1
|
Shorokhov VV, Chabuka BK, Tikhonov TP, Filippova AV, Zhokhov SS, Tafeenko VA, Andreev IA, Ratmanova NK, Uchuskin MG, Trushkov IV, Alabugin IV, Ivanova OA. Converting Strain Release into Aromaticity Loss for Activation of Donor-Acceptor Cyclopropanes: Generation of Quinone Methide Traps for C-Nucleophiles. Org Lett 2024; 26:8177-8182. [PMID: 39265076 DOI: 10.1021/acs.orglett.4c03106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Here, we present a new approach for the activation of donor-acceptor cyclopropanes in ring-opening reactions, which does not require the use of a Lewis or Brønsted acid as a catalyst. Donor-acceptor cyclopropanes containing a phenolic group as the donor undergo deprotonation and isomerization to form the corresponding quinone methides. This innovative strategy was applied to achieve (4 + 1)-annulation of cyclopropanes with sulfur ylides, affording functionalized dihydrobenzofurans. Additionally, the generated ortho- and para-(aza)quinone methides can be trapped by various CH-acids.
Collapse
Affiliation(s)
- Vitaly V Shorokhov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Beauty K Chabuka
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Timur P Tikhonov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Anastasia V Filippova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Sergey S Zhokhov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Victor A Tafeenko
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Ivan A Andreev
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, Moscow 117198, Russia
| | - Nina K Ratmanova
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya 6, Moscow 117198, Russia
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva 15, Perm 614990, Russia
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky pr. 47, Moscow 119991, Russia
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, United States
| | - Olga A Ivanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| |
Collapse
|
2
|
Zhao Y, Zhang H, Wu F, Li R, Tang M, Wang Y, Zeng W, Han B, Liu Z. Hydroxyl carboxylate anion catalyzed depolymerization of biopolyesters and transformation to chemicals. Chem Sci 2024; 15:10892-10899. [PMID: 39027286 PMCID: PMC11253192 DOI: 10.1039/d4sc02533d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/06/2024] [Indexed: 07/20/2024] Open
Abstract
Upcycling biopolyesters (e.g., polyglycolic acid, PGA) into chemicals is an interesting and challenging topic. Herein, we report a novel protocol to upgrade biopolyesters derived from hydroxyl carboxylic acids over ionic liquids with a hydroxyl carboxylate anion (e.g., glycolate, lactate) into various chemicals under metal-free conditions. It is found that as hydrogen-bond donors and acceptors, hydroxyl carboxylate anions can readily activate the ester group via hydrogen bonding and decompose biopolyesters via autocatalyzed-transesterification to form hydroxyl carboxylate anion-based intermediates. These intermediates can react with various nucleophiles (e.g. H2O, methanol, amines and hydrazine) to access the corresponding acids, esters and amides under mild conditions (e.g., 40 °C). For example, 1-ethyl-3-methylimidazolium glycolate can achieve complete transformation of PGA into various chemicals such as glycolic acid, alkyl glycolates, 2-hydroxy amides, 2-(hydroxymethyl)benzimidazole, and 1,3-benzothiazol-2-ylmethanol in excellent yields via hydrolysis, alcoholysis and aminolysis, respectively. This protocol is simple, green, and highly efficient, which opens a novel way to upcycle biopolyesters to useful chemicals.
Collapse
Affiliation(s)
- Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics Department, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Hui Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics Department, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Fengtian Wu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics Department, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology Economic Development Zone, Guanglan Avenue 418 Nanchang 330013 China
| | - Rongxiang Li
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics Department, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Minhao Tang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics Department, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yusi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics Department, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Zeng
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics Department, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics Department, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics Department, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
3
|
Hoque IU, Samanta A, Pramanik S, Chowdhury SR, Lo R, Maity S. Photocascade chemoselective controlling of ambident thio(seleno)cyanates with alkenes via catalyst modulation. Nat Commun 2024; 15:5739. [PMID: 38982050 PMCID: PMC11233607 DOI: 10.1038/s41467-024-49279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/28/2024] [Indexed: 07/11/2024] Open
Abstract
Controlling the ambident reactivity of thiocyanates in reaction manifolds has been a long-standing and formidable challenge. We report herein a photoredox strategy for installing thiocyanates and isothiocyanates in a controlled chemoselective fashion by manipulating the ambident-SCN through catalyst modulation. The methodology allows redox-, and pot-economical 'on-demand' direct access to both hydrothiophene and pyrrolidine heterocycles from the same feedstock alkenes and bifunctional thiocyanomalonates in a photocascade sequence. Its excellent chemoselectivity profile was further expanded to access Se- and N-heterocycles by harnessing selenonitriles. Redox capability of the catalysts, which dictates the substrates to participate in a single or cascade catalytic cycle, was proposed as the key to the present chemodivergency of this process. In addition, detailed mechanistic insights are provided by a conjugation of extensive control experiments and dispersion-corrected density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Injamam Ul Hoque
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Apurba Samanta
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Shyamal Pramanik
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Soumyadeep Roy Chowdhury
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo námĕstí 542/2, Prague, 160 000, Czech Republic
| | - Soumitra Maity
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, JH, 826004, India.
| |
Collapse
|
4
|
Hu L, Xiang Y, Lan XB, Xie Y. An Intermolecular Hydroarylation of Unactivated Arylcyclopropane via Re 2O 7/HFIP-Mediated Ring Opening. Org Lett 2024; 26:2085-2090. [PMID: 38441049 DOI: 10.1021/acs.orglett.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
In this paper, we describe a Re2O7-mediated ring-opening arylation of unactivated arylcyclopropane because of its functionalization with various arenes via Friedel-Crafts-type reactivity. This protocol allows facile access to functionalized 1,1-diaryl alkanes and is characterized by a broad substrate scope, mild reaction conditions, high efficiency, and high atom economy. Both density functional theory calculations and deuterium labeling experiments were carried out to justify the indispensable role of HFIP in this transformation and pointed to Re2O7-mediated ring opening being the rate-determining step.
Collapse
Affiliation(s)
- Liqun Hu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yao Xiang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiao-Bing Lan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Youwei Xie
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
5
|
Awad MN, Brown SJ, Abraham AN, Sezer D, Han Q, Wang X, Le TC, Elbourne A, Bryant G, Greaves TL, Bryant SJ. Biophysical Characterization and Cryopreservation of Mammalian Cells Using Ionic Liquids. J Phys Chem B 2024; 128:2504-2515. [PMID: 38416751 DOI: 10.1021/acs.jpcb.3c06797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Ionic liquids (ILs) are a diverse class of solvents which can be selected for task-specific properties, making them attractive alternatives to traditional solvents. To tailor ILs for specific biological applications, it is necessary to understand the structure-property relationships of ILs and their interactions with cells. Here, a selection of carboxylate anion-based ILs were investigated as cryoprotectants, which are compounds added to cells before freezing to mitigate lethal freezing damage. The cytotoxicity, cell permeability, thermal behavior, and cryoprotective efficacy of the ILs were assessed with two model mammalian cell lines. We found that the biophysical interactions, including permeability of the ILs, were influenced by considering the IL pair together, rather than as single species acting independently. All of the ILs tested had high cytotoxicity, but ethylammonium acetate demonstrated good cryoprotective efficacy for both cell types tested. These results demonstrate that despite toxicity, ILs may be suitable for certain biological applications. It also demonstrates that more research is required to understand the contribution of ion pairs to structure-property relationships and that knowing the behavior of a single ionic species will not necessarily predict its behavior as part of an IL.
Collapse
Affiliation(s)
- Miyah N Awad
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Stuart J Brown
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Amanda N Abraham
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, RMIT University, Melbourne, Victoria 3001, Australia
| | - Dilek Sezer
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Qi Han
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Xiaoying Wang
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
- Digital Services, Deakin University, Melbourne, Victoria 3008, Australia
| | - Tu C Le
- School of Engineering, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Aaron Elbourne
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Gary Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Tamar L Greaves
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| | - Saffron J Bryant
- School of Science, College of STEM, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
6
|
Debnath B, Sarkar T, Karjee P, Purkayastha SK, Guha AK, Punniyamurthy T. Palladium-Catalyzed Annulative Coupling of Spirovinylcyclopropyl Oxindoles with p-Quinone Methides. J Org Chem 2023. [PMID: 37437136 DOI: 10.1021/acs.joc.3c00173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Pd-catalyzed annulative coupling of spirovinylcyclopropyl oxindoles with p-quinone methides has been accomplished via cascade carbon-carbon bond formation to afford bis-spirooxindole scaffolds. The mild reaction conditions, diastereoselectivity, functional group diversity, post-synthetic transformations, and mechanistic studies using DFT calculations are the important practical features.
Collapse
Affiliation(s)
- Bijoy Debnath
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tanumay Sarkar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | | | - Ankur K Guha
- Advanced Computational Chemistry Centre, Cotton University, Guwahati 781001, India
| | | |
Collapse
|
7
|
Shestimerova TA, Andreev IA, Ratmanova NK, Trushkov IV, Kuznetsov AN, Shevelkov AV. Crystal and electronic structure of thiazolium pentaiodide: an experimental and theoretical study of covalent and non-covalent bonds. Struct Chem 2023. [DOI: 10.1007/s11224-022-02097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
8
|
New task-specific ionic liquids based on phenyl diazenyl methyl pyridinium cation: Energetic, electronic and optical properties exploration based on DFT calculations. J Mol Graph Model 2023; 118:108352. [DOI: 10.1016/j.jmgm.2022.108352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/18/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
|
9
|
Knyazev DA, Belaya MA, Volodin AD, Korlyukov AA, Novikov RA, Tomilov YV. Gallium trichloride-mediated reactions of ‘double’ donor–acceptor cyclopropanes with alkenes and dienes. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Vartanova AE, Levina II, Ratmanova NK, Andreev IA, Ivanova OA, Trushkov IV. Ambident reactivity of 5-aminopyrazoles towards donor-acceptor cyclopropanes. Org Biomol Chem 2022; 20:7795-7802. [PMID: 36148530 DOI: 10.1039/d2ob01490d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lewis acid-catalysed reactions of donor-acceptor cyclopropanes with 1,3-disubstituted 5-aminopyrazoles were investigated. Under catalysis with gallium(III) chloride, products of the three-membered ring opening via a nucleophilic attack of the exocyclic amino group were obtained in a chemoselective manner. Oppositely, in the presence of scandium(III) triflate, products of either N-alkylation or C(4)-alkylation, or a mixture of both were formed. The products of the C(4) alkylation were transformed in one step into tetrahydropyrazolo[3,4-b]azepines that are attractive for medicinal chemistry and pharmacology.
Collapse
Affiliation(s)
- Anna E Vartanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.
| | - Irina I Levina
- N. M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| | - Nina K Ratmanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| | - Ivan A Andreev
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| | - Olga A Ivanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation. .,Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow, 119991, Russian Federation
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.
| |
Collapse
|
11
|
Xie C, Pei L, Cai J, Yin P, Pang S. Imidazole-Based Energetic Materials: A Promising Family of N-Heterocyclic Framework. Chem Asian J 2022; 17:e202200829. [PMID: 36074974 DOI: 10.1002/asia.202200829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/25/2022] [Indexed: 11/08/2022]
Abstract
Imidazole represents a fascinating class of explosophoric units with exciting structures and unique properties. As compared to other nitrogen-rich heterocycles, imidazole demonstrates great potential applications due to economic effectiveness and superior energetic performances. The field of traditional chemistry has been extensively explored for imidazole, and thus established bond-building methods and functionalization strategies promote further development as high-energy density materials (HEDMs). This review addresses the development of energetic imidazole compounds in the past decade, summarizes their physiochemical properties, and is divided into three parts (explosives, propellants, and energetic biocides) according to application requirements. Various synthetic strategies for these energetic molecules are highlighted, including the construction of heterocyclic frameworks and following functionalization. The selected and discussed reactions illustrate the versatility of imidazole in energetic applications as building blocks for the future design of new HEDMs.
Collapse
Affiliation(s)
- Changpeng Xie
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.,Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Le Pei
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.,Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Jinxiong Cai
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ping Yin
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China.,Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
| | - Siping Pang
- School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
12
|
Chudasama SJ, Shah BJ, Patel KM, Dhameliya TM. The spotlight review on ionic liquids catalyzed synthesis of aza- and oxa-heterocycles reported in 2021. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Biological activity, solvation properties and microstructuring of protic imidazolium ionic liquids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Tang P, Wei YY, Wen L, Ma HJ, Yang Y, Jiang Y. MgI 2-Catalyzed Nucleophilic Ring-Opening Reactions of Donor-Acceptor Cyclopropanes with Indoline-2-thiones. J Org Chem 2022; 87:10890-10901. [PMID: 35918174 DOI: 10.1021/acs.joc.2c01179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MgI2-catalyzed nucleophilic ring-opening reactions of donor-acceptor cyclopropanes with indoline-2-thiones as easy-to-handle sulfur nucleophiles were investigated. A series of functionalized γ-indolylthio butyric acid derivatives were synthesized in good to excellent yields under mild reaction conditions. Furthermore, the thioether functionalized ring-opening products could be transformed to sulfone and methionine analogues.
Collapse
Affiliation(s)
- Pan Tang
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - You-Yuan Wei
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Long Wen
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Hao-Jie Ma
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yi Yang
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yan Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| |
Collapse
|
15
|
Andreev I, Boichenko M, Ratmanova N, Ivanova O, Levina I, Khrustalev V, Sedov I, Trushkov I. 4‐(Dimethylamino)pyridinium Azide in Protic Ionic Liquid Media as a Stable Equivalent of Hydrazoic Acid. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ivan Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | - Maksim Boichenko
- Lomonosov Moscow State University Department of Chemistry RUSSIAN FEDERATION
| | - Nina Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology Oncology and Immunology RUSSIAN FEDERATION
| | | | - Irina Levina
- FSBSI Institute of Biochemical Physics named after N M Emanuel of the Russian Academy of Sciences RUSSIAN FEDERATION
| | | | - Igor Sedov
- Kazan Federal University RUSSIAN FEDERATION
| | - Igor Trushkov
- N.D. Zelinsky Institute of Organic Chemistry RUSSIAN FEDERATION
| |
Collapse
|
16
|
Methods for substitution of the thioxo group with the oxo group in imidazolidine-2-thione derivatives. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3488-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Greaves TL, Dharmadana D, Yalcin D, Clarke-Hannaford J, Christofferson AJ, Murdoch BJ, Han Q, Brown SJ, Weber CC, Spencer MJS, McConville CF, Drummond CJ, Jones LA. Electrochemical Stability of Zinc and Copper Surfaces in Protic Ionic Liquids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:4633-4644. [PMID: 35377655 DOI: 10.1021/acs.langmuir.1c03390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ionic liquids are versatile solvents that can be tailored through modification of the cation and anion species. Relatively little is known about the corrosive properties of protic ionic liquids. In this study, we have explored the corrosion of both zinc and copper within a series of protic ionic liquids consisting of alkylammonium or alkanolammonium cations paired with nitrate or carboxylate anions along with three aprotic imidazolium ionic liquids for comparison. Electrochemical studies revealed that the presence of either carboxylate anions or alkanolammonium cations tend to induce a cathodic shift in the corrosion potential. The effect in copper was similar in magnitude for both cations and anions, while the anion effect was slightly more pronounced than that of the cation in the case of zinc. For copper, the presence of carboxylate anions or alkanolammonium cations led to a notable decrease in corrosion current, whereas an increase was typically observed for zinc. The ionic liquid-metal surface interactions were further explored for select protic ionic liquids on copper using X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM) to characterize the interface. From these studies, the oxide species formed on the surface were identified, and copper speciation at the surface linked to ionic liquid and potential dependent surface passivation. Density functional theory and ab initio molecular dynamics simulations revealed that the ethanolammonium cation was more strongly bound to the copper surface than the ethylammonium counterpart. In addition, the nitrate anion was more tightly bound than the formate anion. These likely lead to competing effects on the process of corrosion: the tightly bound cations act as a source of passivation, whereas the tightly bound anions facilitate the electrodissolution of the copper.
Collapse
Affiliation(s)
- Tamar L Greaves
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Durga Dharmadana
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- RMIT University Library, RMIT University, Melbourne, Victoria 3001, Australia
| | - Dilek Yalcin
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
- Centre for Materials and Surface Science, Department of Chemistry and Physics, School of Molecular Sciences, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | - Andrew J Christofferson
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Billy J Murdoch
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- RMIT Microscopy and Microanalysis Facility, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Stuart J Brown
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Cameron C Weber
- School of Chemical Sciences, The University of Auckland, Auckland 1142, New Zealand
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Michelle J S Spencer
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Chris F McConville
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Calum J Drummond
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
| | - Lathe A Jones
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3001, Australia
- CAMIC, Centre for Advanced Materials and Industrial Chemistry, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
18
|
|
19
|
Gallium(iii)-mediated dimerization routes for (5-phenyl-2-thienyl)cyclopropane-1,1-dicarboxylate. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Pasyukov DV, Shevchenko MA, Shepelenko KE, Khazipov OV, Burykina JV, Gordeev EG, Minyaev ME, Chernyshev VM, Ananikov VP. One‐Step Access to Heteroatom‐Functionalized Imidazol(in)ium Salts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Dmitry V. Pasyukov
- Platov South-Russian State Polytechnic University (NPI) Prosveschenya 132 Novocherkassk 346428 Russia
| | - Maxim A. Shevchenko
- Platov South-Russian State Polytechnic University (NPI) Prosveschenya 132 Novocherkassk 346428 Russia
| | - Konstantin E. Shepelenko
- Platov South-Russian State Polytechnic University (NPI) Prosveschenya 132 Novocherkassk 346428 Russia
| | - Oleg V. Khazipov
- Platov South-Russian State Polytechnic University (NPI) Prosveschenya 132 Novocherkassk 346428 Russia
| | - Julia V. Burykina
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Evgeniy G. Gordeev
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Mikhail E. Minyaev
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| | - Victor M. Chernyshev
- Platov South-Russian State Polytechnic University (NPI) Prosveschenya 132 Novocherkassk 346428 Russia
| | - Valentine P. Ananikov
- Zelinsky Institute of Organic Chemistry Russian Academy of Sciences Leninsky Prospect 47 Moscow 119991 Russia
| |
Collapse
|
21
|
Fadeev AA, Makarov AS, Ivanova OA, Uchuskin MG, Trushkov IV. Extended Corey–Chaykovsky reactions: transformation of 2-hydroxychalcones to benzannulated 2,8-dioxabicyclo[3.2.1]octanes and 2,3-dihydrobenzofurans. Org Chem Front 2022. [DOI: 10.1039/d1qo01646f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report the divergent synthesis of benzannulated 2,8-dioxabicyclo[3.2.1]octanes and 2,3-dihydrobenzofurans using the concept of extended Corey–Chaykovsky reactions.
Collapse
Affiliation(s)
- Alexander A. Fadeev
- Department of Chemistry, Perm State University, Bukireva 15, Perm 614990, Russian Federation
| | - Anton S. Makarov
- Department of Chemistry, Perm State University, Bukireva 15, Perm 614990, Russian Federation
| | - Olga A. Ivanova
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Maxim G. Uchuskin
- Department of Chemistry, Perm State University, Bukireva 15, Perm 614990, Russian Federation
| | - Igor V. Trushkov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky pr. 47, Moscow 119334, Russian Federation
- D. Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| |
Collapse
|
22
|
Pasyukov D, Shevchenko M, Shepelenko K, Khazipov O, Burykina J, Gordeev E, Minyaev M, Chernyshev V, Ananikov VP. One-Step Access to Heteroatom-Functionalized Imidazol(in)ium Salts. Angew Chem Int Ed Engl 2021; 61:e202116131. [PMID: 34963027 DOI: 10.1002/anie.202116131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Indexed: 11/09/2022]
Abstract
Imidazolium salts have ubiquitous applications in energy research, catalysis, materials and medicinal sciences. Here, we report a new strategy for the synthesis of diverse heteroatom-functionalized imidazolium and imidazolinium salts from easily available 1,4-diaza-1,3-butadienes in one step. The strategy relies on a discovered family of unprecedented nucleophilic addition/cyclization reactions with trialkyl orthoformates and heteroatomic nucleophiles. To probe general areas of application, synthesized N-heterocyclic carbene (NHC) precursors were feasible for direct metallation to give functionalized M/carbene complexes (M = Pd, Ni, Cu, Ag, Au), which were isolated in individual form. The utility of chloromethyl function for the postmodification of the synthesized salts and Pd/carbene complexes was demonstrated. The obtained complexes and imidazolium salts demonstrated good activities in Pd- or Ni-catalyzed model cross-coupling and C-H activation reactions.
Collapse
Affiliation(s)
- Dmitry Pasyukov
- Uzno-Rossijskij gosudarstvennyj politehniceskij universitet NPI imeni M I Platova, Chemistry, RUSSIAN FEDERATION
| | - Maxim Shevchenko
- Uzno-Rossijskij gosudarstvennyj politehniceskij universitet NPI imeni M I Platova, Chemistry, RUSSIAN FEDERATION
| | - Konstantin Shepelenko
- Uzno-Rossijskij gosudarstvennyj politehniceskij universitet NPI imeni M I Platova, Chemitry, RUSSIAN FEDERATION
| | - Oleg Khazipov
- Uzno-Rossijskij gosudarstvennyj politehniceskij universitet NPI imeni M I Platova, Chemistry, RUSSIAN FEDERATION
| | - Julia Burykina
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Catalysis, RUSSIAN FEDERATION
| | - Evgeniy Gordeev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Catalysis, RUSSIAN FEDERATION
| | - Mikhail Minyaev
- Zelinsky Institute of Organic Chemistry RAS: Institut organiceskoj himii imeni N D Zelinskogo RAN, Catalysis, RUSSIAN FEDERATION
| | - Victor Chernyshev
- Uzno-Rossijskij gosudarstvennyj politehniceskij universitet NPI imeni M I Platova, Chemistry, RUSSIAN FEDERATION
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, 119991, Moscow, RUSSIAN FEDERATION
| |
Collapse
|
23
|
Dutta HS, Ahmad A, Khan AA, Kumar M, Raziullah, Vaishnav J, Gangwar M, Ampapathi RS, Koley D. Diastereoselective [3 + 2] Cycloaddition of Quinoxalin-2(1 H)-ones with Donor-Acceptor Cyclopropanes: Efficient Synthesis of Tetrahydro pyrrolo[1,2- a]quinoxalin-4(5 H)-ones. J Org Chem 2021; 86:16558-16572. [PMID: 34780178 DOI: 10.1021/acs.joc.1c01872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A ytterbium triflate-catalyzed diastereoselective [3 + 2] cycloaddition of quinoxalinones with donor-acceptor cyclopropanes and cyclobutanes is described. A series of tetrahydropyrrolo-quinoxalinone derivatives were obtained in high yields (up to 96%) with excellent diastereoselectivities (up to 46:1). Other medicinally important heterocycles like benzoxazinone, isoquinoxalinone, and dibenzoxazepine derivatives were also suitable for the desired annulation reaction. The current method is applicable for the scale-up reaction. Further, the utility of this annulation reaction is demonstrated by the synthesis of densely functionalized proline derivatives.
Collapse
Affiliation(s)
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Afsar Ali Khan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohit Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raziullah
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Jayanti Vaishnav
- SAIF, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manoj Gangwar
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom Of Saudi Arabia
| | | | - Dipankar Koley
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Oliver GA, Loch MN, Augustin AU, Steinbach P, Sharique M, Tambar UK, Jones PG, Bannwarth C, Werz DB. Cycloadditions of Donor-Acceptor Cyclopropanes and -butanes using S=N-Containing Reagents: Access to Cyclic Sulfinamides, Sulfonamides, and Sulfinamidines. Angew Chem Int Ed Engl 2021; 60:25825-25831. [PMID: 34499800 PMCID: PMC9298015 DOI: 10.1002/anie.202106596] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Indexed: 11/09/2022]
Abstract
We present (3+2)- and (4+2)-cycloadditions of donor-acceptor (D-A) cyclopropanes and cyclobutanes with N-sulfinylamines and a sulfur diimide, along with a one-pot, two-step strategy for the formal insertion of HNSO2 into D-A cyclopropanes. These are rare examples of cycloadditions with D-A cyclopropanes and cyclobutanes whereby the 2π component consists of two different heteroatoms, thus leading to five- and six-membered rings containing adjacent heteroatoms.
Collapse
Affiliation(s)
- Gwyndaf A. Oliver
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Maximilian N. Loch
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - André U. Augustin
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Pit Steinbach
- Institute of Physical ChemistryRWTH Aachen UniversityMelatener Str. 2052056AachenGermany
| | - Mohammed Sharique
- Department of BiochemistryThe University of Texas Southwestern Medical Center5323 Harry Hines BoulevardDallasTX75390-9038USA
| | - Uttam K. Tambar
- Department of BiochemistryThe University of Texas Southwestern Medical Center5323 Harry Hines BoulevardDallasTX75390-9038USA
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Christoph Bannwarth
- Institute of Physical ChemistryRWTH Aachen UniversityMelatener Str. 2052056AachenGermany
| | - Daniel B. Werz
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| |
Collapse
|
25
|
Oliver GA, Loch MN, Augustin AU, Steinbach P, Sharique M, Tambar UK, Jones PG, Bannwarth C, Werz DB. Cycloadditions of Donor–Acceptor Cyclopropanes and ‐butanes using S=N‐Containing Reagents: Access to Cyclic Sulfinamides, Sulfonamides, and Sulfinamidines. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Gwyndaf A. Oliver
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Maximilian N. Loch
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - André U. Augustin
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Pit Steinbach
- Institute of Physical Chemistry RWTH Aachen University Melatener Str. 20 52056 Aachen Germany
| | - Mohammed Sharique
- Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390-9038 USA
| | - Uttam K. Tambar
- Department of Biochemistry The University of Texas Southwestern Medical Center 5323 Harry Hines Boulevard Dallas TX 75390-9038 USA
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Christoph Bannwarth
- Institute of Physical Chemistry RWTH Aachen University Melatener Str. 20 52056 Aachen Germany
| | - Daniel B. Werz
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| |
Collapse
|
26
|
Singh PR, Kalaramna P, Ali S, Goswami A. Synthesis of Thio‐/Selenopyrrolines
via
SnCl
4
‐Catalyzed (3+2)‐Cycloadditions of Donor‐Acceptor Cyclopropanes with Thio‐/Selenocyanates. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Prasoon Raj Singh
- Department of Chemistry SS Bhatnagar Block Main Campus Indian Institute of Technology Ropar Rupnagar, Punjab 140001 India
| | - Pratibha Kalaramna
- Department of Chemistry SS Bhatnagar Block Main Campus Indian Institute of Technology Ropar Rupnagar, Punjab 140001 India
| | - Shamsad Ali
- Department of Chemistry SS Bhatnagar Block Main Campus Indian Institute of Technology Ropar Rupnagar, Punjab 140001 India
| | - Avijit Goswami
- Department of Chemistry SS Bhatnagar Block Main Campus Indian Institute of Technology Ropar Rupnagar, Punjab 140001 India
| |
Collapse
|
27
|
Ikonnikova VA, Zhigileva EA, Kuleshov AV, Shirokova VV, Baranov MS, Mikhaylov AA. Nucleophilic ring opening of imidazolone activated donor–acceptor cyclopropanes with alcohols. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Vartanova AE, Plodukhin AY, Ratmanova NK, Andreev IA, Anisimov MN, Gudimchuk NB, Rybakov VB, Levina II, Ivanova OA, Trushkov IV, Alabugin IV. Expanding Stereoelectronic Limits of endo- tet Cyclizations: Synthesis of Benz[ b]azepines from Donor-Acceptor Cyclopropanes. J Am Chem Soc 2021; 143:13952-13961. [PMID: 34406759 DOI: 10.1021/jacs.1c07088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The importance of intramolecular constraints in cyclic transition-state geometries is especially pronounced in n-endo-tet cyclizations, where the usual backside approach of a nucleophile to the breaking bond is impossible for the rings containing less than eight atoms. Herein, we expand the limits of endo-tet cyclizations and show that donor-acceptor cyclopropanes can provide a seven-membered ring via a genuine 6-endo-tet process. Substrates containing a N-alkyl-N-arylcarbamoyl moiety as an acceptor group undergo Lewis acid-induced cyclization to form tetrahydrobenz[b]azepin-2-ones in high yields. The reaction proceeds with the inversion of the configuration at the electrophilic carbon. In this process, a formally six-membered transition state yields a seven-membered ring as the pre-existing cycle is merged into the forming ring. The stereochemistry of the products can be controlled by the reaction time and by the nature of Lewis acid, opening access to both diastereomers by tuning of the reaction conditions.
Collapse
Affiliation(s)
- Anna E Vartanova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russian Federation.,Faculty of Science, RUDN University, Moscow 117198, Russian Federation
| | - Andrey Yu Plodukhin
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Nina K Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow 117997, Russian Federation
| | - Ivan A Andreev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russian Federation.,Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology, and Immunology, Moscow 117997, Russian Federation
| | - Mikhail N Anisimov
- Department of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow 119334, Russian Federation
| | - Nikita B Gudimchuk
- Department of Physics, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation.,Center for Theoretical Problems of Physicochemical Pharmacology, Moscow 119334, Russian Federation
| | - Victor B Rybakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Irina I Levina
- Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russian Federation
| | - Olga A Ivanova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russian Federation.,Department of Chemistry, M. V. Lomonosov Moscow State University, Moscow 119991, Russian Federation
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390 United States
| |
Collapse
|
29
|
Vartanova AE, Levina II, Rybakov VB, Ivanova OA, Trushkov IV. Donor-Acceptor Cyclopropane Ring Opening with 6-Amino-1,3-dimethyluracil and Its Use in Pyrimido[4,5- b]azepines Synthesis. J Org Chem 2021; 86:12300-12308. [PMID: 34382810 DOI: 10.1021/acs.joc.1c01064] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A scandium trifluoromethanesulfonate-catalyzed reaction of donor-acceptor cyclopropanes with 6-amino-1,3-dimethyluracil was found to proceed as three-membered ring opening via nucleophilic attack of the C(5) atom of an ambident nucleophile serving as an enamine equivalent. It was shown that, under basic conditions, the obtained products underwent cyclization to 6,7-dihydro-1H-pyrimido[4,5-b]azepine-2,4,8-triones, an interesting subclass of nucleobase analogues.
Collapse
Affiliation(s)
- Anna E Vartanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.,Faculty of Science, RUDN University, Miklukho-Maklaya 6, Moscow 117198, Russian Federation
| | - Irina I Levina
- N. M. Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Kosygina 4, Moscow 119334, Russian Federation
| | - Victor B Rybakov
- Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Olga A Ivanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.,Department of Chemistry, M. V. Lomonosov Moscow State University, Leninskie Gory 1-3, Moscow 119991, Russian Federation
| | - Igor V Trushkov
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky pr. 47, Moscow 119334, Russian Federation.,Laboratory of Chemical Synthesis, Dmitry Rogachev National Research Center of Pediatric Hematology, Oncology and Immunology, Samory Mashela 1, Moscow 117997, Russian Federation
| |
Collapse
|
30
|
Xiong Q, Luo Q, Zhang T, Dong S, Liu X, Feng X. Catalytic asymmetric multicomponent reactions of isocyanide, isothiocyanate and alkylidene malonates. Chem Commun (Camb) 2021; 57:7288-7291. [PMID: 34212960 DOI: 10.1039/d1cc02939h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Several unique chiral 3,4-dihydro-2H-pyrrole-2-thiones were made readily available by carrying out, in each case, a chiral-Mg(OTf)2/N,N'-dioxide-complex-promoted formal [2+1+2] cycloaddition in the presence of tetraethylenediamine. Control experiments revealed that in situ-generated ammonium thiocyanate was crucial for maintaining high enantioselectivity through its inhibition of the HNCS-induced racemization of the products.
Collapse
Affiliation(s)
- Qian Xiong
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry. Sichuan University, Chengdu 610064, China.
| | | | | | | | | | | |
Collapse
|
31
|
Ebrahimi M, Kujawski W, Fatyeyeva K, Kujawa J. A Review on Ionic Liquids-Based Membranes for Middle and High Temperature Polymer Electrolyte Membrane Fuel Cells (PEM FCs). Int J Mol Sci 2021; 22:5430. [PMID: 34063925 PMCID: PMC8196583 DOI: 10.3390/ijms22115430] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Today, the use of polymer electrolyte membranes (PEMs) possessing ionic liquids (ILs) in middle and high temperature polymer electrolyte membrane fuel cells (MT-PEMFCs and HT-PEMFCs) have been increased. ILs are the organic salts, and they are typically liquid at the temperature lower than 100 °C with high conductivity and thermal stability. The membranes containing ILs can conduct protons through the PEMs at elevated temperatures (more than 80 °C), unlike the Nafion-based membranes. A wide range of ILs have been identified, including chiral ILs, bio-ILs, basic ILs, energetic ILs, metallic ILs, and neutral ILs, that, from among them, functionalized ionic liquids (FILs) include a lot of ion exchange groups in their structure that improve and accelerate proton conduction through the polymeric membrane. In spite of positive features of using ILs, the leaching of ILs from the membranes during the operation of fuel cell is the main downside of these organic salts, which leads to reducing the performance of the membranes; however, there are some ways to diminish leaching from the membranes. The aim of this review is to provide an overview of these issues by evaluating key studies that have been undertaken in the last years in order to present objective and comprehensive updated information that presents the progress that has been made in this field. Significant information regarding the utilization of ILs in MT-PEMFCs and HT-PEMFCs, ILs structure, properties, and synthesis is given. Moreover, leaching of ILs as a challenging demerit and the possible methods to tackle this problem are approached in this paper. The present review will be of interest to chemists, electrochemists, environmentalists, and any other researchers working on sustainable energy production field.
Collapse
Affiliation(s)
- Mohammad Ebrahimi
- Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Toruń, Poland; (M.E.); (J.K.)
- Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), 76000 Rouen, France;
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Toruń, Poland; (M.E.); (J.K.)
| | - Kateryna Fatyeyeva
- Normandie Univ, UNIROUEN, INSA ROUEN, CNRS, Polymères Biopolymères Surfaces (PBS), 76000 Rouen, France;
| | - Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarina Street, 87-100 Toruń, Poland; (M.E.); (J.K.)
| |
Collapse
|
32
|
Augustin AU, Werz DB. Exploiting Heavier Organochalcogen Compounds in Donor-Acceptor Cyclopropane Chemistry. Acc Chem Res 2021; 54:1528-1541. [PMID: 33661599 DOI: 10.1021/acs.accounts.1c00023] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Donor-acceptor (D-A) cyclopropanes have gained increased momentum over the past two decades. The use of these highly strained three-membered entities paved the way to innovative and original transformations yielding complex cyclic and acyclic architectures that otherwise might be difficult to address. Since the fundamentals were laid by Wenkert and Reissig in the late 1970s, the field has flourished impressively including asymmetric transformations as well as elegant synthetic applications in the construction of natural occurring products. In this Account, we aim to highlight especially our efforts in the context of an efficient access to sulfur- and selenium-containing compounds, of either cyclic or open-chain nature, by exploiting D-A cyclopropane chemistry. Light will be shed on the three fundamental transformations: ring-opening reactions, cycloadditions, and rearrangements.Our synthetic endeavors started back in 2011 guided by quantum chemical studies to obtain 3,3'-linked bisthiophenes along with an unprecedented rearrangement delivering sulfur- and selenium-containing cagelike scaffolds. Inspired by these surprising results, we further deepened our efforts to the construction of new sulfur-carbon and selenium-carbon bonds within the context of D-A cyclopropane chemistry. In the first instance, we capitalized on the great versatility of organosulfur and organoselenium compounds regarding their amphiphilic character to act either as nucleophilic or as electrophilic species. By such an approach, ring-openings via a nucleophilic attack of sulfenyl and selenyl halides furnished 1,3-bishalochalcogenated products. A similar protocol led us to a desymmetrization reaction of meso-cyclopropyl carbaldehydes employing novel chiral imidazolidinone organocatalysts. In contrast, electrophilic sulfur was supplied by N-(arylthio)succinimide substrates to access thiolated γ-amino acid derivatives and their selenium equivalents.Combining the highly reactive thiocarbonyl compounds and vicinal donor-acceptor substituted cyclopropanes opened new vistas in the field of atom-economic cycloaddition reactions to build up sulfur-containing heterocycles of various sizes. The first systematic study of such transformations was made by our group in 2017 leading to highly decorated thiolanes, whereas an intramolecular approach furnished thia-[n.2.1]bicyclic ring systems. Our investigations were then successfully extended to the synthesis of tetrahydroselenophenes by using capricious selenoketones. Recently, we were able to yield the unsaturated analogues, selenophenes, by a (3 + 2)-cycloaddition of D-A cyclopropanes with ammonium selenocyanates followed by oxidation. The formal insertion of thioketenes was realized by employing 3-thioxocyclobutanones as surrogates for disubstituted thioketenes to obtain 2-substituted tetrahydrothiophenes bearing a semicyclic double bond via a (3 + 2) spiroannulation/(2 + 2) cycloreversion sequence. Even the formation of seven-membered S-heterocycles was realized by (4 + 3)-cycloaddition processes. In 2016, we demonstrated the synthesis of benzo-fused dithiepines from in situ generated ortho-bisthioquinones, whereas the utilization of thia-Michael systems as a hetero-4π-component delivered tetrahydrothiepine derivatives containing just one sulfur atom embedded in the ring system.
Collapse
Affiliation(s)
- André U. Augustin
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Daniel B. Werz
- Institute of Organic Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| |
Collapse
|
33
|
Werz DB, Jacob A, Barkawitz P, Andreev IA, Ratmanova NK, Trushkov IV. (3+2)-Cycloaddition of Donor–Acceptor Cyclopropanes with Thiocyanate: A Facile and Efficient Synthesis of 2-Amino-4,5-dihydrothiophenes. Synlett 2021. [DOI: 10.1055/a-1385-2385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractAn easy and efficient route to obtain 2-amino-4,5-dihydrothiophenes is presented. A formal (3+2)-cycloaddition of donor–acceptor cyclopropanes and ammonium thiocyanate catalyzed by Yb(OTf)3 delivers the desired products in good to excellent yields. A broad range of functional groups is tolerated during this process.
Collapse
Affiliation(s)
- Daniel B. Werz
- Technische Universität Braunschweig, Institute of Organic Chemistry
| | - Anu Jacob
- Technische Universität Braunschweig, Institute of Organic Chemistry
| | - Philip Barkawitz
- Technische Universität Braunschweig, Institute of Organic Chemistry
| | - Ivan A. Andreev
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
| | - Nina K. Ratmanova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
| | - Igor V. Trushkov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences
| |
Collapse
|