PC, Xie JH, Zhou QL. Catalytic Asymmetric Hydrogenation of 3-Ethoxycarbonyl Quinolin-2-ones and Coumarins. Org Lett 2021; 23:3593-3598. [PMID: 33872510 DOI: 10.1021/acs.orglett.1c00993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A protocol of iridium catalyzed asymmetric hydrogenation of 4-alkyl substituted 3-ethoxycarbonyl quinolin-2-ones and coumarins has been reported, providing a wide range of chiral dihydroquinolin-2-ones and dihydrocoumarins in high yields with excellent enantioselectivities (up to 99% ee) and high turnover numbers (up to 28 000). This efficient protocol was successfully applied for the synthesis of MPR3160 and the key chiral intermediate of R-106578.
Collapse
Affiliation(s)
- Qian-Kun Zhao
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiong Wu
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fan Yang
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pu-Cha Yan
- Raybow (Hangzhou) Pharmaceutical Science & Technology CO., Ltd., Hangzhou 310018, China
| | - Jian-Hua Xie
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qi-Lin Zhou
- State Key Laboratory and Institute of Elemento-organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
Wu T, Zhou Q, Tang W. Enantioselective α-Carbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β'-Diketones. Angew Chem Int Ed Engl 2021; 60:9978-9983. [PMID: 33599064 DOI: 10.1002/anie.202101668] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Indexed: 01/03/2023]
Abstract
We herein describe the first enantioselective α-carbonylative arylation, providing a diverse set of chiral spiro β,β'-diketones bearing various ring sizes and functionalities in high yields and good to excellent enantioselectivities. Calculations suggest the transformation proceeds through reductive elimination instead of nucleophilic addition pathway.
Collapse
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China
| | - Qinghai Zhou
- College of Chemistry and Materials Science, Shanghai Normal University, 106 Guilin Road, Shanghai, 200233, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Rd, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
33
|
Wu T, Zhou Q, Tang W. Enantioselective α‐Carbonylative Arylation for Facile Construction of Chiral Spirocyclic β,β′‐Diketones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Ting Wu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
| | - Qinghai Zhou
- College of Chemistry and Materials Science Shanghai Normal University 106 Guilin Road Shanghai 200233 China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Ling Ling Rd Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
34
|
Feng S, Buchwald SL. CuH-Catalyzed Regio- and Enantioselective Hydrocarboxylation of Allenes: Toward Carboxylic Acids with Acyclic Quaternary Centers. J Am Chem Soc 2021; 143:4935-4941. [PMID: 33761252 PMCID: PMC8058699 DOI: 10.1021/jacs.1c01880] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a method to prepare α-chiral carboxylic acid derivatives, including those bearing all-carbon quaternary centers, through an enantioselective CuH-catalyzed hydrocarboxylation of allenes with a commercially available fluoroformate. A broad range of heterocycles and functional groups on the allenes were tolerated in this protocol, giving enantioenriched α-quaternary and tertiary carboxylic acid derivatives in good yields with exclusive branched regioselectivity. The synthetic utility of this approach was further demonstrated by derivatization of the products to afford biologically important compounds, including the antiplatelet drug indobufen.
Collapse
Affiliation(s)
- Sheng Feng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
35
|
Xu R, Gao Z, Yu Y, Tang Y, Tian D, Chen T, Chen Y, Xu G, Shi E, Tang W. A facile and practical preparation of P-chiral phosphine oxides. Chem Commun (Camb) 2021; 57:3335-3338. [PMID: 33665653 DOI: 10.1039/d1cc00646k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A practical and cost-effective synthetic method of P-chiral diarylalkyl, aryldialkyl, and triaryl phosphine oxides by using readily available chiral diphenyl-2-pyrrolidinemethanol as the auxiliary is developed. The long-standing racemization issue during solvolysis has been addressed and well controlled by employing a suitable solvent, a low reaction temperature, and an appropriate reaction time.
Collapse
Affiliation(s)
- Ronghua Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cheng S, Zhu Q. β-Carbonyl-Directed Asymmetric Alkoxy- and Hydroxy-carbonylation of Functionalized Alkenes. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|