1
|
Nie J, Shi Y, Gan M, Huang H, Ji X. Photoredox-Catalyzed Markovnikov Hydroamination of Alkenes with Azoles. Org Lett 2024; 26:9481-9485. [PMID: 39475593 DOI: 10.1021/acs.orglett.4c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2024]
Abstract
A visible-light induced intermolecular hydroamination of alkenes with azoles is reported, delivering pharmaceutically valuable N-benzyl azoles in high yields with excellent Markovnikov selectivity. Mechanistic studies suggest that the process is initiated by the energy transfer of the excited photocatalyst with alkenes, followed by the single electron reduction, protonation, and subsequent single electron oxidation to afford the key alkyl carbocation intermediate. This protocol exhibits advantages of broad functional group tolerance, excellent atom economy, high efficiency, and mild reaction conditions.
Collapse
Affiliation(s)
- Jinhuan Nie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yutao Shi
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Mengran Gan
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
2
|
Zhang CJ, Sun Y, Gong J, Zhang H, Liu ZZ, Wang F, Chen JX, Qu JP, Kang YB. α-Nucleophilic Addition to α,β-Unsaturated Carbonyl Compounds via Photocatalytically Generated α-Carbonyl Carbocations. Angew Chem Int Ed Engl 2024:e202415496. [PMID: 39494965 DOI: 10.1002/anie.202415496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Indexed: 11/05/2024]
Abstract
We report the photocatalytic oxidation of α-carbonyl radicals of amides or esters to the corresponding α-carbonyl carbocations through super photoreductant CBZ6 induced redox-neutral photocatalysis. The α-carbonyl radicals are formed by the β-addition of alkyl radicals generated in situ by the photocatalytic fragmentation of N-hydroxyphthalimide esters to the α,β-unsaturated amides and esters. This method enables the α-nucleophilic addition of hydroxyl or alkoxyl radicals to amides and esters without any prefunctionalization.
Collapse
Affiliation(s)
- Chong-Jin Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yu Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jie Gong
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Hao Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Zhen Liu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Fang Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jin-Xiang Chen
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Integrated photochemical strategy for alkene synthesis from diverse substrates. Nat Chem 2024; 16:1751-1752. [PMID: 39333391 DOI: 10.1038/s41557-024-01643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
|
4
|
Kitcatt D, Pogacar E, Mi L, Nicolle S, Lee AL. Light-Mediated Direct Decarboxylative Giese Aroylations without a Photocatalyst. J Org Chem 2024; 89:16055-16059. [PMID: 39438444 PMCID: PMC11536358 DOI: 10.1021/acs.joc.4c02163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Previous light-mediated approaches to the direct decarboxylative Giese aroylation reaction have mainly relied on the use of a photocatalyst and a reductive quenching pathway. By exploiting a mechanistically distinct oxidative protocol, we have successfully developed a photocatalyst-free, light-mediated direct Giese aroylation methodology.
Collapse
Affiliation(s)
- David
M. Kitcatt
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Eva Pogacar
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Le Mi
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Simon Nicolle
- GlaxoSmithKline, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Ai-Lan Lee
- Institute
of Chemical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, Scotland, United Kingdom
| |
Collapse
|
5
|
Zhu X, Xie Z, Chen X, Mu M, Wu H, Sun M, Yang J, Wang L, Wang Z. Electrochemical Giese Reaction of α-Trifluoromethylstyrenes with Disulfides: Efficient Access to β-Trifluoromethylated Thioethers. J Org Chem 2024; 89:14940-14950. [PMID: 39381988 DOI: 10.1021/acs.joc.4c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
An electrochemical Giese-type hydrothiolation of α-trifluoromethylstyrenes with disulfides is disclosed for the first time under metal-free and mild conditions. This approach provides a facile methodology for β-trifluoromethylated thioethers in moderate to good yields with high functional group tolerance starting from readily available substrates. Additionally, late-stage modification of drug molecules and gram-scale synthesis show practical advantages. The radical pathway of this reaction has been revealed by control experiments and cyclic voltammetry measurements.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, PR China
| | - Zewei Xie
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, PR China
| | - Xing Chen
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, PR China
| | - Miaomiao Mu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, PR China
| | - Haijian Wu
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, PR China
| | - Manman Sun
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, PR China
| | - Jianguo Yang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, PR China
| | - Lei Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, PR China
| | - Zhiming Wang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, PR China
| |
Collapse
|
6
|
Lahdenperä ASK, Dhankhar J, Davies DJ, Lam NYS, Bacoş PD, de la Vega-Hernández K, Phipps RJ. A chiral hydrogen atom abstraction catalyst for the enantioselective epimerization of meso-diols. Science 2024; 386:42-49. [PMID: 39361751 DOI: 10.1126/science.adq8029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/29/2024] [Indexed: 10/05/2024]
Abstract
Hydrogen atom abstraction is an important elementary chemical process but is very difficult to carry out enantioselectively. We have developed catalysts, readily derived from the Cinchona alkaloid family of natural products, which can achieve this by virtue of their chiral amine structure. The catalyst, following single-electron oxidation, desymmetrizes meso-diols by selectively abstracting a hydrogen atom from one carbon center, which then regains a hydrogen atom by abstraction from a thiol. This results in an enantioselective epimerization process, forming the chiral diastereomer with high enantiomeric excess. Cyclic and acyclic 1,2-diols are compatible, as are acyclic 1,3-diols. Additionally, we demonstrate the viability of combining our approach with carbon-carbon bond formation in Giese addition. Given the increasing number of synthetic methods involving hydrogen atom transfer steps, we anticipate that this work will have a broad impact in the field of enantioselective radical chemistry.
Collapse
Affiliation(s)
- Antti S K Lahdenperä
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Jyoti Dhankhar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Daniel J Davies
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Nelson Y S Lam
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - P David Bacoş
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | | | - Robert J Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
7
|
Guo S, Wang W, Zhang Y. Radical-Chain Hydrosilylation of Alkenes Enabled by Triplet Energy Transfer. Chemistry 2024; 30:e202402051. [PMID: 38978189 DOI: 10.1002/chem.202402051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Development of mild, robust and metal-free catalytic approach for the hydrosilylation of alkenes is critical to the advancement of modern organosilicon chemistry given their powerful capacity in the construction of various C-Si bonds. Herein, we wish to disclose a visible light-triggered organophotocatalytic strategy, which proceeds via a triplet energy transfer (EnT)-enabled radical chain pathway. Notably, this redox-neutral protocol is capable of accommodating a broad spectrum of electron-deficient and -rich alkenes with excellent functional group compatibility. Electron-deficient alkenes are more reactive and the reaction could be finished within a couple of minutes even in PBS solution with extremely low concentration, which suggests its click-like potential in organic synthesis. The preparative power of the transformations has been further highlighted in a number of complex settings, including the late-stage functionalization and scale-up experiments. Furthermore, although only highly reactive (TMS)3SiH is suitable hydrosilane substrate, our studies revealed the great reactivity and versatility of (TMS)3Si- group in diverse C-Si and Si-Si bond cleavage-based transformations, enabling the rapid introduction of diverse functional groups and the facile construction of valuable quaternary silicon architectures.
Collapse
Affiliation(s)
- Shixun Guo
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wei Wang
- Department of Pharmacology and Toxicology and BIO5 Institute, University of Arizona, Tucson, AZ, 85721-0207, USA
| | - Yongqiang Zhang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
8
|
Biswas S, Das D, Pal K, Chandu P, Sureshkumar D. Photocatalyzed Direct C(sp 3)-H Alkenylation of Unactivated Alkanes via Tandem C-C Activation of Cyclopropenes. J Org Chem 2024; 89:12421-12431. [PMID: 39150896 DOI: 10.1021/acs.joc.4c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
A highly adaptable method has been developed for the alkenylation of a broad spectrum of inert alkanes, employing milder reaction conditions. Tetrabutylammonium decatungstate (TBADT) serves as a photocatalyst for hydrogen atom transfer (HAT), instigating the formation of transient alkyl radicals through C(sp3)-H functionalization. These radicals exhibit regioselective addition to cyclopropenes, followed by the subsequent activation of C-C bonds, forming the corresponding vinylated derivatives. This methodology accommodates diverse unreactive C(sp3)-H bond motifs and multisubstituted cyclopropenes, enabling the efficient synthesis of highly functionalized olefins with high diastereoselectivity.
Collapse
Affiliation(s)
- Sourabh Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Debabrata Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Koustav Pal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Palasetty Chandu
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| | - Devarajulu Sureshkumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal 741246, India
| |
Collapse
|
9
|
Brunelli F, Quartieri F, Miletto I, Pulici M, Papeo G, Tron GC. Visible Light Promoted Site-Specific Functionalization of α-Acyloxy Carboxamides: Unlocking a Forbidden Chemical Space in the Passerini Reaction. Chemistry 2024; 30:e202402175. [PMID: 39166444 DOI: 10.1002/chem.202402175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 08/23/2024]
Abstract
The facile generation of the α-acyloxy carboxamide radical is hereby reported for the first time, utilizing a photoredox catalyzed reaction of Passerini adducts synthesized using a 4-formyl-1,4-dihydropyridine as the carbonyl component. This radical effectively engages in a Giese reaction with a range of olefins, ultimately leading to the synthesis of novel Passerini-derived products not previously amenable to direct aldehyde-based transformations. Consequently, the resulting strategy, developed both in batch and in flow, offers a promising opportunity to expand the chemical space accessible through the Passerini reaction, virtually incorporating "impossible" aldehydes.
Collapse
Affiliation(s)
- Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | | | - Ivana Miletto
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| | - Maurizio Pulici
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014, Nerviano, Italy
| | - Gianluca Papeo
- Nerviano Medical Sciences Srl, Viale Pasteur 10, 20014, Nerviano, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100, Novara, Italy
| |
Collapse
|
10
|
Filbin CJ, Haque MH, Locke CK, Mallon CJ, Curtis K, Osho KE, Borotto NB, Tucker MJ, Odoh SO, Yang Y. Reversible Photochromism of 4,4'-Disubstituted 2,2'-Bipyridine in the Presence of SO 3. Chemphyschem 2024; 25:e202400150. [PMID: 38777787 DOI: 10.1002/cphc.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/22/2024] [Indexed: 05/25/2024]
Abstract
We report an unusual photochromic behavior of 4,4'-disubstituted-2,2'-bipyridine. It was found that in the presence of a SO3 source and HCl, 2,2'-bipyridine-4,4'-dibutyl ester undergoes a color change from yellow to magenta in solution with maximum absorbance at 545 nm upon irradiation with 395 nm light. The photochromism is thermally reversible in solution. Different from the known bipyridine-based photoswitching pathways, the photo response does not involve any metal which form colored complexes or the formation of colored free radical cations like the photo-reduction of viologens. A combination of experimental and computational analysis was used to probe the mechanism. The results suggest the colored species to be a complex formed between N-oxide of the 2,2'-bipyridine-4,4'-dibutyl ester and SO2; the N-oxide and SO2 are formed from photoactivated oxidation of the bipyridine with SO3 serving as the oxygen source. This complex represents a new addition to the library of photoswitches that is easy to synthesize, reversible in solution, and of high fatigue resistance, making it a promising candidate for applications in photo-switchable materials and SO3 detection. We also demonstrated experimentally similar photochromic behaviors with 2,2'-bipyridine-containing polymers.
Collapse
Affiliation(s)
- Connor J Filbin
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Md Hasanul Haque
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Cameron K Locke
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Christopher J Mallon
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Kevin Curtis
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Kemi E Osho
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Nicholas B Borotto
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Matthew J Tucker
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Samuel O Odoh
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| | - Ying Yang
- Department of Chemistry, University of Nevada, Reno, 1664 N. Virginia St., Reno, Nevada, 89557, US
| |
Collapse
|
11
|
Beleh OM, Alomari S, Weix DJ. Synthesis of Stereodefined Enones from the Cross-Electrophile Coupling of Activated Acrylic Acids with Alkyl Bromides. Org Lett 2024; 26:7217-7221. [PMID: 39162620 PMCID: PMC11516134 DOI: 10.1021/acs.orglett.4c02644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
We report a one-pot synthesis of (E)-trisubstituted enones from acrylic acids through the in situ generation of a 2-pyridyl ester and subsequent cross-electrophile coupling with a nickel catalyst under reducing conditions. The scope of trisubstituted enones is broad and compatible with functionality that can be challenging in established olefination techniques. We highlight conditions necessary to suppress undesired side reactions from the α,β-unsaturated carbonyl and improve cross-electrophile coupling approaches to prepare enones.
Collapse
Affiliation(s)
- Omar M. Beleh
- University of Wisconsin–Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
12
|
He XB, Jia X, Zhao PQ, Fang Z, Qing FL. Photoredox-Catalysis Fluorosulfonyldifluoromethylation of Unactivated Alkenes and (Hetero)arenes with ICF 2SO 2F. Org Lett 2024; 26:6900-6904. [PMID: 39115249 DOI: 10.1021/acs.orglett.4c02538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The fluorosulfonyldifluoromethylation of unactivated alkenes and (hetero)arenes with iododifluoromethanesulfonyl fluoride (ICF2SO2F) under visible light photoredox catalysis was successfully developed. Key to the successful fluorosulfonyldifluoromethylation of aromatic compounds was the usage of AgOTf as an additive to promote the formation of the CF2SO2F radical. The protocol provided a straightforward way to introduce the interesting and useful CF2SO2F group on sp3 and sp2 carbons.
Collapse
Affiliation(s)
- Xu-Biao He
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xin Jia
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Pin-Qiao Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zeguo Fang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Feng-Ling Qing
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
13
|
Patra S, Nandasana BN, Valsamidou V, Katayev D. Mechanochemistry Drives Alkene Difunctionalization via Radical Ligand Transfer and Electron Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402970. [PMID: 38829256 PMCID: PMC11304296 DOI: 10.1002/advs.202402970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/08/2024] [Indexed: 06/05/2024]
Abstract
A general and modular protocol is reported for olefin difunctionalization through mechanochemistry, facilitated by cooperative radical ligand transfer (RLT) and electron catalysis. Utilizing mechanochemical force and catalytic amounts of 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO), ferric nitrate can leverage nitryl radicals, transfer nitrooxy-functional group via RLT, and mediate an electron catalysis cycle under room temperature. A diverse range of activated and unactivated alkenes exhibited chemo- and regioselective 1,2-nitronitrooxylation under solvent-free or solvent-less conditions, showcasing excellent functional group tolerance. Mechanistic studies indicated a significant impact of mechanochemistry and highlighted the radical nature of this nitrative difunctionalization process.
Collapse
Affiliation(s)
- Subrata Patra
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Bhargav N. Nandasana
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Vasiliki Valsamidou
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| | - Dmitry Katayev
- Department of ChemistryBiochemistry, and Pharmaceutical SciencesUniversity of BernFreiestrasse 3Bern3012Switzerland
| |
Collapse
|
14
|
Cao Z, Sun W, Zhang J, Zhuo J, Yang S, Song X, Ma Y, Lu P, Han T, Li C. Total syntheses of (-)-macrocalyxoformins A and B and (-)-ludongnin C. Nat Commun 2024; 15:6052. [PMID: 39025872 PMCID: PMC11258297 DOI: 10.1038/s41467-024-50374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
The complex and diverse molecular architectures along with broad biological activities of ent-kauranoids natural products make them an excellent testing ground for the invention of synthetic methods and strategies. Recent efforts notwithstanding, synthetic access to the highly oxidized enmein-type ent-kauranoids still presents considerable challenges to synthetic chemists. Here, we report the enantioselective total syntheses of C-19 oxygenated enmein-type ent-kauranoids, including (-)-macrocalyxoformins A and B and (-)-ludongnin C, along with discussion and study of synthetic strategies. The enabling feature in our synthesis is a devised Ni-catalyzed decarboxylative cyclization/radical-polar crossover/C-acylation cascade that forges a THF ring concomitantly with the β-keto ester group. Mechanistic studies reveal that the C-acylation process in this cascade reaction is achieved through a carboxylation followed by an in situ esterification. Biological evaluation of these synthetic natural products reveals the indispensable role of the ketone on the D ring in their anti-tumor efficacy.
Collapse
Affiliation(s)
- Zichen Cao
- School of Life Sciences, Peking University, 100871, Beijing, China
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Wenxuan Sun
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Jingfu Zhang
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Junming Zhuo
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Shaoqiang Yang
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Xiaocui Song
- National Institute of Biological Sciences, 102206, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Panrui Lu
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Ting Han
- National Institute of Biological Sciences, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China
| | - Chao Li
- National Institute of Biological Sciences, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
15
|
Carré V, Godard P, Méreau R, Jacquot de Rouville HP, Jonusauskas G, McClenaghan N, Tassaing T, Vincent JM. Photogeneration of Chlorine Radical from a Self-Assembled Fluorous 4CzIPN•Chloride Complex: Application in C-H Bond Functionalization. Angew Chem Int Ed Engl 2024; 63:e202402964. [PMID: 38634355 DOI: 10.1002/anie.202402964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
The chlorine radical is a strong HAT (Hydrogen Atom Transfer) agent that is very useful for the functionalization of C(sp3)-H bonds. Albeit highly attractive, its generation from the poorly oxidizable chloride ion mediated by an excited photoredox catalyst is a difficult task. We now report that 8Rf8-4CzIPN, an electron-deficient fluorous derivative of the benchmark 4CzIPN photoredox catalyst belonging to the donor-acceptor carbazole-cyanoarene family, is not only a better photooxidant than 4CzIPN, but also becomes an excellent host for the chloride ion. Combining these two properties ultimately makes the self-assembled 8Rf8-4CzIPN•Cl- dual catalyst highly reactive in redox-neutral Giese-type C(sp3)-H bond alkylation reactions promoted by the chlorine radical. Additionally, because of its fluorous character, the efficient separation/recovery of 8Rf8-4CzIPN could be envisioned.
Collapse
Affiliation(s)
- Victor Carré
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Pascale Godard
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Raphaël Méreau
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | | | - Gediminas Jonusauskas
- Laboratoire Ondes et Matière d'Aquitaine, CNRS UMR 5798, Univ. Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Nathan McClenaghan
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Thierry Tassaing
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| | - Jean-Marc Vincent
- Institut des Sciences Moléculaires, CNRS UMR 5255, Université de Bordeaux, 351, Crs de la Libération, 33405, Talence, France
| |
Collapse
|
16
|
Yamamoto K, Arita K, Kuriyama M, Onomura O. Transition-metal-catalyst-free electroreductive alkene hydroarylation with aryl halides under visible-light irradiation. Beilstein J Org Chem 2024; 20:1327-1333. [PMID: 38887578 PMCID: PMC11181238 DOI: 10.3762/bjoc.20.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The radical hydroarylation of alkenes is an efficient strategy for accessing linear alkylarenes with high regioselectivity. Herein, we report the electroreductive hydroarylation of electron-deficient alkenes and styrene derivatives using (hetero)aryl halides under mild reaction conditions. Notably, the present hydroarylation proceeded with high efficiency under transition-metal-catalyst-free conditions. The key to success is the use of 1,3-dicyanobenzene as a redox mediator and visible-light irradiation, which effectively suppresses the formation of simple reduction, i.e., hydrodehalogenation, products to afford the desired products in good to high yields. Mechanistic investigations proposed that a reductive radical-polar crossover pathway is likely to be involved in this transformation.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kazuhisa Arita
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
17
|
Chen Y, Xu S, Fang Wen C, Zhang H, Zhang T, Lv F, Yue Y, Bian Z. Unravelling the Role of Free Radicals in Photocatalysis. Chemistry 2024; 30:e202400001. [PMID: 38501217 DOI: 10.1002/chem.202400001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/20/2024]
Abstract
Free radicals are increasingly recognized as active intermediate reactive species that can participate in various redox processes, significantly influencing the mechanistic pathways of reactions. Numerous researchers have investigated the generation of one or more distinct photogenerated radicals, proposing various hypotheses to explain the reaction mechanisms. Notably, recent research has demonstrated the emergence of photogenerated radicals in innovative processes, including organic chemical reactions and the photocatalytic dissolution of precious metals. To harness the potential of these free radicals more effectively, it is imperative to consolidate and analyze the processes and action modes of these photogenerated radicals. This conceptual paper delves into the latest advancements in understanding the mechanics of photogenerated radicals.
Collapse
Affiliation(s)
- Yao Chen
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Shuyang Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Chun Fang Wen
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | | | - Ting Zhang
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Fujian Lv
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing, 655400, China
| | - Yinghong Yue
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China
| | - Zhenfeng Bian
- MOE Key Laboratory of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
18
|
He H, Pan CM, Hou ZW, Sun M, Wang L. Organocatalyzed Photoelectrochemistry for the Generation of Acyl and Phosphoryl Radicals through Hydrogen Atom-Transfer Process. J Org Chem 2024. [PMID: 38761155 DOI: 10.1021/acs.joc.4c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
An organocatalyzed photoelectrochemical method for the generation of acyl and phosphoryl radicals from formamides, aldehydes, and phosphine oxides has been developed. This protocol utilizes 9,10-phenanthrenequinone (PQ) as both a molecular catalyst and a hydrogen atom-transfer (HAT) reagent, eliminating the requirement for external metal-based reagents, HAT reagents, and oxidants. The generated acyl radicals can be applied to a range of radical-mediated transformation reactions, including C-H carbamoylation of heteroarenes, intermolecular tandem radical cyclization of CF3-substituted N-arylacrylamides, as well as intramolecular cyclization reactions. The use of acyl radicals in these transformations offers an efficient and sustainable approach to accessing structurally diverse carbonyl compounds.
Collapse
Affiliation(s)
- Hong He
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Cai-Mi Pan
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Zhong-Wei Hou
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Manman Sun
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
| | - Lei Wang
- Advanced Research Institute and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, Zhejiang 318000, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| |
Collapse
|
19
|
Wang Y, Fan S, Tang X. Nucleophilic Organocatalyst for Photochemical Carbon Radical Generation via S N2 Substitution. Org Lett 2024; 26:4002-4007. [PMID: 38691539 DOI: 10.1021/acs.orglett.4c01278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Photochemical generation of radicals is a powerful way to construct various molecules. But most of these methods rely on initiators or the redox properties of radical precursors. Herein, we report a photochemical organic catalyst that reacts with benzyl halide to generate carbon radical via an SN2 pathway. This nucleophilic catalyst can be easily prepared and is bench-stable. The SN2 process does not rely on the redox properties of halides, showing potential synthetic utility. Control experiments and UV-vis spectroscopic analysis indicate that the SN2 substitution adduct is the key intermediate.
Collapse
Affiliation(s)
- Yuzhuo Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Shiwen Fan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xinjun Tang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Zhejiang Institute, China University of Geosciences, Hangzhou 311305, China
| |
Collapse
|
20
|
Wenzel JO, Werner J, Allgaier A, van Slageren J, Fernández I, Unterreiner AN, Breher F. Visible-Light Activation of Diorganyl Bis(pyridylimino) Isoindolide Aluminum(III) Complexes and Their Organometallic Radical Reactivity. Angew Chem Int Ed Engl 2024; 63:e202402885. [PMID: 38511969 DOI: 10.1002/anie.202402885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
We report on the synthesis and characterization of a series of (mostly) air-stable diorganyl bis(pyridylimino) isoindolide (BPI) aluminum complexes and their chemistry upon visible-light excitation. The redox non-innocent BPI pincer ligand allows for efficient charge transfer homolytic processes of the title compounds. This makes them a universal platform for the generation of carbon-centered radicals. The photo-induced homolytic cleavage of the Al-C bonds was investigated by means of stationary and transient UV/Vis spectroscopy, spin trapping experiments, as well as EPR and NMR spectroscopy. The experimental findings were supported by quantum chemical calculations. Reactivity studies enabled the utilization of the aluminum complexes as reactants in tin-free Giese-type reactions and carbonyl alkylations under ambient conditions, which both indicated radical-polar crossover behavior. A deeper understanding of the physical fundamentals and photochemical process was provided, furnishing in turn a new strategy to control the reactivity of bench-stable aluminum organometallics.
Collapse
Affiliation(s)
- Jonas O Wenzel
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry (AOC), Engesserstraße 15, 76131, Karlsruhe, Germany
| | - Johannes Werner
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry (IPC), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Alexander Allgaier
- University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Joris van Slageren
- University of Stuttgart, Institute of Physical Chemistry, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Israel Fernández
- Universidad Complutense de Madrid, Facultad de Ciencias Químicas, 28040, Madrid, Spain
| | - Andreas-Neil Unterreiner
- Karlsruhe Institute of Technology (KIT), Institute of Physical Chemistry (IPC), Fritz-Haber-Weg 2, 76131, Karlsruhe, Germany
| | - Frank Breher
- Karlsruhe Institute of Technology (KIT), Institute of Inorganic Chemistry (AOC), Engesserstraße 15, 76131, Karlsruhe, Germany
| |
Collapse
|
21
|
Pijper B, Martín R, Huertas-Alonso AJ, Linares ML, López E, Llaveria J, Díaz-Ortiz Á, Dixon DJ, de la Hoz A, Alcázar J. Fully Automated Flow Protocol for C(sp 3)-C(sp 3) Bond Formation from Tertiary Amides and Alkyl Halides. Org Lett 2024; 26:2724-2728. [PMID: 37219892 PMCID: PMC11020161 DOI: 10.1021/acs.orglett.3c01390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Indexed: 05/24/2023]
Abstract
Herein, we present a novel C(sp3)-C(sp3) bond-forming protocol via the reductive coupling of abundant tertiary amides with organozinc reagents prepared in situ from their corresponding alkyl halides. Using a multistep fully automated flow protocol, this reaction could be used for both library synthesis and target molecule synthesis on the gram-scale starting from bench-stable reagents. Additionally, excellent chemoselectivity and functional group tolerance make it ideal for late-stage diversification of druglike molecules.
Collapse
Affiliation(s)
- Brenda Pijper
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Raúl Martín
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Alberto J. Huertas-Alonso
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Maria Lourdes Linares
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Enol López
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Josep Llaveria
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| | - Ángel Díaz-Ortiz
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Darren J. Dixon
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford. Oxford OX1 3TA, United
Kingdom
| | - Antonio de la Hoz
- Facultad
de Ciencias Químicas, Universidad
de Castilla-La Mancha, Av. Camilo José Cela 10, 13071 Ciudad Real, Spain
| | - Jesús Alcázar
- Global
Discovery Chemistry, Janssen Research and Development, Janssen-Cilag, S. A., Jarama 75 A, 45007 Toledo, Spain
| |
Collapse
|
22
|
Han G, You J, Choi J, Kang EJ. N-Iminopyridinium Compounds in Giese Reaction: Photoinduced Homolytic N-N and C-C Bond Cleavage for Cyanoalkyl Radical Generation. Org Lett 2024. [PMID: 38489286 DOI: 10.1021/acs.orglett.4c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
We present an innovative photoinduced cyanoalkyl radical addition methodology using N-iminopyridinium reagents derived from cyclic ketones. Mechanistic investigations reveal the association of the excited Hantzsch ester and iminopyridinium with pyridyl radical generation. The ensuing cascade involving homolytic N-N bond and C-C bond cleavage of the pyridyl radical ultimately leads to the formation of cyanoalkyl radical species, leading to diverse Giese-type products. The method showcases versatility and synthetic utility in late-stage functionalization.
Collapse
Affiliation(s)
- Gyuri Han
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Jihyun You
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Junhyeon Choi
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|
23
|
Mateu-Campos J, Guillamón E, Safont VS, Junge K, Junge H, Beller M, Llusar R. Unprecedented Mo 3S 4 cluster-catalyzed radical C-C cross-coupling reactions of aryl alkynes and acrylates. Dalton Trans 2024; 53:4147-4153. [PMID: 38318770 DOI: 10.1039/d3dt04121b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A new method for the generation of benzyl radicals from terminal aromatic alkynes has been developed, which allows the direct cross coupling with acrylate derivatives. Our additive-free protocol employs air-stable diamino Mo3S4 cubane-type cluster catalysts in the presence of hydrogen. A sulfur-centered cluster catalysis mechanism for benzyl radical formation is proposed based on catalytic and stoichiometric experiments. The process starts with the cluster hydrogen activation to form a bis(hydrosulfido) [Mo3(μ3-S)(μ-S)(μ-SH)2Cl3(dmen)3]+ intermediate. The reaction of various aromatic terminal alkynes containing different functionalities with a series of acrylates affords the corresponding Giese-type radical addition products.
Collapse
Affiliation(s)
- Juanjo Mateu-Campos
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló de la Plana, Spain.
| | - Eva Guillamón
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló de la Plana, Spain.
| | - Vicent S Safont
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló de la Plana, Spain.
| | - Kathrin Junge
- Leibniz-Institute for Catalysis e.V., Albert-Einstein Straße, 29a, 18059 Rostock, Germany
| | - Henrik Junge
- Leibniz-Institute for Catalysis e.V., Albert-Einstein Straße, 29a, 18059 Rostock, Germany
| | - Matthias Beller
- Leibniz-Institute for Catalysis e.V., Albert-Einstein Straße, 29a, 18059 Rostock, Germany
| | - Rosa Llusar
- Departament de Química Física i Analítica, Universitat Jaume I, Av. Sos Baynat s/n, 12071 Castelló de la Plana, Spain.
| |
Collapse
|
24
|
Majhi J, Matsuo B, Oh H, Kim S, Sharique M, Molander GA. Photochemical Deoxygenative Hydroalkylation of Unactivated Alkenes Promoted by a Nucleophilic Organocatalyst. Angew Chem Int Ed Engl 2024; 63:e202317190. [PMID: 38109703 DOI: 10.1002/anie.202317190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 12/20/2023]
Abstract
The direct utilization of simple and abundant feedstocks in carbon-carbon bond-forming reactions to embellish sp3 -enriched chemical space is highly desirable. Herein, we report a novel photochemical deoxygenative hydroalkylation of unactivated alkenes with readily available carboxylic acid derivatives. The reaction displays broad functional group tolerance, accommodating carboxylic acid-, alcohol-, ester-, ketone-, amide-, silane-, and boronic ester groups, as well as nitrile-containing substrates. The reaction is operationally simple, mild, and water-tolerant, and can be carried out on multigram-scale, which highlights the utility of the method to prepare value-added compounds in a practical and scalable manner. The synthetic application of the developed method is further exemplified through the synthesis of suberanilic acid, a precursor of vorinostat, a drug used for the treatment of cutaneous T-cell lymphoma. A novel mechanistic approach was identified using thiol as a nucleophilic catalyst, which forms a key intermediate for this transformation. Furthermore, electrochemical studies, quantum yield, and mechanistic experiments were conducted to support a proposed catalytic cycle for the transformation.
Collapse
Affiliation(s)
- Jadab Majhi
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Hyunjung Oh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Saegun Kim
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, 19104-6323, Philadelphia, PA, USA
| |
Collapse
|
25
|
Anwar K, Capaldo L, Wan T, Noël T, Gómez-Suárez A. Modular synthesis of congested β 2,2-amino acids via the merger of photocatalysis and oxidative functionalisations. Chem Commun (Camb) 2024; 60:1456-1459. [PMID: 38223935 DOI: 10.1039/d3cc06172h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
A two-step protocol for the modular synthesis of β2- and α-quaternary β2,2-amino acid derivatives is reported. The key steps are a photocatalytic hydroalkylation reaction, followed by an oxidative functionalisation to access N-protected β-amino acids, esters, and amides. This strategy can be effectively scaled up via continuous-flow technology.
Collapse
Affiliation(s)
- Khadijah Anwar
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| | - Luca Capaldo
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Ting Wan
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, Amsterdam 1098 XH, The Netherlands
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119, Wuppertal, Germany.
| |
Collapse
|
26
|
Mondal S, Midya SP, Mondal S, Das S, Ghosh P. Merging Photocatalytic Doubly-Decarboxylative C sp 2 -C sp 2 Cross-Coupling for Stereo-Selective (E)-α,β-Unsaturated Ketones Synthesis. Chemistry 2024; 30:e202303337. [PMID: 37987541 DOI: 10.1002/chem.202303337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
A photocatalytic domain of doubly decarboxylative Csp 2 -Csp 2 cross coupling reaction is disclosed. Merging iridium and palladium photocatalysis manifested carbon-carbon bonds in a tandem dual-radical pathway. Present catalytic platform efficiently cross-coupled α, β-unsaturated acids and α-keto acids to afford a variety of α, β-unsaturated ketones with excellent (E)-selectivity and functional group tolerance. Mechanistically, photocatalyst implicated through reductive quenching cycle whereas cross coupling proceeded over one electron oxidative pallado-cycle.
Collapse
Affiliation(s)
- Subal Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Siba P Midya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Soumya Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Suman Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| | - Pradyut Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
27
|
Shi Y, Nie J, Wu Z, Ji X, Huang H. Photoredox Enabled Defluorinative Benzylation of Trifluoromethyl Alkenes with Alkylarenes. Org Lett 2024; 26:100-105. [PMID: 38147046 DOI: 10.1021/acs.orglett.3c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Herein, we report a photoredox enabled defluorinative benzylation of trifluoromethyl alkenes with readily available alkylarenes, which provides convenient access to a series of structurally valuable benzylated gem-difluoroalkenes under mild reaction conditions. The synthetic value of this protocol has been demonstrated by the transformations of several substrates bearing drug moieties, gram-scale reactions, and various further derivatizations of the gem-difluoroalkene products. The preliminary mechanistic investigations suggest a reaction pathway with rate-determining benzyl C-H bond cleavage of toluene followed by benzylic radical formation.
Collapse
Affiliation(s)
- Yutao Shi
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jinhuan Nie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Zhijie Wu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
28
|
Gallego-Gamo A, Pleixats R, Gimbert-Suriñach C, Vallribera A, Granados A. Hydroxytrifluoroethylation and Trifluoroacetylation Reactions via SET Processes. Chemistry 2024:e202303854. [PMID: 38183331 DOI: 10.1002/chem.202303854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/08/2024]
Abstract
Hydroxytrifluoroethyl and trifluoroacetyl groups are of utmost importance in biologically active compounds, but methods to tether these motifs to organic architectures have been limited. Typically, the preparation of these compounds relied on the use of strong bases or multistep routes. The renaissance of radical chemistry in photocatalytic, transition metal mediated, and hydrogen atom transfer (HAT) processes have allowed the installation of these medicinally relevant fluorinated motifs. This review provides an overview of the methods available for the direct synthesis of hydroxytrifluoroethyl- and trifluoroacetyl-derived compounds governed by single-electron transfer processes.
Collapse
Affiliation(s)
- Albert Gallego-Gamo
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Roser Pleixats
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Carolina Gimbert-Suriñach
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Adelina Vallribera
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Albert Granados
- Department of Chemistry and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
29
|
Caldarelli M, Rezzi SJ, Colombo N, Pirali T, Papeo G. Photocatalytic Radical Coupling of Organoborates with α-Halogenated Electron-Poor Olefins. J Org Chem 2024; 89:633-643. [PMID: 38079578 DOI: 10.1021/acs.joc.3c02386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Herein, we report the visible-light-mediated addition of organoborates to α-halogenated electron-poor olefins enabled by an environmentally benign metal-free catalyst. The method accommodates a variety of boronic acid derivatives as well as alkenes and delivers the corresponding saturated α-halo-derivatives in up to 90% yields. The obtained products are high-value building blocks in organic synthesis, allowing for a variety of follow-up transformations.
Collapse
Affiliation(s)
- Marina Caldarelli
- Nerviano Medical Sciences Srl, viale Pasteur 10, 20014 Nerviano, Milano, Italy
| | - Sarah Jane Rezzi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Gianluca Papeo
- Nerviano Medical Sciences Srl, viale Pasteur 10, 20014 Nerviano, Milano, Italy
| |
Collapse
|
30
|
Sharique M, Matsuo B, Granados A, Kim S, Arshad M, Oh H, Wu VE, Huang M, Csakai A, Marcaurelle LA, Molander GA. On-DNA hydroalkylation of N-vinyl heterocycles via photoinduced EDA-complex activation. Chem Sci 2023; 14:14193-14199. [PMID: 38098729 PMCID: PMC10717525 DOI: 10.1039/d3sc03731b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 08/22/2023] [Indexed: 12/17/2023] Open
Abstract
The emergence of DNA-encoded library (DEL) technology has provided a considerable advantage to the pharmaceutical industry in the pursuit of discovering novel therapeutic candidates for their drug development initiatives. This combinatorial technique not only offers a more economical, spatially efficient, and time-saving alternative to the existing ligand discovery methods, but also enables the exploration of additional chemical space by utilizing novel DNA-compatible synthetic transformations to leverage multifunctional building blocks from readily available substructures. In this report, a decarboxylative-based hydroalkylation of DNA-conjugated N-vinyl heterocycles enabled by single-electron transfer (SET) and subsequent hydrogen atom transfer through electron-donor/electron-acceptor (EDA) complex activation is detailed. The simplicity and robustness of this method permits inclusion of a broad array of alkyl radical precursors and DNA-tethered nitrogenous heterocyles to generate medicinally relevant substituted heterocycles with pendant functional groups. Moreover, a successful telescoped route provides the opportunity to access a broad range of intricate structural scaffolds by employing basic carboxylic acid feedstocks.
Collapse
Affiliation(s)
- Mohammed Sharique
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Bianca Matsuo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Albert Granados
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Saegun Kim
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Mahwish Arshad
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Hyunjung Oh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Victoria E Wu
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Minxue Huang
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Adam Csakai
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Lisa A Marcaurelle
- Encoded Library Technologies/NCE Molecular Discovery, R&D Medicinal Science and Technology, GSK 200 Cambridge Park Drive Cambridge MA 02140 USA
| | - Gary A Molander
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
31
|
Xiao Y, Xu TT, Zhou JL, Wu F, Tang L, Liu RY, Wu WB, Feng JJ. Photochemical α-selective radical ring-opening reactions of 1,3-disubstituted acyl bicyclobutanes with alkyl halides: modular access to functionalized cyclobutenes. Chem Sci 2023; 14:13060-13066. [PMID: 38023515 PMCID: PMC10664698 DOI: 10.1039/d3sc04457b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Although ring-opening reactions of bicyclobutanes bearing electron-withdrawing groups, typically with β-selectivity, have evolved as a powerful platform for synthesis of cyclobutanes, their application in the synthesis of cyclobutenes remains underdeveloped. Here, a novel visible light induced α-selective radical ring-opening reaction of 1,3-disubstituted acyl bicyclobutanes with alkyl radical precursors for the synthesis of functionalized cyclobutenes is described. In particular, primary, secondary, and tertiary alkyl halides are all suitable substrates for this photocatalytic transformation, providing ready access to cyclobutenes with a single all-carbon quaternary center, or with two contiguous centers under mild reaction conditions.
Collapse
Affiliation(s)
- Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jin-Lan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Feng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Ruo-Yi Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Wen-Biao Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
32
|
Yamamoto H, Yamaoka K, Shinohara A, Shibata K, Takao KI, Ogura A. Red-light-mediated Barton decarboxylation reaction and one-pot wavelength-selective transformations. Chem Sci 2023; 14:11243-11250. [PMID: 37860659 PMCID: PMC10583705 DOI: 10.1039/d3sc03643j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
In organic chemistry, selecting mild conditions for transformations and saving energy are increasingly important for achieving sustainable development goals. Herein, we describe a red-light-mediated Barton decarboxylation using readily available red-light-emitting diodes as the energy source and zinc tetraphenylporphyrin as the catalyst, avoiding explosive or hazardous reagents or external heating. Mechanistic studies suggest that the reaction probably proceeds via Dexter energy transfer between the activated catalyst and the Barton ester. Furthermore, a one-pot wavelength-selective reaction within the visible light range is developed in combination with a blue-light-mediated photoredox reaction, demonstrating the compatibility of two photochemical transformations based on mechanistic differences. This one-pot process expands the limits of the decarboxylative Giese reaction beyond polarity matching.
Collapse
Affiliation(s)
- Hiroki Yamamoto
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kohei Yamaoka
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ann Shinohara
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Kouhei Shibata
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Ken-Ichi Takao
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| | - Akihiro Ogura
- Department of Applied Chemistry, Keio University Hiyoshi, Kohoku-ku Yokohama 223-8522 Japan
| |
Collapse
|
33
|
Brals J, McGuire TM, Watson AJB. A Chemoselective Polarity-Mismatched Photocatalytic C(sp 3 )-C(sp 2 ) Cross-Coupling Enabled by Synergistic Boron Activation. Angew Chem Int Ed Engl 2023; 62:e202310462. [PMID: 37622419 PMCID: PMC10952440 DOI: 10.1002/anie.202310462] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/26/2023]
Abstract
We report the development of a C(sp3 )-C(sp2 ) coupling reaction using styrene boronic acids and redox-active esters under photoredox catalysis. The reaction proceeds through an unusual polarity-mismatched radical addition mechanism that is orthogonal to established processes. Synergistic activation of the radical precursor and organoboron are critical mechanistic events. Activation of an N-hydroxyphthalimide (NHPI) ester by coordination to boron enables electron transfer, with decomposition leading to a nucleofuge rebound, activating the organoboron to radical addition. The unique mechanism enables chemoselective coupling of styrene boronic acids in the presence of other alkene radical acceptors. The scope and limitations of the reaction, and a detailed mechanistic investigation are presented.
Collapse
Affiliation(s)
- Jeremy Brals
- EaStCHEMSchool of ChemistryUniversity of St AndrewsPurdie Building, North HaughSt AndrewsKY16 9STUK
| | - Thomas M. McGuire
- AstraZenecaDarwin Building, Unit 310Cambridge Science Park, Milton RoadCambridgeCB4 0WGUK
| | - Allan J. B. Watson
- EaStCHEMSchool of ChemistryUniversity of St AndrewsPurdie Building, North HaughSt AndrewsKY16 9STUK
| |
Collapse
|
34
|
Kim J, Lee J, Choi H, Ha J, Cheon M, Seo Y, Kim Y, Yoo D. Strategic design of gold nanocatalysts for effective photocatalytic organic transformation. NANOSCALE 2023; 15:15950-15955. [PMID: 37698042 DOI: 10.1039/d3nr02755d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
We demonstrate the design strategy of free-standing Au nanocatalysts by correlating their physicochemical characteristics with photocatalytic performance. By tailoring the particle size and surface characteristics, we found that small Au nanocatalysts called Au nanoclusters with discrete energy levels are more effective than large metallic Au nanoparticles, while the microenvironments (e.g., charge status and hydrophilicity/hydrophobicity) around the surface of Au-nanoclusters are crucial in determining the performance. With the optimized Au nanocatalyst, under visible light, decarboxylative radical addition reactions for C-C bond formation (i.e., Giese reaction) were first achieved with high yields and further utilized for the preparation of one of the bioactive γ-aminobutyric acid derivatives, pregabalin (Lyrica®), demonstrating its potential in pharmaceutical applications.
Collapse
Affiliation(s)
- Jongchan Kim
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jeonghyeon Lee
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Hyunwoo Choi
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Juhee Ha
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Minsoo Cheon
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Youngran Seo
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
| | - Youngsoo Kim
- Department of Chemistry, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| | - Dongwon Yoo
- Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
35
|
Wang A, Yin YY, Rukhsana, Wang LQ, Jin JH, Shen YM. Visible-Light-Mediated Three-Component Decarboxylative Coupling Reactions to Synthesize 1,4-Diol Monoethers. J Org Chem 2023; 88:13871-13882. [PMID: 37683099 DOI: 10.1021/acs.joc.3c01483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
An efficient approach for 1,2-difunctionalization of aromatic olefins and the synthesis of functionalized 1,4-diols monoethers has been established via a photoinduced three-component reaction of an α-alkoxycarboxylic acid, an aromatic olefin, and an aldehyde. The reaction proceeds by photoinduced oxidative decarboxylation of the carboxylic acid followed by the addition of the α-alkoxyalkyl radical to the olefin, one-electron reduction of the addition radical, and the nucleophilic attack of the resulting carbanion to the aldehyde. Besides the convenient one-pot protocol of the three-component reaction, this method offers several other advantages, including good functional group tolerance for the three substrates, gentle reaction conditions, and ease of scaling up. The reaction mechanism has been investigated through free radical trapping experiment and isotope labeling experiments.
Collapse
Affiliation(s)
- Ai Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yu-Yun Yin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| | - Rukhsana
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Le-Quan Wang
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Jia-Hui Jin
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Yong-Miao Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
- Zhejiang Sci-Tech University Shengzhou Innovation Research Institute, Shengzhou 312400, P.R. China
| |
Collapse
|
36
|
Kuzmin J, Röckl J, Schwarz N, Djossou J, Ahumada G, Ahlquist M, Lundberg H. Electroreductive Desulfurative Transformations with Thioethers as Alkyl Radical Precursors. Angew Chem Int Ed Engl 2023; 62:e202304272. [PMID: 37342889 DOI: 10.1002/anie.202304272] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/29/2023] [Accepted: 06/21/2023] [Indexed: 06/23/2023]
Abstract
Thioethers are highly prevalent functional groups in organic compounds of natural and synthetic origin but remain remarkably underexplored as starting materials in desulfurative transformations. As such, new synthetic methods are highly desirable to unlock the potential of the compound class. In this vein, electrochemistry is an ideal tool to enable new reactivity and selectivity under mild conditions. Herein, we demonstrate the efficient use of aryl alkyl thioethers as alkyl radical precursors in electroreductive transformations, along with mechanistic details. The transformations proceed with complete selectivity for C(sp3 )-S bond cleavage, orthogonal to that of established transition metal-catalyzed two-electron routes. We showcase a hydrodesulfurization protocol with broad functional group tolerance, the first example of desulfurative C(sp3 )-C(sp3 ) bond formation in Giese-type cross-coupling and the first protocol for electrocarboxylation of synthetic relevance with thioethers as starting materials. Finally, the compound class is shown to outcompete their well-established sulfone analogues as alkyl radical precursors, demonstrating their synthetic potential for future desulfurative transformations in a one-electron manifold.
Collapse
Affiliation(s)
- Julius Kuzmin
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Johannes Röckl
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Nils Schwarz
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Jonas Djossou
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Guillermo Ahumada
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Mårten Ahlquist
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Helena Lundberg
- Department of Chemistry, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| |
Collapse
|
37
|
Kitcatt DM, Scott KA, Rongione E, Nicolle S, Lee AL. Direct decarboxylative Giese amidations: photocatalytic vs. metal- and light-free. Chem Sci 2023; 14:9806-9813. [PMID: 37736650 PMCID: PMC10510818 DOI: 10.1039/d3sc03143h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/23/2023] [Indexed: 09/23/2023] Open
Abstract
A direct intermolecular decarboxylative Giese amidation reaction from bench stable, non-toxic and environmentally benign oxamic acids has been developed, which allows for easy access to 1,4-difunctionalised compounds which are not otherwise readily accessible. Crucially, a more general acceptor substrate scope is now possible, which renders the Giese amidation applicable to more complex substrates such as natural products and chiral building blocks. Two different photocatalytic methods (one via oxidative and the other via reductive quenching cycles) and one metal- and light-free method were developed and the flexibility provided by different conditions proved to be crucial for enabling a more general substrate scope.
Collapse
Affiliation(s)
- David M Kitcatt
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Katie A Scott
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Elena Rongione
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| | - Simon Nicolle
- GlaxoSmithKline Gunnels Wood Rd Stevenage SG1 2NY UK
| | - Ai-Lan Lee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University Edinburgh EH14 4AS UK
| |
Collapse
|
38
|
Chen M, Ventura AM, Das S, Ibrahim AF, Zimmerman PM, Montgomery J. Oxidative Cross Dehydrogenative Coupling of N-Heterocycles with Aldehydes through C( sp3)-H Functionalization. J Am Chem Soc 2023; 145:20176-20181. [PMID: 37672664 PMCID: PMC10915535 DOI: 10.1021/jacs.3c06532] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Existing methodologies for metal-catalyzed cross-couplings typically rely on preinstallation of reactive functional groups on both reaction partners. In contrast, C-H functionalization approaches offer promise in simplification of the requisite substrates; however, challenges from low reactivity and similar reactivity of various C-H bonds introduce considerable complexity. Herein, the oxidative cross dehydrogenative coupling of α-amino C(sp3)-H bonds and aldehydes to produce ketone derivatives is described using an unusual reaction medium that incorporates the simultaneous use of di-tert-butyl peroxide as an oxidant and zinc metal as a reductant. The method proceeds with a broad substrate scope, representing an attractive approach for accessing α-amino ketones through the formal acylation of C-H bonds α to nitrogen in N-heterocycles. A combination of experimental investigation and computational modeling provides evidence for a mechanistic pathway involving cross-selective nickel-mediated cross-coupling of α-amino radicals and acyl radicals.
Collapse
Affiliation(s)
- Mo Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Austin M Ventura
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Soumik Das
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Ammar F Ibrahim
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Paul M Zimmerman
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - John Montgomery
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
39
|
Gilbert MM, Trenerry MJ, Longley VR, Castro AJ, Berry JF, Weix DJ. Ligand-Metal Cooperation Enables Net Ring-Opening C-C Activation / Difunctionalization of Cyclopropyl Ketones. ACS Catal 2023; 13:11277-11290. [PMID: 39386022 PMCID: PMC11463996 DOI: 10.1021/acscatal.3c02643] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Reactions that cleave C-C bonds and enable functionalization at both carbon sites are powerful strategic tools in synthetic chemistry. Stereodefined cyclopropyl ketones have become readily available and would be an ideal source of 3-carbon fragments, but general approaches to net C-C activation / difunctionalization are unknown. Herein we demonstrate the cross-coupling of cyclopropyl ketones with organozinc reagents and chlorotrimethylsilane to form 1,3-difunctionalized, ring-opened products. A combination of experimental and theoretical studies rule out more established mechanisms and shed light on how cooperation between the redox-active terpyridine (tpy) ligand and the nickel atom enables the C-C bond activation step. The reduced (tpy•-)NiI species activates the C-C bond via a concerted asynchronous ring-opening transition state. The resulting alkylnickel(II) intermediate can then be engaged by aryl-, alkenyl-, and alkylzinc reagents to furnish cross-coupled products. This allows quick access to products that are difficult to make by conjugate addition methods, such as β-allylated and β -benzylated enol ethers. The utility of this approach is demonstrated in the synthesis of a key (±)-taiwaniaquinol B intermediate and the total synthesis of prostaglandin D1.
Collapse
Affiliation(s)
- Michael M. Gilbert
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Michael J. Trenerry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Victoria R. Longley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - John F. Berry
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53706
| |
Collapse
|
40
|
Pagire S, Shu C, Reich D, Noble A, Aggarwal VK. Convergent Deboronative and Decarboxylative Phosphonylation Enabled by the Phosphite Radical Trap "BecaP". J Am Chem Soc 2023; 145:18649-18657. [PMID: 37552886 PMCID: PMC10450818 DOI: 10.1021/jacs.3c06524] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/10/2023]
Abstract
Carbon-phosphorus bond formation is significant in synthetic chemistry because phosphorus-containing compounds offer numerous indispensable biochemical roles. While there is a plethora of methods to access organophosphorus compounds, phosphonylations of readily accessible alkyl radicals to form aliphatic phosphonates are rare and not commonly used in synthesis. Herein, we introduce a novel phosphorus radical trap "BecaP" that enables facile and efficient phosphonylation of alkyl radicals under visible light photocatalytic conditions. Importantly, the ambiphilic nature of BecaP allows redox neutral reactions with both nucleophilic (activated by single-electron oxidation) and electrophilic (activated by single-electron reduction) alkyl radical precursors. Thus, a broad scope of feedstock alkyl potassium trifluoroborate salts and redox active carboxylate esters could be employed, with each class of substrate proceeding through a distinct mechanistic pathway. The mild conditions are applicable to the late-stage installation of phosphonate motifs into medicinal agents and natural products, which is showcased by the straightforward conversion of baclofen (muscle relaxant) to phaclofen (GABAB antagonist).
Collapse
Affiliation(s)
- Santosh
K. Pagire
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Chao Shu
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
- National
Key Laboratory of Green Pesticide, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Dominik Reich
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Adam Noble
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| | - Varinder K. Aggarwal
- School
of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K.
| |
Collapse
|
41
|
Tian J, Zhou L. Photoredox radical/polar crossover enables C-H gem-difunctionalization of 1,3-benzodioxoles for the synthesis of monofluorocyclohexenes. Chem Sci 2023; 14:6045-6051. [PMID: 37293655 PMCID: PMC10246682 DOI: 10.1039/d3sc00912b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
A photocatalytic C-H gem-difunctionalization of 1,3-benzodioxoles with two different alkenes for the synthesis of highly functionalized monofluorocyclohexenes is described. Using 4CzIPN as the photocatalyst, the direct single electron oxidation of 1,3-benzodioxoles allows their defluorinative coupling with α-trifluoromethyl alkenes to produce gem-difluoroalkenes in a redox-neutral radical polar crossover manifold. The C-H bond of the resultant γ,γ-difluoroallylated 1,3-benzodioxoles was further functionalized via radical addition to electron-deficient alkenes using a more oxidizing iridium photocatalyst. The capture of in situ generated carbanions by an electrophilic gem-difluoromethylene carbon and consecutive β-fluoride elimination afford monofluorocyclohexenes. The synergistic combination of multiple termination pathways of carbanions enables rapid incorporation of molecular complexity via stitching simple and readily accessible starting materials together.
Collapse
Affiliation(s)
- Jiabao Tian
- School of Chemistry, Sun Yat-Sen University Panyu District Guangzhou 510006 China
| | - Lei Zhou
- School of Chemistry, Sun Yat-Sen University Panyu District Guangzhou 510006 China
| |
Collapse
|
42
|
Rostoll-Berenguer J, García-García V, Blay G, Pedro JR, Vila C. Organophotoredox 1,6-Addition of 3,4-Dihydroquinoxalin-2-ones to para-Quinone Methides Using Visible Light. ACS ORGANIC & INORGANIC AU 2023; 3:130-135. [PMID: 37303504 PMCID: PMC10251499 DOI: 10.1021/acsorginorgau.2c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/13/2023]
Abstract
An organophotoredox 1,6-radical addition of 3,4-dihidroquinoxalin-2-ones to para-quinone methides catalyzed by Fukuzumi's photocatalyst is described under the irradiation of a HP Single LED (455 nm). The corresponding 1,1-diaryl compounds bearing a dihydroquinoxalin-2-one moiety (20 examples) are obtained with good to excellent yields under mild reaction conditions. Several experiments have been carried out in order to propose a reaction mechanism.
Collapse
Affiliation(s)
- Jaume Rostoll-Berenguer
- Departament
de Química Orgànica, Facultat de Química, Universita de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Víctor García-García
- Departament
de Química Orgànica, Facultat de Química, Universita de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Gonzalo Blay
- Departament
de Química Orgànica, Facultat de Química, Universita de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - José R. Pedro
- Departament
de Química Orgànica, Facultat de Química, Universita de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| | - Carlos Vila
- Departament
de Química Orgànica, Facultat de Química, Universita de València, Dr. Moliner 50, 46100 Burjassot, València, Spain
| |
Collapse
|
43
|
Han S, Samony KL, Nabi RN, Bache CA, Kim DK. Hydrotrifluoroacetylation of Alkenes via Designer Masked Acyl Reagents. J Am Chem Soc 2023; 145:11530-11536. [PMID: 37192402 DOI: 10.1021/jacs.3c04294] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Because of its impressive ability to promote pharmaceutical activity, the introduction of trifluoromethylacyl (CF3CO) functionality into organic compounds has become an important and growing research area. Although various protocols have been developed to access trifluoroketones, the use of trifluoroacetyl radicals remains virtually undeveloped. Herein, we disclose a novel method for trifluoroacetylation through an umpolung reagent, thereby transforming an electrophilic radical into a nucleophilic radical. The applicability of this transformation is highlighted by large-scale, late-stage reactions of complex bioactive molecules sclareolide and loratadine. Furthermore, the direct transformation of trifluoromethyl ketones into various fluorinated analogues illustrates the potential synthetic application of our developed method.
Collapse
Affiliation(s)
- Sangil Han
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Kyra L Samony
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Rifat N Nabi
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Campbell A Bache
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Daniel K Kim
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
44
|
Venditto NJ, Boerth JA. Photoredox-Catalyzed Multicomponent Synthesis of Functionalized γ-Amino Butyric Acids via Reductive Radical Polar Crossover. Org Lett 2023; 25:3429-3434. [PMID: 37163325 DOI: 10.1021/acs.orglett.3c00991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Multicomponent radical polar crossover (RPC) reactions are useful for leveraging both radical and polar bond-forming steps to rapidly build molecular complexity in a single transformation. However, multicomponent RPC reactions that utilize carbonyl π-bond electrophiles are underrepresented in the literature. Herein, we describe a mild, photoredox-catalyzed decarboxylative multicomponent RPC reaction that couples carboxylic acids, Michael acceptors, and carbonyl electrophiles for the formation of diversely functionalized γ-amino butyric acid derivatives. This transformation also facilitates the synthesis of complex and biologically relevant γ-lactam compounds.
Collapse
Affiliation(s)
- Nicholas J Venditto
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Jeffrey A Boerth
- Medicinal Chemistry, Research and Early Development, Oncology R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| |
Collapse
|
45
|
Anwar K, Troyano FJA, Abazid AH, El Yarroudi O, Funes-Ardoiz I, Gómez-Suárez A. Modular Synthesis of Polar Spirocyclic Scaffolds Enabled by Radical Chemistry. Org Lett 2023; 25:3216-3221. [PMID: 37130365 DOI: 10.1021/acs.orglett.3c00869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Herein, we report a highly modular strategy to access spirocyclic scaffolds from abundant starting materials, i.e., cyclic ketones and α-amino or oxamic acids. The sequence proceeds through a straightforward Knoevenagel condensation, followed by a domino Giese-type reaction/base-mediated cyclization process, to deliver a broad scope of polar spirocyclic scaffolds in good to excellent yields. The products can be readily diversified, thus increasing the versatility of our method to gain rapid access to libraries of potential druglike molecules.
Collapse
Affiliation(s)
- Khadijah Anwar
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | | | - Ayham H Abazid
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Oumayma El Yarroudi
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| | - Ignacio Funes-Ardoiz
- Centro de Investigación en Síntesis Química (CISQ), Universidad de La Rioja, 26004 Logroño, Spain
| | - Adrián Gómez-Suárez
- Organic Chemistry, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
46
|
Kőnig B, Sztanó G, Holczbauer T, Soós T. Syntheses of 2- and 3-Substituted Morpholine Congeners via Ring Opening of 2-Tosyl-1,2-Oxazetidine. J Org Chem 2023; 88:6182-6191. [PMID: 37125664 PMCID: PMC10167689 DOI: 10.1021/acs.joc.3c00207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Diastereoselective and diastereoconvergent syntheses of 2- and 3-substituted morpholine congeners are reported. Starting from tosyl-oxazatedine 1 and α-formyl carboxylates 2, base catalysis is utilized to yield morpholine hemiaminals. Their further synthetic elaborations allowed the concise constructions of conformationally rigid morpholines. The observed diastereoselectivities and the unusual diastereoconvergence in the photoredox radical processes seem to be the direct consequence of the avoidance of pseudo A1,3 strain between the C-3 substituent and the N-tosyl group and the anomeric effect of oxygen atoms.
Collapse
Affiliation(s)
- Bálint Kőnig
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1/A Pázmány Péter sétány, H-1117 Budapest, Hungary
| | - Gábor Sztanó
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University, 1/A Pázmány Péter sétány, H-1117 Budapest, Hungary
| | - Tamás Holczbauer
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
- Centre for Structural Science, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| | - Tibor Soós
- Institute of Organic Chemistry, Research Centre for Natural Sciences, 2 Magyar tudósok körútja, H-1117 Budapest, Hungary
| |
Collapse
|
47
|
Liu Y, Pang T, Yao W, Zhong F, Wu G. Visible-Light-Induced Radical gem-Iodoallylation of 2,2,2-Trifluorodiazoethane. Org Lett 2023; 25:1958-1962. [PMID: 36912766 DOI: 10.1021/acs.orglett.3c00464] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
A visible-light-induced radical gem-iodoallylation of CF3CHN2 was developed under mild conditions, delivering a variety of α-CF3-substituted homoallylic iodide compounds in moderate to excellent yields. The transformation features broad substrate scope, good functional group compatibility, and operational simplicity. The described protocol provides a convenient and attractive tool to apply CF3CHN2 as CF3-introduction reagent in radical synthetic chemistry.
Collapse
Affiliation(s)
- Yu Liu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Tengfei Pang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Weijun Yao
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, P.R. China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Guojiao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
48
|
Moczulski M, Deredas D, Kuśmierek E, Albrecht Ł, Albrecht A. Synthesis of cyclopent-1-enecarbonitriles via a tandem Giese/HWE reaction initiated by visible light. Chem Commun (Camb) 2023; 59:4372-4375. [PMID: 36946322 DOI: 10.1039/d2cc06543f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In the manuscript, a novel method for the preparation of cyclopent-1-enecarbonitriles via tandem Giese/HWE reaction initiated by visible light in the presence of fac-Ir(ppy)3 as a photocatyst has been described. The cascade reactivity combining radical and polar processes has proven applicable for a wide range of N-(acyloxy)phthalimides (which serve as precursors of the corresponding radicals) as well as diethyl (E)-(1-cyano-2-arylvinyl)phosphonates. The key parameters responsible for the success of the described strategy are: visible light, 1 mol% of photoredox catalyst, base, anhydrous solvent and inert atmosphere. The reaction results in new sp3-sp3 and sp2-sp2 carbon-carbon bonds formation under mild conditions.
Collapse
Affiliation(s)
- Marek Moczulski
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland.
| | - Dariusz Deredas
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland.
| | - Elżbieta Kuśmierek
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| | - Łukasz Albrecht
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland.
| | - Anna Albrecht
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, Łódź 90-924, Poland
| |
Collapse
|
49
|
Wang M, Wang C, Xie X, Pan D, Liu L, Chen Q, Li Z, Zhang Q, Xu Z. Non-classical C-saccharide linkage of dehydroalanine: synthesis of C-glycoamino acids and C-glycopeptides. Chem Commun (Camb) 2023; 59:3305-3308. [PMID: 36847114 DOI: 10.1039/d2cc06653j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Herein, a non-classical C-saccharide linkage is reported via a C5 radical of pentose or C6 radical of hexose addition to Michael acceptors. C(sp3)-S cleaved glycosyl thianthrenium salts are developed as the glycosyl radical agents. The reaction provides an efficient toolkit to synthesize β-glycosyl substituted unnatural amino acids as well as for the late-stage C-saccharide modification of peptides.
Collapse
Affiliation(s)
- Mengran Wang
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Chao Wang
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiuling Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Da Pan
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Liangyu Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhixuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qi Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| | - Zhaoqing Xu
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, China. .,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
50
|
Scrivener S, Wang Y, Wang YM. Iron-Catalyzed Coupling of Alkenes and Enones: Sakurai-Michael-type Conjugate Addition of Catalytic Allyliron Nucleophiles. Org Lett 2023; 25:1420-1424. [PMID: 36847432 PMCID: PMC10006348 DOI: 10.1021/acs.orglett.3c00139] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/01/2023]
Abstract
The iron-catalyzed coupling of alkenes and enones through allylic C(sp3)-H functionalization is reported. This redox-neutral process employs a cyclopentadienyliron(II) dicarbonyl catalyst and simple alkene substrates to generate catalytic allyliron intermediates for 1,4-addition to chalcones and other conjugated enones. The use of 2,4,6-collidine as the base and a combination of triisopropylsilyl triflate and LiNTf2 as Lewis acids was found to facilitate this transformation under mild, functional group-tolerant conditions. Both electronically unactivated alkenes as well as allylbenzene derivatives could be employed as pronucleophilic coupling partners, as could a range of enones bearing electronically varied substituents.
Collapse
Affiliation(s)
- Sarah
G. Scrivener
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yidong Wang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- School
of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yi-Ming Wang
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|