1
|
Imahori H, Akiyama M. Photoinduced charge separation at heterojunctions between two-dimensional layered materials and small organic molecules. MATERIALS HORIZONS 2025; 12:92-102. [PMID: 39359189 DOI: 10.1039/d4mh01296h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
p-n heterojunctions are fundamental components for electronics and optoelectronics, including diodes, transistors, sensors, and solar cells. Over the past few decades, organic-inorganic p-n heterojunctions have garnered significant interest due to the diverse properties they exhibit, which are a result of the limitless combinations of organic molecules and inorganic materials. This review article concentrates on photoinduced charge separation and photocurrent generation at heterojunctions between two-dimensional layered materials and structurally well-defined organic small molecules. We highlight representative examples, including our work, and critically discuss their potential and perspectives.
Collapse
Affiliation(s)
- Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Institute for Liberal Arts and Sciences (ILAS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Midori Akiyama
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan.
| |
Collapse
|
2
|
Jing Y, Liang K, Muir NS, Zhou H, Li Z, Palasz JM, Sorbie J, Wang C, Cushing SK, Kubiak CP, Sofer Z, Li S, Xiong W. Ultrafast Formation of Charge Transfer Trions at Molecular-Functionalized 2D MoS 2 Interfaces. Angew Chem Int Ed Engl 2024; 63:e202405123. [PMID: 38714495 DOI: 10.1002/anie.202405123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/10/2024]
Abstract
In this work, we investigate trion dynamics occurring at the heterojunction between organometallic molecules and a monolayer transition metal dichalcogenide (TMD) with transient electronic sum frequency generation (tr-ESFG) spectroscopy. By pumping at 2.4 eV with laser pulses, we have observed an ultrafast hole transfer, succeeded by the emergence of charge-transfer trions. This observation is facilitated by the cancellation of ground state bleach and stimulated emission signals due to their opposite phases, making tr-ESFG especially sensitive to the trion formation dynamics. The presence of charge-transfer trion at molecular functionalized TMD monolayers suggests the potential for engineering the local electronic structures and dynamics of specific locations on TMDs and offers a potential for transferring unique electronic attributes of TMD to the molecular layers.
Collapse
Affiliation(s)
- Yuancheng Jing
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Kangkai Liang
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Nicole S Muir
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Hao Zhou
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Zhehao Li
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Joseph M Palasz
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Jonathan Sorbie
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Chenglai Wang
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Scott K Cushing
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E California Blvd, MC 127-72, Pasadena, California, 91125, United States
| | - Clifford P Kubiak
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
| | - Zdeněk Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28, Prague 6, Czech Republic
| | - Shaowei Li
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| | - Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, MC 0358, La Jolla, California, 92093-0358, United States
- Material Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, MC 0418, La Jolla, California, 92093-0418, United States
| |
Collapse
|
3
|
Canton-Vitoria R, Kitaura R. Insulating 6,6-Phenyl-C61-butyric Acid Methyl Ester on Transition-Metal Dichalcogenides: Impact of the Hybrid Materials on the Optical and Electrical Properties. Chemistry 2024; 30:e202400150. [PMID: 38302733 DOI: 10.1002/chem.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/03/2024]
Abstract
In this study we develop a strategy to insulate 6,6 -Phenyl C61 butyric acid methyl ester (PCBM) on the basal plane of transition metal dichalcogenides (TMDs). Concretely single layers of MoS2, MoSe2, MoTe2, WS2, WSe2 and WTe2 and ultrathin MoO2 and WO2 were grown via chemical vapor deposition (CVD). Then, the thiol group of a PCBM modified with cysteine reacts with the chalcogen vacancies on the basal plane of TMDs, yielding PCBM-MoS2, PCBM-MoSe2, PCBM-WS2, PCBM-WSe2, PCBM-WTe2, PCBM-MoO2 and PCBM-WO2. Afterwards, all the hybrid materials were characterized using several techniques, including XPS, Raman spectroscopy, TEM, AFM, and cyclic voltammetry. Furthermore, PCBM causes a unique optical and electrical impact in every TMDs. For MoS2 devices, the conductivity and photoluminescence (PL) emission achieve a remarkable enhancement of 1700 % and 200 % in PCBM-MoS2 hybrids. Similarly, PCBM-MoTe2 hybrids exhibit a 2-fold enhancement in PL emission at 1.1 eV. On the other hand, PCBM-MoSe2, PCBM-WSe2 and PCBM-WS2 hybrids exhibited a new interlayer exciton at 1.29-1.44, 1.7 and 1.37-154 eV along with an enhancement of the photo-response by 2400, 3200 and 600 %, respectively. Additionally, PCBM-WTe2 and PCBM-WO2 showed a modest photo-response, in sharp contrast with pristine WTe2 or WO2 which archive pure metallic character.
Collapse
Affiliation(s)
- Ruben Canton-Vitoria
- Department of Chemistry, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Theoretical and Physical Chemistry Institute Department of Chemistry, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635, Athens, Greec
| | - Ryo Kitaura
- Department of Chemistry, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| |
Collapse
|
4
|
Umeyama T, Mizutani D, Ikeda Y, Osterloh WR, Yamamoto F, Kato K, Yamakata A, Higashi M, Urakami T, Sato H, Imahori H. An emissive charge-transfer excited-state at the well-defined hetero-nanostructure interface of an organic conjugated molecule and two-dimensional inorganic nanosheet. Chem Sci 2023; 14:11914-11923. [PMID: 37920360 PMCID: PMC10619621 DOI: 10.1039/d3sc03604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Precise engineering of excited-state interactions between an organic conjugated molecule and a two-dimensional semiconducting inorganic nanosheet, specifically the manipulation of charge-transfer excited (CTE) states, still remains a challenge for state-of-the-art photochemistry. Herein, we report a long-lived, highly emissive CTE state at structurally well-defined hetero-nanostructure interfaces of photoactive pyrene and two-dimensional MoS2 nanosheets via an N-benzylsuccinimide bridge (Py-Bn-MoS2). Spectroscopic measurements reveal that no charge-transfer state is formed in the ground state, but the locally-excited (LE) state of pyrene in Py-Bn-MoS2 efficiently generates an unusual emissive CTE state. Theoretical studies elucidate the interaction of MoS2 vacant orbitals with the pyrene LE state to form a CTE state that shows a distinct solvent dependence of the emission energy. This is the first example of organic-inorganic 2D hetero-nanostructures displaying mixed luminescence properties by an accurate design of the bridge structure, and therefore represents an important step in their applications for energy conversion and optoelectronic devices and sensors.
Collapse
Affiliation(s)
- Tomokazu Umeyama
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo Himeji Hyogo 671-2280 Japan
| | - Daizu Mizutani
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Yuki Ikeda
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - W Ryan Osterloh
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Futa Yamamoto
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo Himeji Hyogo 671-2280 Japan
| | - Kosaku Kato
- Graduate School of Natural Science and Technology, Okayama University Okayama 700-8530 Japan
| | - Akira Yamakata
- Graduate School of Natural Science and Technology, Okayama University Okayama 700-8530 Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Takumi Urakami
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
| | - Hiroshi Imahori
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Kyoto 615-8510 Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Kyoto 606-8501 Japan
- Institute for Liberal Arts and Sciences (ILAS), Kyoto University Kyoto 606-8501 Japan
| |
Collapse
|
5
|
Völzer T, Schubert A, von der Oelsnitz E, Schröer J, Barke I, Schwartz R, Watanabe K, Taniguchi T, Speller S, Korn T, Lochbrunner S. Strong quenching of dye fluorescence in monomeric perylene orange/TMDC hybrid structures. NANOSCALE ADVANCES 2023; 5:3348-3356. [PMID: 37325541 PMCID: PMC10263002 DOI: 10.1039/d3na00276d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
Hybrid structures with an interface between two different materials with properly aligned energy levels facilitate photo-induced charge separation to be exploited in optoelectronic applications. Particularly, the combination of 2D transition metal dichalcogenides (TMDCs) and dye molecules offers strong light-matter interaction, tailorable band level alignments, and high fluorescence quantum yields. In this work, we aim at the charge or energy transfer-related quenching of the fluorescence of the dye perylene orange (PO) when isolated molecules are brought onto monolayer TMDCs via thermal vapor deposition. Here, micro-photoluminescence spectroscopy revealed a strong intensity drop of the PO fluorescence. For the TMDC emission, in contrast, we observed a relative growth of the trion versus exciton contribution. In addition, fluorescence imaging lifetime microscopy quantified the intensity quenching to a factor of about 103 and demonstrated a drastic lifetime reduction from 3 ns to values much shorter than the 100 ps width of the instrument response function. From the ratio of the intensity quenching that is attributed to hole or energy transfer from dye to semiconductor, we deduce a time constant of several picoseconds at most, pointing to an efficient charge separation suitable for optoelectronic devices.
Collapse
Affiliation(s)
- Tim Völzer
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Alina Schubert
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Erik von der Oelsnitz
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Julian Schröer
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Ingo Barke
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Rico Schwartz
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science 1-1 Namiki Tsukuba 305-0044 Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science 1-1 Namiki Tsukuba 305-0044 Japan
| | - Sylvia Speller
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Tobias Korn
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| | - Stefan Lochbrunner
- Institute of Physics, University of Rostock Albert-Einstein-Str. 23 18059 Rostock Germany
- Department "Life, Light and Matter", University of Rostock Albert-Einstein-Str. 25 18059 Rostock Germany
| |
Collapse
|
6
|
Canton-Vitoria R, Sato K, Motooka Y, Toyokuni S, Liu Z, Kitaura R. Field-effect transistor antigen/antibody-TMDs sensors for the detection of COVID-19 samples. NANOSCALE 2023; 15:4570-4580. [PMID: 36762571 DOI: 10.1039/d2nr06630k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We fabricated sensors by modifying the surface of MoS2 and WS2 with COVID-19 antibodies and investigated their characteristics, including stability, reusability, sensitivity, and selectivity. Thiols and disulfanes in antibodies strongly interact with vacant Mo or W sites of MoS2 or WS2, yielding durable devices that are stable for several days in the air or water. More importantly, detachment of the antibodies is suppressed even during the aggressive cleaning process of the devices at pH 3, which allows reusing the same device in several experiments without appreciable loss of sensitivity. Therefore, the nanodevice may be employed in samples of different patients. Further, we found a limit of detection (LOD) of 1 fg ml-1 at room temperature, time responses of 1 second, and selectivity against interferences such as KLH protein or Albumin.
Collapse
Affiliation(s)
- Ruben Canton-Vitoria
- Department of Chemistry, Nagoya University, Nagoya, Aichi 464-8602, Japan.
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Kotaro Sato
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
- Department of Oral and Maxillofacial Surgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Zheng Liu
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya, Aichi 463-8560, Japan
| | - Ryo Kitaura
- Department of Chemistry, Nagoya University, Nagoya, Aichi 464-8602, Japan.
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
7
|
Garcés-Garcés J, Redrado M, Sastre-Santos Á, Gimeno MC, Fernández-Lázaro F. Synthesis of Dipyridylaminoperylenediimide-Metal Complexes and Their Cytotoxicity Studies. Pharmaceutics 2022; 14:pharmaceutics14122616. [PMID: 36559110 PMCID: PMC9781374 DOI: 10.3390/pharmaceutics14122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
A new family of perylenediimide (PDI) silver and copper complexes has been successfully synthesized by reacting ortho- and bay-substituted (dipyrid-2',2″-ylamino)perylenediimide ligands with metal phosphine fragments. The coordination of the metal center did not reveal a significant effect on the photophysical properties, which are mainly due to the PDI ligands, and in some cases quenching of the luminescence was observed. The antiproliferative effect of the free perylenediimide ligands and the metalloPDI complexes against the cervix cancer cell line HeLa was determined by MTT assay. The free perylenediimide ligands exhibited a moderate cytotoxic activity, but the coordination of silver or copper to the dypyridylamino fragment greatly enhanced the activity, suggesting a synergistic effect between the two fragments. In attempts to elucidate the cellular biodistribution of the PDIs and the complexes, a colocalization experiment using specific dyes for the lysosomes or mitochondria as internal standards revealed a major internalization inside the cell for the metal complexes, as well as a partial mitochondrial localization.
Collapse
Affiliation(s)
- José Garcés-Garcés
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche (Alicante), Spain
| | - Marta Redrado
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Ángela Sastre-Santos
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche (Alicante), Spain
| | - María Concepción Gimeno
- Departamento de Química Inorgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Correspondence: (M.C.G.); (F.F.-L.); Tel.: +34-(97)-6762291 (M.C.G.); +34-(96)-6658405 (F.F.-L.)
| | - Fernando Fernández-Lázaro
- Área de Química Orgánica, Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Avda. de la Universidad s/n, 03202 Elche (Alicante), Spain
- Correspondence: (M.C.G.); (F.F.-L.); Tel.: +34-(97)-6762291 (M.C.G.); +34-(96)-6658405 (F.F.-L.)
| |
Collapse
|
8
|
Liu J, Fan K, Li X, Qin R, Wang X, Liu X, Liu X. Brand-New Method toward Widely Regulating Polymer Dispersity by Two-Dimensional Confining Radical Polymerization. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiaxiang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kun Fan
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Xin Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Rui Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xu Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xiangyang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Material and Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
9
|
Perivoliotis DK, Stangel C, Sato Y, Suenaga K, Tagmatarchis N. Photo/Electrocatalytic Hydrogen Peroxide Production by Manganese and Iron Porphyrin/Molybdenum Disulfide Nanoensembles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203032. [PMID: 35980982 DOI: 10.1002/smll.202203032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The oxygen reduction reaction (ORR) 2e- pathway provides an alternative and green route for industrial hydrogen peroxide (H2 O2 ) production. Herein, the ORR photo/electrocatalytic activity in the alkaline electrolyte of manganese and iron porphyrin (MnP and FeP, respectively) electrostatically associated with modified 1T/2H MoS2 nanosheets is reported. The best performing catalyst, MnP/MoS2 , exhibits excellent electrocatalytic performance towards selective H2 O2 formation, with a low overpotential of 20 mV for the 2e- ORR pathway (Eons = 680 mV vs RHE) and an H2 O2 yield up to 99%. Upon visible light irradiation, MnP/MoS2 catalyst shows significant activity enhancement along with good stability. Electrochemical impedance spectroscopy assays suggest a reduced charge transfer resistance value at the interface with the electrolyte, indicating an efficient intra-ensemble transfer process of the photo-excited electrons through the formation of a type II heterojunction or Schottky contact, and therefore justifies the boosted electrochemical activities in the presence of light. Overall, this work is expected to inspire the design of novel advanced photo/electrocatalysts, paving the way for sustainable industrial H2 O2 production.
Collapse
Affiliation(s)
- Dimitrios K Perivoliotis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
- Department of Physics, Umeå University, Umeå, 90187, Sweden
| | - Christina Stangel
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| | - Yuta Sato
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, 305-8565, Japan
| | - Kazu Suenaga
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Osaka, 567-0047, Japan
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens, 11635, Greece
| |
Collapse
|
10
|
Scharl T, Binder G, Chen X, Yokosawa T, Cadranel A, Knirsch KC, Spiecker E, Hirsch A, Guldi DM. Noncovalent Liquid Phase Functionalization of 2H-WS 2 with PDI: An Energy Conversion Platform with Long-Lived Charge Separation. J Am Chem Soc 2022; 144:5834-5840. [PMID: 35341248 PMCID: PMC9069688 DOI: 10.1021/jacs.1c11977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Transition metal
dichalcogenides are attractive 2D materials in
the context of solar energy conversion. Previous investigations have
focused predominantly on the properties of these systems. The realization
of noncovalent hybrids with, for example, complementary electroactive
materials remains underexplored to this date for exfoliated WS2. In this contribution, we explore WS2 by means
of exfoliation and integration together with visible light-absorbing
and electron-accepting perylene diimides into versatile electron-donor
acceptor hybrids. Important is the distinct electron-donating feature
of WS2. Detailed spectroscopic investigations of WS2–PDI confirm
the electron donor/acceptor nature of the hybrid and indicate that
green light photoexcitation leads to the formation of long-lived WS2•+–PDI•– charge-separated
states.
Collapse
Affiliation(s)
- Tobias Scharl
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Gerhard Binder
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Xin Chen
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Tadahiro Yokosawa
- Institute of Micro- and Nanostructure Research, and Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany.,Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina.,CONICET-Universidad de Buenos Aires. Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Kathrin C Knirsch
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research, and Center for Nanoanalysis and Electron Microscopy (CENEM), IZNF, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Cauerstraße 3, 91058 Erlangen, Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Nikolaus-Fiebiger-Straße 10, 91058 Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Egerlandstraße 3, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Seetharaman S, Zink‐Lorre N, Gutiérrez‐Moreno D, Karr PA, Fernández‐Lázaro F, D'Souza F. Quadrupolar Ultrafast Charge Transfer in Diaminoazobenzene‐Bridged Perylenediimide Triads. Chemistry 2022; 28:e202104574. [DOI: 10.1002/chem.202104574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Sairaman Seetharaman
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| | - Nathalie Zink‐Lorre
- Área de Química Orgánica Instituto de Bioingeniería Universidad Miguel Hernández Avda. de la Universidad s/n 03202 Elche Spain
| | - David Gutiérrez‐Moreno
- Área de Química Orgánica Instituto de Bioingeniería Universidad Miguel Hernández Avda. de la Universidad s/n 03202 Elche Spain
| | - Paul A. Karr
- Department of Physical Sciences and Mathematics Wayne State College Wayne Nebraska 68787 USA
| | - Fernando Fernández‐Lázaro
- Área de Química Orgánica Instituto de Bioingeniería Universidad Miguel Hernández Avda. de la Universidad s/n 03202 Elche Spain
| | - Francis D'Souza
- Department of Chemistry University of North Texas 1155 Union Circle, #305070 Denton TX 76203-5017 USA
| |
Collapse
|
12
|
Plantzopoulou A, Stergiou A, Kafetzi M, Arenal R, Pispas S, Tagmatarchis N. One-step covalent hydrophobic/hydrophilic functionalization of chemically exfoliated molybdenum disulfide nanosheets with RAFT derived polymers. Chem Commun (Camb) 2021; 58:795-798. [PMID: 34927640 DOI: 10.1039/d1cc06195j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The covalent functionalization of chemically exfoliated molybdenum disulfide (ce-MoS2) with hydrophobic poly(methyl methacrylate) and hydrophilic poly(acrylic acid) polymers, in a single-step without additives, is presented. The nature of chemical modification and the impact on the structure of ce-MoS2 were spectroscopically investigated. Complexation of Eu3+ was accomplished on grafted polycarboxylate chains on MoS2.
Collapse
Affiliation(s)
- Andriana Plantzopoulou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | - Anastasios Stergiou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | - Martha Kafetzi
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | - Raul Arenal
- Laboratorio de Microscopias Avanzadas (LMA), Universidad de Zaragoza, Mariano Esquillor s/n, Zaragoza 50018, Spain.,Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-U. de Zaragoza, Calle Pedro Cerbuna 12, Zaragoza 50009, Spain.,ARAID Foundation, Zaragoza 50018, Spain
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| | - Nikos Tagmatarchis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece.
| |
Collapse
|