1
|
Wang Z, Alsup TA, Pan X, Li LL, Tian J, Yang Z, Lin X, Xu HM, Rudolf JD, Dong LB. Biosynthesis of a bacterial meroterpenoid reveals a non-canonical class II meroterpenoid cyclase. Chem Sci 2024; 16:310-317. [PMID: 39611033 PMCID: PMC11600129 DOI: 10.1039/d4sc06010e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
Meroterpenoids are hybrid natural products that arise from the integration of terpenoid and non-terpenoid biosynthetic pathways. While the biosynthesis of fungal meroterpenoids typically follows a well-established sequence of prenylation, epoxidation, and cyclization, the pathways for bacterial perhydrophenanthrene meroterpenoids remain poorly understood. In this study, we report the construction of an engineered metabolic pathway in Streptomyces for the production of the bacterial meroterpenoid, atolypene A (1). Our research reveals a novel biosynthetic pathway wherein the structure of 1 is assembled through a distinct sequence of epoxidation, prenylation, and cyclization, divergent from its fungal counterparts. We demonstrate that the noncanonical class II meroterpenoid cyclase (MTC) AtoE initiates cyclization by protonating the epoxide via the E314 residue, which acts as a Brønsted acid within the characteristic xxxE314TAE motif. Additionally, bioinformatic analysis of biosynthetic gene clusters (BGCs) that contain AtoE-like MTCs supports that bacteria have the potential to produce a wide array of meroterpenoids.
Collapse
Affiliation(s)
- Zengyuan Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| | - Tyler A Alsup
- Department of Chemistry, University of Florida Gainesville Florida 32611-7011 USA
| | - Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| | - Lu-Lu Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| | - Jupeng Tian
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| | - Ziyi Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| | - Xiaoxu Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| | - Hui-Min Xu
- The Public Laboratory Platform, China Pharmaceutical University Nanjing 211198 China
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida Gainesville Florida 32611-7011 USA
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| |
Collapse
|
2
|
Alsup TA, Li Z, McCadden CA, Jagels A, Łomowska-Keehner DP, Marshall EM, Dong LB, Loesgen S, Rudolf JD. Early-stage biosynthesis of phenalinolactone diterpenoids involves sequential prenylation, epoxidation, and cyclization. RSC Chem Biol 2024; 5:d4cb00138a. [PMID: 39144403 PMCID: PMC11317874 DOI: 10.1039/d4cb00138a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
The chemical logic associated with assembly of many bacterial terpenoids remains poorly understood. We focused our efforts on the early-stage biosynthesis of the phenalinolactone diterpenoids, demonstrating that the anti/anti/syn-perhydrophenanthrene core is constructed by sequential prenylation, epoxidation, and cyclization. The functions and timing of PlaT1-PlaT3 were assigned by comprehensive heterologous reconstitution. We illustrated that the UbiA prenyltransferase PlaT3 acts on geranylgeranyl diphosphate (GGPP) in the first step of phenalinolactone biosynthesis, prior to epoxidation by the flavin-dependent monooxygenase PlaT1 and cyclization by the type II terpene cyclase PlaT2. Finally, we isolated eight new-to-nature terpenoids, expanding the scope of the bacterial terpenome. The biosynthetic strategy employed in the assembly of the phenalinolactone core, with cyclization occurring after prenylation, is rare in bacteria and resembles fungal meroterpenoid biosynthesis. The findings presented here set the stage for future discovery, engineering, and enzymology efforts in bacterial meroterpenoids.
Collapse
Affiliation(s)
- Tyler A Alsup
- Department of Chemistry, University of Florida Gainesville Florida USA
| | - Zining Li
- Department of Chemistry, University of Florida Gainesville Florida USA
| | | | - Annika Jagels
- Department of Chemistry, University of Florida Gainesville Florida USA
- Whitney Laboratory for Marine Bioscience, University of Florida St. Augustine FL USA
| | | | - Erin M Marshall
- Department of Chemistry, University of Florida Gainesville Florida USA
- Whitney Laboratory for Marine Bioscience, University of Florida St. Augustine FL USA
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University Nanjing 211198 Jiangsu China
| | - Sandra Loesgen
- Department of Chemistry, University of Florida Gainesville Florida USA
- Whitney Laboratory for Marine Bioscience, University of Florida St. Augustine FL USA
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida Gainesville Florida USA
| |
Collapse
|
3
|
Saad H, Majer T, Bhattarai K, Lampe S, Nguyen DT, Kramer M, Straetener J, Brötz-Oesterhelt H, Mitchell DA, Gross H. Bioinformatics-guided discovery of biaryl-linked lasso peptides. Chem Sci 2023; 14:13176-13183. [PMID: 38023510 PMCID: PMC10664482 DOI: 10.1039/d3sc02380j] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Lasso peptides are a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) that feature an isopeptide bond and a distinct lariat fold. A growing number of secondary modifications have been described that further decorate lasso peptide scaffolds. Using genome mining, we have discovered a pair of lasso peptide biosynthetic gene clusters (BGCs) that include cytochrome P450 genes. Using mass spectrometry, stable isotope incorporation, and extensive 2D-NMR spectrometry, we report the structural characterization of two unique examples of (C-N) biaryl-linked lasso peptides. Nocapeptin A, from Nocardia terpenica, is tailored with a Trp-Tyr crosslink, while longipepetin A, from Longimycelium tulufanense, features a Trp-Trp linkage. Besides the unusual bicyclic frame, a Met of longipepetin A undergoes S-methylation to yield a trivalent sulfonium, a heretofore unprecedented RiPP modification. A bioinformatic survey revealed additional lasso peptide BGCs containing P450 enzymes which await future characterization. Lastly, nocapeptin A bioactivity was assessed against a panel of human and bacterial cell lines with modest growth-suppression activity detected towards Micrococcus luteus.
Collapse
Affiliation(s)
- Hamada Saad
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Thomas Majer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Keshab Bhattarai
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Sarah Lampe
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Dinh T Nguyen
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Markus Kramer
- Institute of Organic Chemistry, University of Tübingen Auf der Morgenstelle 18 72076 Tübingen Germany
| | - Jan Straetener
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
| | - Heike Brötz-Oesterhelt
- Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen Auf der Morgenstelle 28 72076 Tübingen Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen Tübingen Germany
| | - Douglas A Mitchell
- Department of Chemistry and the Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Harald Gross
- Department of Pharmaceutical Biology, Institute of Pharmaceutical Sciences, University of Tübingen Auf der Morgenstelle 8 72076 Tübingen Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen Tübingen Germany
| |
Collapse
|
4
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
5
|
Niman S, Buono R, Fruman DA, Vanderwal CD. Synthesis of a Complex Brasilicardin Analogue Utilizing a Cobalt-Catalyzed MHAT-Induced Radical Bicyclization Reaction. Org Lett 2023; 25:3451-3455. [PMID: 37141632 PMCID: PMC10204089 DOI: 10.1021/acs.orglett.3c01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 05/06/2023]
Abstract
We designed and executed an expedient synthesis of a complex analogue of the potent immunosuppressive natural product brasilicardin A. Our successful synthesis featured application of our recently developed MHAT-initiated radical bicyclization, which delivered the targeted, complex analogue in 17 steps in the longest linear sequence. Unfortunately, this analogue showed no observable immunosuppressive activity, which speaks to the importance of the structural and stereochemical elements of the natural core scaffold.
Collapse
Affiliation(s)
- Scott
W. Niman
- Department
of Chemistry, University of California, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Roberta Buono
- Department
of Molecular Biology & Biochemistry, University of California, 3205 McGaugh Hall, Irvine, California 92697-2525, United States
| | - David A. Fruman
- Department
of Molecular Biology & Biochemistry, University of California, 3205 McGaugh Hall, Irvine, California 92697-2525, United States
| | - Christopher D. Vanderwal
- Department
of Chemistry, University of California, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
- Department
of Pharmaceutical Sciences, University of
California, 101 Theory
#100, Irvine, California 92617, United States
| |
Collapse
|
6
|
Computational Insight into Intraspecies Distinctions in Pseudoalteromonas distincta: Carotenoid-like Synthesis Traits and Genomic Heterogeneity. Int J Mol Sci 2023; 24:ijms24044158. [PMID: 36835570 PMCID: PMC9966250 DOI: 10.3390/ijms24044158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Advances in the computational annotation of genomes and the predictive potential of current metabolic models, based on more than thousands of experimental phenotypes, allow them to be applied to identify the diversity of metabolic pathways at the level of ecophysiology differentiation within taxa and to predict phenotypes, secondary metabolites, host-associated interactions, survivability, and biochemical productivity under proposed environmental conditions. The significantly distinctive phenotypes of members of the marine bacterial species Pseudoalteromonas distincta and an inability to use common molecular markers make their identification within the genus Pseudoalteromonas and prediction of their biotechnology potential impossible without genome-scale analysis and metabolic reconstruction. A new strain, KMM 6257, of a carotenoid-like phenotype, isolated from a deep-habituating starfish, emended the description of P. distincta, particularly in the temperature growth range from 4 to 37 °C. The taxonomic status of all available closely related species was elucidated by phylogenomics. P. distincta possesses putative methylerythritol phosphate pathway II and 4,4'-diapolycopenedioate biosynthesis, related to C30 carotenoids, and their functional analogues, aryl polyene biosynthetic gene clusters (BGC). However, the yellow-orange pigmentation phenotypes in some strains coincide with the presence of a hybrid BGC encoding for aryl polyene esterified with resorcinol. The alginate degradation and glycosylated immunosuppressant production, similar to brasilicardin, streptorubin, and nucleocidines, are the common predicted features. Starch, agar, carrageenan, xylose, lignin-derived compound degradation, polysaccharide, folate, and cobalamin biosynthesis are all strain-specific.
Collapse
|
7
|
Zhao J, Lv J, Chen Y, Dong Q, Dong H. Recent progress of amino acid transporters as a novel antitumor target. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Abstract
Glutamine transporters transport different amino acids for cell growth and metabolism. In tumor cells, glutamine transporters are often highly expressed and play a crucial role in their growth. By inhibiting the amino acid transport of these transporters, the growth of cancer cells can be inhibited. In recent years, more and more attention has been paid to the study of glutamine transporter. In this article, the differences between the ASC system amino acid transporter 2 (ASCT2), L-type amino acid transporter 1 (LAT1), and the cystine–glutamate exchange (xCT) transporters research progress on the mechanism of action and corresponding small molecule inhibitors are summarized. This article introduces 62 related small molecule inhibitors of different transporters of ASCT2, LAT1, and xCT. These novel chemical structures provide ideas for the research and design of targeted inhibitors of glutamine transporters, as well as important references and clues for the design of new anti-tumor drugs.
Collapse
Affiliation(s)
- Jiye Zhao
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Jiayi Lv
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Yang Chen
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University , No. 639 Longmian Avenue, Jiangning District , Nanjing 211198 , China
| | - Qile Dong
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
| | - Hao Dong
- Department of Innovation and Entrepreneurship, School of Teacher Education, Nanjing Xiaozhuang University , No. 3601 Hongjing Avenue, Jiangning District , Nanjing 211171 , China
| |
Collapse
|
8
|
ZHANG H, TANG X. Combining microbial and chemical syntheses for the production of complex natural products. Chin J Nat Med 2022; 20:729-736. [DOI: 10.1016/s1875-5364(22)60191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Indexed: 11/28/2022]
|
9
|
Vollmann DJ, Winand L, Nett M. Emerging concepts in the semisynthetic and mutasynthetic production of natural products. Curr Opin Biotechnol 2022; 77:102761. [DOI: 10.1016/j.copbio.2022.102761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/18/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
10
|
Schafhauser T, Wibberg D, Binder A, Rückert C, Busche T, Wohlleben W, Kalinowski J. Genome Assembly and Genetic Traits of the Pleuromutilin-Producer Clitopilus passeckerianus DSM1602. J Fungi (Basel) 2022; 8:jof8080862. [PMID: 36012850 PMCID: PMC9410065 DOI: 10.3390/jof8080862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The gilled mushroom Clitopilus passeckerianus (Entolomataceae, Agaricales, Basidiomycota) is well known to produce the terpenoid pleuromutilin, which is the biotechnological basis for medically important antibiotics such as lefamulin and retapamulin. Their unique mode of action and good tolerance entails an increasing demand of pleuromutilin-derived antibiotics in veterinary and human health care. Surprisingly, despite their pharmaceutical importance, no genome sequence is available of any pleuromutilin-producing fungus. Here, we present the high-quality draft genome sequence of the pleuromutilin-producer C. passeckerianus DSM1602 including functional genome annotation. More precisely, we employed a hybrid assembly strategy combining Illumina sequencing and Nanopore sequencing to assemble the mitochondrial genome as well as the nuclear genome. In accordance with the dikaryotic state of the fungus, the nuclear genome has a diploid character. Interestingly, the mitochondrial genome appears duplicated. Bioinformatic analysis revealed a versatile secondary metabolism with an emphasis on terpenoid biosynthetic enzymes in C. passeckerianus and also in related strains. Two alleles of biosynthetic gene clusters for pleuromutilin were found in the genome of C. passeckerianus. The pleuromutilin genes were reassembled with yeast-specific elements for heterologous expression in Saccharomyces cerevisiae. Our work lays the foundation for metabolic strain engineering towards higher yields of the valuable compound pleuromutilin.
Collapse
Affiliation(s)
- Thomas Schafhauser
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
- Correspondence: (T.S.); (J.K.)
| | - Daniel Wibberg
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
- Institute of Bio- and Geosciences IBG-5, Computational Metagenomics, Forschungszentrum Jülich GmbH, 52425 Juelich, Germany
| | - Antonia Binder
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
- Institut für Mikrobiologie, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany
| | - Christian Rückert
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Tobias Busche
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
| | - Wolfgang Wohlleben
- Mikrobiologie und Biotechnologie, Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tuebingen, Germany
- Cluster of Excellence EXC 2124—Controlling Microbes to Fight Infections, 72076 Tuebingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tuebingen, Germany
| | - Jörn Kalinowski
- Centrum für Biotechnologie, CeBiTec, Universität Bielefeld, Universitätsstr. 27, 33615 Bielefeld, Germany
- Correspondence: (T.S.); (J.K.)
| |
Collapse
|
11
|
Botas A, Eitel M, Schwarz PN, Buchmann A, Costales P, Núñez LE, Cortés J, Morís F, Krawiec M, Wolański M, Gust B, Rodriguez M, Fischer W, Jandeleit B, Zakrzewska‐Czerwińska J, Wohlleben W, Stegmann E, Koch P, Méndez C, Gross H. Genetic Engineering in Combination with Semi-Synthesis Leads to a New Route for Gram-Scale Production of the Immunosuppressive Natural Product Brasilicardin A. Angew Chem Int Ed Engl 2021; 60:13536-13541. [PMID: 33768597 PMCID: PMC8251711 DOI: 10.1002/anie.202015852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/28/2021] [Indexed: 01/01/2023]
Abstract
Brasilicardin A (1) consists of an unusual anti/syn/anti-perhydrophenanthrene skeleton with a carbohydrate side chain and an amino acid moiety. It exhibits potent immunosuppressive activity, yet its mode of action differs from standard drugs that are currently in use. Further pre-clinical evaluation of this promising, biologically active natural product is hampered by restricted access to the ready material, as its synthesis requires both a low-yielding fermentation process using a pathogenic organism and an elaborate, multi-step total synthesis. Our semi-synthetic approach included a) the heterologous expression of the brasilicardin A gene cluster in different non-pathogenic bacterial strains producing brasilicardin A aglycone (5) in excellent yield and b) the chemical transformation of the aglycone 5 into the trifluoroacetic acid salt of brasilicardin A (1 a) via a short and straightforward five-steps synthetic route. Additionally, we report the first preclinical data for brasilicardin A.
Collapse
Affiliation(s)
- Alma Botas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de AsturiasUniversidad de Oviedo and Instituto de Investigación Sanitaria de Asturias (ISPA)c/ Julián Clavería s/n.33006OviedoSpain
| | - Michael Eitel
- Department of Pharmaceutical ChemistryInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Paul N. Schwarz
- Department of Microbiology and BiotechnologyInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Anina Buchmann
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Paula Costales
- EntreChem S.L.Vivero Ciencias de la Saludc/ Colegio Santo Domingo de Guzmán, s/n33011OviedoSpain
| | - Luz Elena Núñez
- EntreChem S.L.Vivero Ciencias de la Saludc/ Colegio Santo Domingo de Guzmán, s/n33011OviedoSpain
| | - Jesús Cortés
- EntreChem S.L.Vivero Ciencias de la Saludc/ Colegio Santo Domingo de Guzmán, s/n33011OviedoSpain
| | - Francisco Morís
- EntreChem S.L.Vivero Ciencias de la Saludc/ Colegio Santo Domingo de Guzmán, s/n33011OviedoSpain
| | - Michał Krawiec
- Department of Molecular MicrobiologyFaculty of BiotechnologyUniversity of Wrocławul. F. Joliot-Curie 14A50-383WrocławPoland
| | - Marcin Wolański
- Department of Molecular MicrobiologyFaculty of BiotechnologyUniversity of Wrocławul. F. Joliot-Curie 14A50-383WrocławPoland
| | - Bertolt Gust
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Mirna Rodriguez
- Quadriga BioSciences, Inc.339 S. San Antonio Road, Suite 2ALos AltosCA94022USA
| | | | - Bernd Jandeleit
- Quadriga BioSciences, Inc.339 S. San Antonio Road, Suite 2ALos AltosCA94022USA
| | - Jolanta Zakrzewska‐Czerwińska
- Department of Molecular MicrobiologyFaculty of BiotechnologyUniversity of Wrocławul. F. Joliot-Curie 14A50-383WrocławPoland
| | - Wolfgang Wohlleben
- Department of Microbiology and BiotechnologyInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Evi Stegmann
- Department of Microbiology and BiotechnologyInterfaculty Institute of Microbiology and Infection MedicineUniversity of TübingenAuf der Morgenstelle 2872076TübingenGermany
| | - Pierre Koch
- Department of Pharmaceutical ChemistryInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de AsturiasUniversidad de Oviedo and Instituto de Investigación Sanitaria de Asturias (ISPA)c/ Julián Clavería s/n.33006OviedoSpain
| | - Harald Gross
- Department of Pharmaceutical BiologyInstitute of Pharmaceutical SciencesUniversity of TübingenAuf der Morgenstelle 872076TübingenGermany
| |
Collapse
|
12
|
Eitel M, Zinad DS, Schollmeyer D, Gross H, Koch P. Selective mono-de-O-acetylation of the per-O-acetylated brasilicardin carbohydrate side chain. Carbohydr Res 2021; 504:108312. [PMID: 33895608 DOI: 10.1016/j.carres.2021.108312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/30/2021] [Accepted: 04/06/2021] [Indexed: 11/25/2022]
Abstract
Methanol dried over powdered 4 Å molecular sieves can be used for a selective mono-de-O-acetylation of the phenolic acetyl group of the per-O-acetyl protected brasilicardin A carbohydrate side chain. This reaction opens a practical procedure for a synthetic access to derivates of the immunosuppressive and cytotoxic natural product brasilicardin A.
Collapse
Affiliation(s)
- Michael Eitel
- Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Institute of Organic Chemistry, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.
| | - Dhafer S Zinad
- Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Department of Applied Sciences, Chemistry Branch, University of Technology-Baghdad, Sinaa'Street, 10066, Baghdad, Iraq
| | - Dieter Schollmeyer
- Department of Organic Chemistry, Johannes Gutenberg Universität Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | - Harald Gross
- Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Pierre Koch
- Institute of Pharmaceutical Sciences, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany; Department of Pharmaceutical/Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|