1
|
Valerio L, Roy Chowdhury S, Lewis R, Knowles KE, Vlaisavljevich B, Matson EM. Photoluminescence of a Uranium(IV) Alkoxide Complex. JACS AU 2025; 5:332-342. [PMID: 39886594 PMCID: PMC11775688 DOI: 10.1021/jacsau.4c01022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 02/01/2025]
Abstract
In this report, we describe the photoluminescence of a homoleptic uranium(IV) alkoxide complex. Excitation of [Li(THF)]2[UIV(O t Bu)6] leads to the first example of photoluminescence from a well-defined actinide complex originating from an f-f excitation, supported by second order multiconfigurational electronic structure calculations including spin-orbit coupling. These calculations show strong spin-orbit coupling between the excited triplet and singlet states for the 5f-orbital manifold, which leads to a long-lived excited state lifetime of 0.85 s at low temperature. The photophysical properties of homoleptic uranium(V) and uranium(VI) tertbutoxide complexes are also presented; we find that oxidation of the uranium(IV) alkoxide results in quenching of luminescence in [Li(THF)][UV(O t Bu)6] and [UVI(O t Bu)6]. This is attributed to competing ligand to metal charge transfer absorption processes shifted to lower energy upon oxidation of the actinide center, which mask the relevant f-f transitions in the visible region of the electronic absorption spectrum.
Collapse
Affiliation(s)
- Leyla
R. Valerio
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Sabyasachi Roy Chowdhury
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52240, United States
| | - Rob Lewis
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Kathryn E. Knowles
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Bess Vlaisavljevich
- Department
of Chemistry, University of South Dakota, Vermillion, South Dakota 57069, United States
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52240, United States
| | - Ellen M. Matson
- Department
of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
2
|
Takeyama T, Tsushima S, Gericke R, Duckworth TM, Kaden P, März J, Takao K. A Series of An VIO 22+ Complexes (An = U, Np, Pu) with N 3O 2-Donating Schiff-Base Ligands: Systematic Trends in the Molecular Structures and Redox Behavior. Inorg Chem 2025; 64:1313-1322. [PMID: 39752261 PMCID: PMC11776050 DOI: 10.1021/acs.inorgchem.4c04185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/19/2024] [Accepted: 12/17/2024] [Indexed: 01/28/2025]
Abstract
In their + V and + VI oxidation states, actinide elements (U, Np, and Pu) are commonly encountered in characteristic linear dioxo structures, known as actinyl ions (AnO2n+; An = U, Np, Pu, n = 1, 2). A systematic understanding of the structural and redox behavior of AnVO2+/AnVIO22+ complexes is expected to provide valuable information for controlling the behavior of An elements in natural environments and in nuclear fuel cycles while enabling the development of spintronics and new reactivities that utilize the anisotropic spin of the 5f electrons. However, systematic trends in the behavior of AnVO2+/AnVIO22+ complexes remain poorly understood. The [AnV/VIO2(saldien)]-/0 complexes (saldien2- = N,N'-disalicylidenediethylenetriamine) studied here offer a promising avenue for advancing our understanding of this subject. The molecular structures of a series of [AnVIO2(saldien)] complexes were found to exhibit notable similarities through these An elements with minor, but still significant, contributions from the actinide contraction. The redox potentials of the [AnV/VIO2(saldien)]-/0 couples clearly increase from U to Np, followed by a subsequent decrease from Np to Pu (-1.667 V vs Fc0/+ for [UV/VIO2(saldien)]-/0, -0.650 V for [NpV/VIO2(saldien)]-/0 and -0.698 V for [PuV/VIO2(saldien)]-/0). Such a difference can be explained in terms of the difference in character of the electronic configuration of the + VI oxidation state. A series of these redox trends was also successfully reproduced by DFT-based calculations. These findings provide valuable information for controlling the oxidation states of the An elements.
Collapse
Affiliation(s)
- Tomoyuki Takeyama
- Department
of Applied Chemistry, Sanyo-Onoda City University, 1-1-1, Daigakudori, Sanyo-Onoda, Yamaguchi 756-0884, Japan
- Laboratory
for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Satoru Tsushima
- Laboratory
for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) Bautzner Landstraße
400, Dresden 01328, Germany
| | - Robert Gericke
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) Bautzner Landstraße
400, Dresden 01328, Germany
| | - Tamara M. Duckworth
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) Bautzner Landstraße
400, Dresden 01328, Germany
| | - Peter Kaden
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) Bautzner Landstraße
400, Dresden 01328, Germany
| | - Juliane März
- Institute
of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) Bautzner Landstraße
400, Dresden 01328, Germany
| | - Koichiro Takao
- Laboratory
for Zero-Carbon Energy, Institute of Integrated Research, Institute of Science Tokyo, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
3
|
Takeyama T, Tsushima S, Takao K. Controlling mixed-valence states of pyridyldiimino-bis( o-phenolato) ligand radical in uranyl(VI) complexes. Dalton Trans 2024; 53:16671-16684. [PMID: 39330312 DOI: 10.1039/d4dt01821d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Combination of a uranyl(VI) ion (UVIO22+) with a redox-active ligand results in characteristic electronic structures that cannot be achieved by either component alone. In this study, three UVIO22+ complexes that bear symmetric or asymmetric 2,6-diiminopyridine-based ligands were synthesized and found to exhibit a first redox couple between -1.17 V and -1.31 V (vs. Fc0/+) to afford singly reduced complexes. The unique electronic transitions of the singly reduced UVIO22+ complexes observed in the NIR region allowed us to combine spectroelectrochemistry and time-dependent density functional theory (TD-DFT) calculations to determine the redox-active site in these UVIO22+ complexes, i.e., to clarify the distribution of the additional unpaired electron. By exploiting the push-pull effect of electron-donating and -withdrawing substituents, the ligand-based π-radical of the singly reduced UVIO22+ complexes, which tends to delocalize over the ligand, can be localized to specific sites.
Collapse
Affiliation(s)
- Tomoyuki Takeyama
- Department of Applied Chemistry, Sanyo-Onoda City University, 1-1-1, Daigakudori, Sanyo-Onoda, Yamaguchi 756-0884, Japan.
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.
| | - Satoru Tsushima
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
- International Research Frontiers Initiative (IRFI), Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan
| | - Koichiro Takao
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.
| |
Collapse
|
4
|
Niklas JE, Otte KS, Studvick CM, Roy Chowdhury S, Vlaisavljevich B, Bacsa J, Kleemiss F, Popov IA, La Pierre HS. A tetrahedral neptunium(V) complex. Nat Chem 2024; 16:1490-1495. [PMID: 38710831 DOI: 10.1038/s41557-024-01529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/05/2024] [Indexed: 05/08/2024]
Abstract
Neptunium is an actinide element sourced from anthropogenic production, and, unlike naturally abundant uranium, its coordination chemistry is not well developed in all accessible oxidation states. High-valent neptunium generally requires stabilization from at least one metal-ligand multiple bond, and departing from this structural motif poses a considerable challenge. Here we report a tetrahedral molecular neptunium(V) complex ([Np5+(NPC)4][B(ArF5)4], 1-Np) (NPC = [NPtBu(pyrr)2]-; tBu = C(CH3)3; pyrr = pyrrolidinyl (N(C2H4)2); B(ArF5)4 = tetrakis(2,3,4,5,6-pentafluourophenyl)borate). Single-crystal X-ray diffraction, solution-state spectroscopy and density functional theory studies of 1-Np and the product of its proton-coupled electron transfer (PCET) reaction, 2-Np, demonstrate the unique bonding that stabilizes this reactive ion and establishes the thermochemical and kinetic parameters of PCET in a condensed-phase transuranic complex. The isolation of this four-coordinate, neptunium(V) complex reveals a fundamental reaction pathway in transuranic chemistry.
Collapse
Affiliation(s)
- Julie E Niklas
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kaitlyn S Otte
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chad M Studvick
- Department of Chemistry, The University of Akron, Akron, OH, USA
| | | | | | - John Bacsa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Florian Kleemiss
- Institut für Anorganische Chemie, RWTH Aachen University, Aachen, Germany
| | - Ivan A Popov
- Department of Chemistry, The University of Akron, Akron, OH, USA.
| | - Henry S La Pierre
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA.
- Nuclear and Radiological Engineering and Medical Physics Program, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA.
| |
Collapse
|
5
|
Otte K, Niklas JE, Studvick CM, Montgomery CL, Bredar ARC, Popov IA, La Pierre HS. Proton-Coupled Electron Transfer at the Pu 5+/4+ Couple. J Am Chem Soc 2024; 146:21859-21867. [PMID: 39051969 PMCID: PMC11311234 DOI: 10.1021/jacs.4c06319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The synthesis and solution and solid-state characterization of [Pu4+(NPC)4], 1-Pu, (NPC = [NPtBu(pyrr)2]-; tBu = C(CH3)3; pyrr = pyrrolidinyl) and [Pu3+(NPC)4][K(2.2.2.-cryptand)], 2-Pu, is described. Cyclic voltammetry studies of 1-Pu reveal a quasi-reversible Pu4+/3+ couple, an irreversible Pu5+/4+ couple, and a third couple evincing a rapid proton-coupled electron transfer (PCET) reaction occurring after the electrochemical formation of Pu5+. The chemical identity of the product of the PCET reaction was confirmed by independent chemical synthesis to be [Pu4+(NPC)3(HNPC)][B(ArF5)4], 3-Pu, (B(ArF5)4 = tetrakis(2,3,4,5,6-pentafluourophenyl)borate) via two mechanistically distinct transformations of 1-Pu: protonation and oxidation. The kinetics and thermodynamics of this PCET reaction are determined via electrochemical analysis, simulation, and density functional theory. The computational studies demonstrate a direct correlation between the changing nature of 5f and 6d orbital participation in metal-ligand bonding and the electron density on the Nim atom with the thermodynamics of the PCET reaction from Np to Pu, and an indirect correlation with the roughly 5-orders of magnitude faster Pu PCET compared to Np for the An5+ species.
Collapse
Affiliation(s)
- Kaitlyn
S. Otte
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Julie E. Niklas
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Chad M. Studvick
- Department
of Chemistry, University of Akron, Akron, Ohio 44325-3601, United States
| | - Charlotte L. Montgomery
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599-3290, United States
| | - Alexandria R. C. Bredar
- Department
of Chemistry, University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599-3290, United States
| | - Ivan A. Popov
- Department
of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Henry S. La Pierre
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
- Nuclear
and Radiological Engineering and Medical Physics Program, School of
Mechanical Engineering, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
- Physical
Sciences Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
6
|
Liddle ST. Progress in Nonaqueous Molecular Uranium Chemistry: Where to Next? Inorg Chem 2024; 63:9366-9384. [PMID: 38739898 PMCID: PMC11134516 DOI: 10.1021/acs.inorgchem.3c04533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
There is long-standing interest in nonaqueous uranium chemistry because of fundamental questions about uranium's variable chemical bonding and the similarities of this pseudo-Group 6 element to its congener d-block elements molybdenum and tungsten. To provide historical context, with reference to a conference presentation slide presented around 1988 that advanced a defining collection of top targets, and the challenge, for synthetic actinide chemistry to realize in isolable complexes under normal experimental conditions, this Viewpoint surveys progress against those targets, including (i) CO and related π-acid ligand complexes, (ii) alkylidenes, carbynes, and carbidos, (iii) imidos and terminal nitrides, (iv) homoleptic polyalkyls, -alkoxides, and -aryloxides, (v) uranium-uranium bonds, and (vi) examples of topics that can be regarded as branching out in parallel from the leading targets. Having summarized advances from the past four decades, opportunities to build on that progress, and hence possible future directions for the field, are highlighted. The wealth and diversity of uranium chemistry that is described emphasizes the importance of ligand-metal complementarity in developing exciting new chemistry that builds our knowledge and understanding of elements in a relativistic regime.
Collapse
Affiliation(s)
- Stephen T. Liddle
- Department of Chemistry and Centre
for Radiochemistry Research, The University
of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
7
|
Molinas M, Meibom KL, Faizova R, Mazzanti M, Bernier-Latmani R. Mechanism of Reduction of Aqueous U(V)-dpaea and Solid-Phase U(VI)-dpaea Complexes: The Role of Multiheme c-Type Cytochromes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7537-7546. [PMID: 37133831 DOI: 10.1021/acs.est.3c00666] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The biological reduction of soluble U(VI) complexes to form immobile U(IV) species has been proposed to remediate contaminated sites. It is well established that multiheme c-type cytochromes (MHCs) are key mediators of electron transfer to aqueous phase U(VI) complexes for bacteria such as Shewanella oneidensis MR-1. Recent studies have confirmed that the reduction proceeds via a first electron transfer forming pentavalent U(V) species that readily disproportionate. However, in the presence of the stabilizing aminocarboxylate ligand, dpaea2- (dpaeaH2═bis(pyridyl-6-methyl-2-carboxylate)-ethylamine), biologically produced U(V) persisted in aqueous solution at pH 7. We aim to pinpoint the role of MHC in the reduction of U(V)-dpaea and to establish the mechanism of solid-phase U(VI)-dpaea reduction. To that end, we investigated U-dpaea reduction by two deletion mutants of S. oneidensis MR-1-one lacking outer membrane MHCs and the other lacking all outer membrane MHCs and a transmembrane MHC-and by the purified outer membrane MHC, MtrC. Our results suggest that solid-phase U(VI)-dpaea is reduced primarily by outer membrane MHCs. Additionally, MtrC can directly transfer electrons to U(V)-dpaea to form U(IV) species but is not strictly necessary, underscoring the primary involvement of outer membrane MHCs in the reduction of this pentavalent U species but not excluding that of periplasmic MHCs.
Collapse
Affiliation(s)
- Margaux Molinas
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Karin Lederballe Meibom
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Radmila Faizova
- Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Marinella Mazzanti
- Group of Coordination Chemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
8
|
Riedhammer J, Halter DP, Meyer K. Nonaqueous Electrochemistry of Uranium Complexes: A Guide to Structure-Reactivity Tuning. Chem Rev 2023. [PMID: 37134149 DOI: 10.1021/acs.chemrev.2c00903] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Uranium complexes can be stabilized in a wide range of oxidation states, ranging from UII to UVI and a very recent example of a UI complex. This review provides a comprehensive summary of electrochemistry data reported on uranium complexes in nonaqueous electrolyte, to serve as a clear point of reference for newly synthesized compounds, and to evaluate how different ligand environments influence experimentally observed electrochemical redox potentials. Data for over 200 uranium compounds are reported, together with a detailed discussion of trends observed across larger series of complexes in response to ligand field variations. In analogy to the traditional Lever parameter, we utilized the data to derive a new uranium-specific set of ligand field parameters UEL(L) that more accurately represent metal-ligand bonding situations than previously existing transition metal derived parameters. Exemplarily, we demonstrate UEL(L) parameters to be useful for the prediction of structure-reactivity correlations in order to activate specific substrate targets.
Collapse
Affiliation(s)
- Judith Riedhammer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Dominik P Halter
- Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich (TUM), TUM School of Natural Sciences, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen, Germany
| |
Collapse
|
9
|
Takao K. How does chemistry contribute to circular economy in nuclear energy systems to make them more sustainable and ecological? Dalton Trans 2023. [PMID: 37128944 DOI: 10.1039/d3dt01019h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
While one should be aware that its zero CO2 emission is actually achievable only when electric power is generated, nuclear power is one of the most viable and proven "carbon-free" energy sources to provide baseload electricity to the current energy-demanding society. Even after the power generation, the major part of spent nuclear fuels still consists of recyclable nuclear fuel materials such as U and Pu, promising circular economy of nuclear energy systems in principle. However, actual situations are not very simple due to the following issues: (1) resource security of nuclear fuel materials, (2) issues of depleted uranium, and (3) treatment and disposal of high-level radioactive wastes. In this Perspective, I discussed how chemistry can contribute to resolving these problems and what task academic research in fundamental chemistry should take on there.
Collapse
Affiliation(s)
- Koichiro Takao
- Laboratory for Zero-carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, 152-8550 Tokyo, Japan.
| |
Collapse
|
10
|
van Rees K, Rajeshkumar T, Maron L, Sproules S, Love JB. Role of the Meso Substituent in Defining the Reduction of Uranyl Dipyrrin Complexes. Inorg Chem 2022; 61:20424-20432. [PMID: 36472325 PMCID: PMC9768749 DOI: 10.1021/acs.inorgchem.2c03048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The uranyl complex UVIO2Cl(LMes) of the redox-active, acyclic dipyrrin-diimine anion LMes- [HLMes = 1,9-di-tert-butyl-imine-5-(mesityl)dipyrrin] is reported, and its redox property is explored and compared with that of the previously reported UVIO2Cl(LF) [HLF = 1,9-di-tert-butyl-imine-5-(pentafluorophenyl)dipyrrin] to understand the influence of the meso substituent. Cyclic voltammetry, electron paramagnetic resonance spectroscopy, and density functional theory studies show that the alteration from an electron-withdrawing meso substituent to an electron-donating meso substituent on the dipyrrin ligand significantly modifies the stability of the products formed after reduction. For UVIO2Cl(LMes), the formation of a diamond-shaped, oxo-bridged uranyl(V) dimer, [UVO2(LMes)]2 is seen, whereas in contrast, for UVIO2Cl(LF), only ligand reduction occurs. Computational modeling of these reactions shows that while ligand reduction followed by chloride dissociation occurs in both cases, ligand-to-metal electron transfer is favorable for UVIO2Cl(LMes) only, which subsequently facilitates uranyl(V) dimerization.
Collapse
Affiliation(s)
- Karlotta van Rees
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Thayalan Rajeshkumar
- LPCNO,
INSA, Université de Toulouse, 135, Avenue de Rangueil, Toulouse Cedex 4 31077, France
| | - Laurent Maron
- LPCNO,
INSA, Université de Toulouse, 135, Avenue de Rangueil, Toulouse Cedex 4 31077, France
| | - Stephen Sproules
- WestCHEM
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K.
| | - Jason B. Love
- EaStCHEM
School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, U.K.,
| |
Collapse
|
11
|
Uranyl Analogue Complexes—Current Progress and Synthetic Challenges. INORGANICS 2022. [DOI: 10.3390/inorganics10080121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Uranyl ions, {UO2}n+ (n = 1, 2), display trans, strongly covalent, and chemically robust U-O multiple bonds, where 6d, 5f, and 6p orbitals play important roles. The synthesis of isoelectronic analogues of uranyl has been of interest for quite some time, mainly with the purpose of unveiling covalence and 5f-orbital participation in bonding. Significant advances have occurred in the last two decades, initially marked by the synthesis of uranium(VI) bis(imido) complexes, the first analogues with a {RNUNR}2+ core, later followed by the synthesis of unique trans-{EUO}2+ (E = S, Se) complexes, and recently highlighted by the synthesis of the first complexes featuring a linear {NUN} moiety. This review covers the synthesis, structure, bonding, and reactivity of uranium complexes containing a linear {EUE}n+ core (n = 0, 1, 2), isoelectronic to uranyl ions, {OUO}n+ (n = 1, 2), incorporating σ- and π-donating ligands that can engage in uranium–ligand multiple bonding, where oxygen may be replaced by heavier chalcogenido, imido, nitride, and carbene ligands, or by a transition metal. It focuses on synthetic methods of well-defined molecular uranium species in the condensed phase but also references gas-phase and low-temperature-matrix experiments, as well as computational studies that may lead to valuable insights.
Collapse
|
12
|
Schaper G, Wenzel M, Schwarzenbolz U, Steup J, Hennersdorf F, Henle T, Lindoy LF, Weigand JJ. Insights at the molecular level into the formation of oxo-bridged trinuclear uranyl complexes. Chem Commun (Camb) 2022; 58:1748-1751. [PMID: 35029269 DOI: 10.1039/d1cc06310c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of 1,3,4,6-tetra-O-acetyl-N-(2-hydroxy)-naphthylidene glucosamine (HL(Ac)) with uranyl acetate in ethanol leads to formation of dinuclear [(UO2)2(L)2] (1). In a second step 1 is quantitatively transferred into the trinuclear oxo-bridged complex [(UO2)3(μ3-O)(L)3]2- (22-) via deprotonation and coordination of a water molecule. This transformation was followed by NMR and UV/Vis spectroscopy and it proved possible to selectively introduce 18O into the μ3-bridge.
Collapse
Affiliation(s)
- Gerrit Schaper
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Marco Wenzel
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Uwe Schwarzenbolz
- Chair of Food Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Johannes Steup
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Felix Hennersdorf
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Thomas Henle
- Chair of Food Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Leonard F Lindoy
- School of Chemistry, F11, University of Sydney, NSW 2006 Sydney, Australia
| | - Jan J Weigand
- Chair of Inorganic Molecular Chemistry, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
13
|
Kvashnina KO, Butorin SM. High-energy resolution X-ray spectroscopy at actinide M 4,5 and ligand K edges: what we know, what we want to know, and what we can know. Chem Commun (Camb) 2022; 58:327-342. [PMID: 34874022 PMCID: PMC8725612 DOI: 10.1039/d1cc04851a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022]
Abstract
In recent years, scientists have progressively recognized the role of electronic structures in the characterization of chemical properties for actinide containing materials. High-energy resolution X-ray spectroscopy at the actinide M4,5 edges emerged as a promising direction because this method can probe actinide properties at the atomic level through the possibility of reducing the experimental spectral width below the natural core-hole lifetime broadening. Parallel to the technical developments of the X-ray method and experimental discoveries, theoretical models, describing the observed electronic structure phenomena, have also advanced. In this feature article, we describe the latest progress in the field of high-energy resolution X-ray spectroscopy at the actinide M4,5 and ligand K edges and we show that the methods are able to (a) provide fingerprint information on the actinide oxidation state and ground state characters (b) probe 5f occupancy, non-stoichiometry, defects, and ligand/metal ratio and (c) investigate the local symmetry and effects of the crystal field. We discuss the chemical aspects of the electronic structure in terms familiar to chemists and materials scientists and conclude with a brief description of new opportunities and approaches to improve the experimental methodology and theoretical analysis for f-electron systems.
Collapse
Affiliation(s)
- Kristina O Kvashnina
- The Rossendorf Beamline at ESRF, The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France.
- Institute of Resource Ecology, Helmholtz Zentrum Dresden-Rossendorf (HZDR), PO Box 510119, 01314 Dresden, Germany
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sergei M Butorin
- Condensed Matter Physics of Energy Materials, X-ray Photon Science, Department of Physics and Astronomy, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
14
|
Arumugam K, Burton NA. Disproportionation of the Uranyl(V) Coordination Complexes in Aqueous Solution through Outer-Sphere Electron Transfer. Inorg Chem 2021; 60:18832-18842. [PMID: 34847326 DOI: 10.1021/acs.inorgchem.1c02575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Among the linear actinyl(VI/V) cations, the uranyl(V) species are particularly intriguing because they are unstable and exhibit a unique behavior to undergo H+ promoted disproportionation in aqueous solution and form stable uranyl(VI) and U(IV) complexes. This study uses density functional theory (DFT) combined with the conductor-like polarizable continuum model approach to investigate [UO2]2+/+ to [UIVO2] reduction free energies (RFEs) and explores the stability of uranyl(V) complexes in aqueous solution through computing disproportionation free energies (DFEs) for an outer-sphere electron transfer process. In addition to the aqua complex (U1), another three commonly encountered ligands such as chloride (U2), acetate (U3), and carbonate (U4) in aqueous environmental conditions are taken into account. For the U1 complex, the computed 1e- (V/IV) and 2e- (VI/IV) RFEs are in good agreement with experiments. The computed DFEs reveal that the presence of H+ is imperative for the disproportionation to take place. Although the presence of the alkali cations favors the disproportionation to some extent, they cannot fully make the reaction thermodynamically feasible. For the anionic complexes, the high negative charge does not allow for the formation of a cation-cation encounter complex due to Coulombic repulsion. Furthermore, an additional factor is the ligand exchange reaction which is also an energy-demanding step. Therefore, the current study examined the Kern-Orlemann mechanism and our results validate the mechanism based on DFT computed DFEs and propose that for the anionic complexes, an outer-sphere electron transfer is highly probable and our computed protonation free energies further support this claim.
Collapse
Affiliation(s)
- Krishnamoorthy Arumugam
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Neil A Burton
- Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
15
|
Ortu F, Randall S, Moulding DJ, Woodward AW, Kerridge A, Meyer K, La Pierre HS, Natrajan LS. Photoluminescence of Pentavalent Uranyl Amide Complexes. J Am Chem Soc 2021; 143:13184-13194. [PMID: 34387466 PMCID: PMC8397311 DOI: 10.1021/jacs.1c05184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Pentavalent uranyl species are crucial intermediates in transformations that play a key role for the nuclear industry and have recently been demonstrated to persist in reducing biotic and abiotic aqueous environments. However, due to the inherent instability of pentavalent uranyl, little is known about its electronic structure. Herein, we report the synthesis and characterization of a series of monomeric and dimeric, pentavalent uranyl amide complexes. These synthetic efforts enable the acquisition of emission spectra of well-defined pentavalent uranyl complexes using photoluminescence techniques, which establish a unique signature to characterize its electronic structure and, potentially, its role in biological and engineered environments via emission spectroscopy.
Collapse
Affiliation(s)
- Fabrizio Ortu
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,School of Chemistry, University of Leicester, University Road, Leicester LE1 7RH, U.K
| | - Simon Randall
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - David J Moulding
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Adam W Woodward
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Andrew Kerridge
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Karsten Meyer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany
| | - Henry S La Pierre
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Chemistry and Pharmacy, Inorganic Chemistry, Egerlandstr. 1, 91058 Erlangen, Germany.,School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States.,Nuclear and Radiological Engineering and Medical Physics Program, School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Louise S Natrajan
- Centre for Radiochemistry Resesarch, Department of Chemistry, School of Natural Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.,Photon Science Institute, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
16
|
Takeyama T, Tsushima S, Takao K. Effects of Substituents on the Molecular Structure and Redox Behavior of Uranyl(V/VI) Complexes with N 3O 2-Donating Schiff Base Ligands. Inorg Chem 2021; 60:11435-11449. [PMID: 34278786 DOI: 10.1021/acs.inorgchem.1c01449] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Uranyl(VI) complexes with pentadentate N3O2-donating Schiff base ligands having various substituents at the ortho (R1) and/or para (R2) positions on phenolate moieties, R1,R2-Mesaldien2-, were synthesized and thoroughly characterized by 1H nuclear magnetic resonance, infrared, elemental analysis, and single-crystal X-ray diffraction. Molecular structures of UO2(R1,R2-Mesaldien) are more or less affected by the electron-donating or -withdrawing nature of the substituents. The redox behavior of all UO2(R1,R2-Mesaldien) complexes was investigated to understand how substituents introduced onto the ligand affect the redox behavior of these uranyl(VI) complexes. As a result, the redox potentials of UO2(R1,R2-Mesaldien) in dimethyl sulfoxide increased from -1.590 to -1.213 V with an increase in the electron-withdrawing nature of the substituents at the R1 and R2 positions. The spectroelectrochemical measurements and theoretical calculation [density functional theory (DFT) and time-dependent DFT calculations] revealed that the center U6+ of each UO2(R1,R2-Mesaldien) complex undergoes one-electron reduction to afford the corresponding uranyl(V) complex, [UO2(R1,R2-Mesaldien)]-, regardless of the difference in the substituents. Consequently, the redox active center of uranyl(VI) complexes seems not to be governed by the redox potentials but to be determined by whether the LUMO is centered on a U 5f orbital or on one π* orbital of a surrounding ligand.
Collapse
Affiliation(s)
- Tomoyuki Takeyama
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Satoru Tsushima
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany.,Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Koichiro Takao
- Laboratory for Zero-Carbon Energy, Institute of Innovative Research, Tokyo Institute of Technology, 2-12-1 N1-32, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
17
|
Gu D, Yang W, Chen H, Yang Y, Qin X, Chen L, Wang S, Pan Q. A stable mixed-valent uranium(v,vi) organic framework as a fluorescence thermometer. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00580d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A stable mixed-valent uranium(v/vi) organic framework with a 3D interpenetrating structure was synthesized, which can be used as a dual-responsive fluorescence temperature sensor based on the fluorescence intensity and fluorescence lifetime.
Collapse
Affiliation(s)
- Dongxu Gu
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| | - Weiting Yang
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| | - Huiping Chen
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| | - Yonghang Yang
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| | - Xudong Qin
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| | - Lu Chen
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| | - Song Wang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices
- Hubei University of Arts and Science
- Xiangyang
- P. R. China
| | - Qinhe Pan
- Key laboratory of Advanced Materials of Tropical Island Resources
- Ministry of Education
- School of Science
- Hainan University
- Haikou
| |
Collapse
|