1
|
Ye L, Fu H, Ji J, Wu Z, Ren H, Zhang Y, Shi M, Yang J. Bilayer Mn-based Prussian blue cathode with high redox activity for boosting stable cycling in aqueous sodium-ion half/full batteries. J Colloid Interface Sci 2025; 684:635-646. [PMID: 39813780 DOI: 10.1016/j.jcis.2025.01.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
The Mn-based Prussian blue analogs (PBAs) have garnered significant attention due to their high specific capacity, stemming from the unique multi-electron reactions with Na+. However, the structural instability caused by multi-ion insertion impacts the cycle life, thus limiting their further application in aqueous sodium-ion batteries (ASIBs). To address this issue, this work employed an in situ epitaxial solvent deposition method to homogeneously grow Ni hexacyanoferrate (NiHCF) on the surface of MnPBA, which can effectively overcome the de-intercalation instability. The resulting heterostructured MnPBA@NiHCF integrates the multiple redox-active centers of MnPBA with the confinement ability of the outer NiHCF layer, thereby maintaining overall structural stability. As a cathode material for ASIBs, MnPBA@NiHCF achieves a reversible specific capacity of 66.2 mAh/g after 200 cycles at 1 A/g, significantly outperforming the single-component MnPBA and NiHCF, respectively. Moreover, it demonstrates ultralong cycling stability with only 0.0002 % capacity fade per cycle over 20,000 cycles at 10 A/g. Extensive kinetic analyses further confirm its superior Na+ diffusion behaviors with disclosed redox mechanism through the comprehensive in situ Raman and ex situ analysis. A full cell built with a polyimide (PI) anode achieved an energy density of up to 59.9 Wh kg-1, displaying a power output of 1200.4 W kg-1 and exceptional cycle stability. This work provides innovative insights for developing stable PBA cathodes for ASIB applications.
Collapse
Affiliation(s)
- Lingqian Ye
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 Jiangsu, PR China
| | - Hao Fu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 Jiangsu, PR China
| | - Jianeng Ji
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 Jiangsu, PR China
| | - Zhiqiang Wu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 Jiangsu, PR China
| | - He Ren
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 Jiangsu, PR China
| | - Yu Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Minjie Shi
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 Jiangsu, PR China
| | - Jun Yang
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003 Jiangsu, PR China.
| |
Collapse
|
2
|
Dong F, Yang B, Zhang X, Yang Z, Wang S, Hou Z, Chen P. High-Voltage Fe-Based Tunnel-Type Na 0.66[Mn 0.33Fe 0.33Ti 0.3Sn 0.04]O 2 Cathode for Aqueous Rechargeable Sodium-Ion Battery. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1332-1340. [PMID: 39716353 DOI: 10.1021/acsami.4c18772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Tunnel-type-structure Na0.44MnO2 has been extensively researched for cathode material in aqueous rechargeable sodium-ion battery owing to its high specific capacity (120 mA h g-1), large channels facilitating Na extraction/insertion, chemical and electrochemical stability in aqueous electrolytes, and low cost. However, the low average working potential (0.1 V versus standard hydrogen electrode, SHE) and no more than half of its available theoretical capacity within full batteries limit the practical application. Herein, we develop an Fe-based tunnel-type Na0.66[Mn0.33Fe0.33Ti0.3Sn0.04]O2 cathode, delivering a high reversible specific capacity (95 mA h g-1) under a high working voltage (0.75 V versus SHE). A full battery, assembled with a NaTi2(PO4)3@C anode, exhibits a high energy density of 80 W h kg-1 (total mass of cathode and anode active materials) and a long cycle life with 84% capacity retention after 1000 cycles at 1 C.
Collapse
Affiliation(s)
- Fei Dong
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Bin Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Xueqian Zhang
- School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, P. R. China
| | - Ziqiang Yang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Zhiguo Hou
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Pu Chen
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo N2L 3G1, Canada
| |
Collapse
|
3
|
Du L, Xie M, Liu Z, Cao W, Sun J, Kang L. Synergistic effect of hydrogen-bond interaction and interface regulation for stable aqueous sodium-ion batteries. Chem Commun (Camb) 2024; 60:14672-14675. [PMID: 39576057 DOI: 10.1039/d4cc05412a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024]
Abstract
The narrow voltage window of aqueous electrolytes hinders the energy density of aqueous sodium-ion batteries (SIBs). Herein, a thermally and electrochemically stable hybrid electrolyte is developed with NaCF3SO3, 1,3-dioxolane (DOL), urea and H2O. The intermolecular interactions between DOL, urea and H2O regulate the hydrogen-bond network. Furthermore, the formation of an interfacial layer between the electrode and the electrolyte enables stable cycling of the manganese-based Prussian blue analogs (NaFeMnPBAs). As a result, a NaFeMnPBAs‖NaTi2(PO4)3 full cell is constructed and it exhibits high energy density and superior stability in the hybrid electrolyte.
Collapse
Affiliation(s)
- Lingyu Du
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Miaomiao Xie
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Zizhen Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Weiyu Cao
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Jianchao Sun
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China.
| | - Litao Kang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China.
| |
Collapse
|
4
|
Gou S, Zhang X, Xu Y, Tang J, Ji Y, Imran M, Pan L, Li J, Liu BT. Inhibiting dissolution strategy achieving high-performance sodium titanium phosphate hybrid anode in seawater-based dual-ion battery. J Colloid Interface Sci 2024; 675:429-437. [PMID: 38981252 DOI: 10.1016/j.jcis.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Aqueous sodium-ion batteries (ASIBs) show great promise as candidates for large-scale energy storage. However, the potential of ASIB is impeded by the limited availability of suitable anode types and the occurrence of dissolution side reactions linked to hydrogen evolution. In this study, we addressed these challenges by developing a Bi-coating modified anode based on a sodium titanium phosphate (NTP)-carbon fibers (CFs) hybrid electrode (NTP-CFs/Bi). The Bi-coating effectively mitigates the localized enrichment of hydroxyl anion (OH-) near the NTP surface, thus addressing the dissolution issue. Notably, the Bi-coating not only restricts the local abundance of OH- to inhibit dissolution but also ensures a higher capacity compared with other NTP-based anodes. Consequently, the NTP-CFs/Bi anode demonstrates an impressive specific capacity of 216.8 mAh/g at 0.2 mV/s and maintains a 90.7 % capacity retention after 1000 cycles at 6.3 A/g. This achievement sets a new capacity record among NTP-based anodes for sodium storage. Furthermore, when paired with a cathode composed of hydroxy nickel oxide directly grown on Ni foam, we assembled a seawater-based cell exhibiting high energy and power densities, surpassing the most recently reported ASIBs. This groundbreaking work lays the foundation for a potential method to develop long-life NTP-based anodes.
Collapse
Affiliation(s)
- Siying Gou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xueying Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yuanhu Xu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jiahao Tang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China
| | - Yingying Ji
- Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, Jinan University, Guangzhou 510632, China
| | - Muhammad Imran
- Research Center for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Likun Pan
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
| | - Jinliang Li
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China; Siyuan Laboratory, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Department of Physics, Jinan University, Guangzhou 510632, China.
| | - Bo-Tian Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, Guangxi Key Laboratory of surface and interface electrochemistry, Department of Chemistry and Biological Engineering, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
5
|
Wang M, Zhao J, Zhang Y, Liu Y, Ji W, Xiang X. Electrolyte-Salts Regulated Hydrogen-Bonding Configuration and Interphase Formation Achieving Highly Stable Anode for Rechargeable Aqueous Sodium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407961. [PMID: 39420700 DOI: 10.1002/smll.202407961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 10/19/2024]
Abstract
Hydrogen evolution reactions that cause the alkalization of aqueous electrolytes generally frustrate the structural stability and cycling performance of NaTi2(PO4)3/C anode material for rechargeable aqueous sodium-ion batteries (ASIBs). Herein, a novel highly concentrated electrolyte with a large hydrogen-evolution overpotential and hydroxide-capture ability is rationally established by incorporating a bifunctional Mg(Ac)2 additive into a concentrated NaAc aqueous solution. The highly concentrated electrolyte salts (4m NaAc+3m Mg(Ac)2) favor regulation on hydrogen-bonding configurations and kinetically shift the hydrogen evolution potential to a lower value of -1.37 V (vs Ag/AgCl). The Mg(Ac)2 additive plays particular roles in spontaneously capturing hydroxide ions generated during hydrogen evolution reactions on anode surfaces and simultaneously forming a protective Mg(OH)2-like interphase. As a result, the unique electrolyte significantly improves the structural stability and cycling performance of NaTi2(PO4)3/C anode (94.8% capacity retention after 100 cycles at 100 mA·g-1). The effect of salt concentration on hydrogen bonding configurations of aqueous electrolytes is investigated with Raman spectroscopy and FTIR spectroscopy. The interphase is identified by coupling EDS mapping, X-ray photoelectron spectroscopy, and X-ray diffraction. This work provides a new strategy for improving the cycling stability of aqueous sodium-ion batteries.
Collapse
Affiliation(s)
- Meijing Wang
- College of Chemistry & Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Jiaojiao Zhao
- College of Chemistry & Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yangyang Zhang
- College of Chemistry & Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Yunyun Liu
- College of Chemistry & Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Wei Ji
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, Northeast Forestry University, Harbin, 150040, China
| | - Xingde Xiang
- College of Chemistry & Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
- Heilongjiang Key Laboratory of Molecular Design and Preparation of Flame Retarded Materials, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
6
|
Zheng Y, Zhang Z, Jiang X, Zhao Y, Luo Y, Wang Y, Wang Z, Zhang Y, Liu X, Fang B. A Comprehensive Review on Iron-Based Sulfate Cathodes for Sodium-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1915. [PMID: 39683304 DOI: 10.3390/nano14231915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Sodium-ion batteries (SIBs) are advantageous for large-scale energy storage due to the plentiful and ubiquitous nature of sodium resources, coupled with their lower cost relative to alternative technologies. To expedite the market adoption of SIBs, enhancing the energy density of SIBs is essential. Raising the operational voltage of the SIBs cathode is regarded as an effective strategy for achieving this goal, but it requires stable high-voltage cathode materials. Sodium iron sulfate (NFSO) is considered to be a promising cathode material due to its stable framework, adjustable structure, operational safety, and the high electronegativity of SO4-. This paper reviews the research progress of NFSO, discusses its structure and sodium storage mechanism on this basis, and summarizes the advantages and disadvantages of NFSO cathode materials. This study also evaluates the advancements in enhancing the electrochemical characteristics and structural reliability of SIBs, drawing on both domestic and international research. The findings of this paper offer valuable insights into the engineering and innovation of robust and viable SIB cathodes based on NFSO at ambient temperatures, contributing to their commercial viability.
Collapse
Affiliation(s)
- Yalong Zheng
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhen Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xinyu Jiang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan Zhao
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yichao Luo
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yaru Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhoulu Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yi Zhang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiang Liu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Baizeng Fang
- School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
7
|
Hong Y, Jia K, Zhang Y, Li Z, Jia J, Chen J, Liang Q, Sun H, Gao Q, Zhou D, Li R, Dong X, Fan X, He S. Energetic and durable all-polymer aqueous battery for sustainable, flexible power. Nat Commun 2024; 15:9539. [PMID: 39496602 PMCID: PMC11535528 DOI: 10.1038/s41467-024-53804-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/21/2024] [Indexed: 11/06/2024] Open
Abstract
All-polymer aqueous batteries, featuring electrodes and electrolytes made entirely from polymers, advance wearable electronics through their processing ease, inherent safety, and sustainability. Challenges persist with the instability of polymer electrode redox products in aqueous environments, which fail to achieve high performance in all-polymer aqueous batteries. Here, we report a polymer-aqueous electrolyte designed to stabilize polymer electrode redox products by modulating the solvation layers and forming a solid-electrolyte interphase. Polyaniline is selected as an example for its dual functionality as a cathode or anode working by p/n doping mechanisms. This approach pioneers the application of polyaniline as an anode and enhances the high-voltage stability of polyaniline cathode in an aqueous electrolyte. The resulting all-polymer aqueous sodium-ion battery with polyaniline as symmetric electrodes exhibits a high capacity of 139 mAh/g, energy density of 153 Wh/kg, and a retention of over 92% after 4800 cycles. Spectroscopic characterizations have elucidated the hydration structure, solid-electrolyte interphase, and dual-ion doping mechanism. Large-scale all-polymer flexible batteries are fabricated with excellent flexibility and recyclability, heralding a paradigmatic approach to sustainable, wearable energy storage.
Collapse
Affiliation(s)
- Yang Hong
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kangkang Jia
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Yueyu Zhang
- Wenzhou Institute University of Chinese Academy of Sciences, Wenzhou, China
| | - Ziyuan Li
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, China
| | - Junlin Jia
- School of Physics, East China University of Science and Technology, Shanghai, China
| | - Jing Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Qimin Liang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Huarui Sun
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| | - Qiang Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Dong Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Ruhong Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Xiaoli Dong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, China
| | - Xiulin Fan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, China.
| | - Sisi He
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, China.
| |
Collapse
|
8
|
Dong C, Chen Y, Ding Y, Pu X, Cao Y, Ma Z, Chen Z. Deciphering the Degradation Mechanisms and Realize High-Voltage Stability of A 3V 2(PO 4) 3 (A = Li +, Na +) in Aqueous Dual-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405171. [PMID: 39165056 DOI: 10.1002/smll.202405171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/12/2024] [Indexed: 08/22/2024]
Abstract
Polyanionic A3V2(PO4)3 (A = Li+, Na+) with open channels have been extensively utilized as cathode materials for aqueous zinc-metal batteries (AZMBs), whereas suffering from severe capacity fading and rapid operation voltage decay during cycling. when used as In this work, it is disclosed that the rapid degradation is induced by an irreversible phase change from electrochemical active Li3V2(PO4)3 to nonactive monoclinic LiZnPO4, as well as active Na3V2(PO4)3 to nonactive rhombic Zn3(PO4)2(H2O)4. Subsequently, a rational dual-cation (Al-Fe) doping strategy is proposed to suppress these detrimental transformations. Such dual-cation doping entails stronger P-O and V-O bonds, thus stabilizing the initial polyanionic structures. Consequently, the optimized member of Li3V1.775Al0.075Fe0.225(PO4)3 (LVAFP) exhibits desirable cycling stability (1000 cycles, 68.5% capacity retention) and notable rate capability (92.1% of the initial capacity at 10 C). Moreover, the dual-cation doping methodology is successfully extended to improve the stability of Na3V2(PO4)3 cathode in aqueous dual-ion batteries, signifying the versatility and feasibility of this strategy. The comprehensive identification of local structural evolution in these polyanions will broaden the scope of designing high-performance alkali-vanadyl-phosphates for multivalent aqueous batteries.
Collapse
Affiliation(s)
- Chongrui Dong
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Yuanjing Chen
- Department of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Yan Ding
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Xiangjun Pu
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Yuliang Cao
- College of Chemistry and Molecular Sciences, Hubei Key Laboratory of Electrochemical Power Sources, Wuhan University, Wuhan, 430072, China
| | - Zhongyun Ma
- Department of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Zhongxue Chen
- School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
9
|
Xing Z, Zhao W, Yu B, Wang Y, Zhou L, Xiong P, Chen M, Zhu J. Electrolyte Design Strategies for Aqueous Sodium-Ion Batteries: Progress and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405442. [PMID: 39240092 DOI: 10.1002/smll.202405442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/08/2024] [Indexed: 09/07/2024]
Abstract
Sodium-ion batteries (SIBs) have emerged as one of today's most attractive battery technologies due to the scarcity of lithium resources. Aqueous sodium-ion batteries (ASIBs) have been extensively researched for their security, cost-effectiveness, and eco-friendly properties. However, aqueous electrolytes are extremely limited in practical applications because of the narrow electrochemical stability window (ESW) with extremely poor low-temperature performance. The first part of this review is an in-depth discussion of the reasons for the inferior performance of aqueous electrolytes. Next, research progress in extending the electrochemical stabilization window and improving low-temperature performance using various methods such as "water-in-salt", eutectic, and additive-modified electrolytes is highlighted. Considering the shortcomings of existing solid electrolyte interphase (SEI) theory, recent research progress on the solvation behavior of electrolytes is summarized based on the solvation theory, which elucidates the correlation between the solvation structure and the electrochemical performance, and three methods to upgrade the electrochemical performance by modulating the solvation behavior are introduced in detail. Finally, common design ideas for high-temperature resistant aqueous electrolytes that are hoped to help future aqueous batteries with wide temperature ranges are summarized.
Collapse
Affiliation(s)
- Zhao Xing
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenxi Zhao
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Binkai Yu
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuqiu Wang
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Limin Zhou
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Pan Xiong
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Mingzhe Chen
- School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Junwu Zhu
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
10
|
He Z, Hui Y, Yang Y, Xiong F, Li S, Wang J, Cao R, Tan S, An Q. Electrode and Electrolyte Co-Energy-Storage Electrochemistry Enables High-Energy Zn-S Decoupled Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402325. [PMID: 38822721 DOI: 10.1002/smll.202402325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/02/2024] [Indexed: 06/03/2024]
Abstract
In the search for next-generation green energy storage solutions, Cu-S electrochemistry has recently gained attraction from the battery community owing to its affordability and exceptionally high specific capacity of 3350 mAh gs -1. However, the inferior conductivity and substantial volume expansion of the S cathode hinder its cycling stability, while the low output voltage limits its energy density. Herein, a hollow carbon sphere (HCS) is synthesized as a 3D conductive host to achieve a stable S@HCS cathode, which enables an outstanding cycling performance of 2500 cycles (over 9 months). To address the latter, a Zn//S@HCS alkaline-acid decoupled cell is configured to increase the output voltage from 0.18 to 1.6 V. Moreover, an electrode and electrolyte co-energy storage mechanism is proposed to offset the reduction in energy density resulting from the extra electrolyte required in Zn//S decoupled cells. When combined, the Zn//S@HCS alkaline-acid decoupled cell delivers a record energy density of 334 Wh kg-1 based on the mass of the S cathode and CuSO4 electrolyte. This work tackles the key challenges of Cu-S electrochemistry and brings new insights into the rational design of decoupled batteries.
Collapse
Affiliation(s)
- Ze He
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
| | - Yuheng Hui
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Yixu Yang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Fangyu Xiong
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, China
| | - Shidong Li
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, Hubei, 441000, China
| | - Jiajing Wang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Ruyue Cao
- Department of Engineering, University of Cambridge, Cambridge, CB2 1PZ, UK
- Hubei Key Laboratory of Electronic Manufacturing and Packaging Integration, Wuhan University, Wuhan, 430072, China
| | - Shuangshuang Tan
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400030, China
| | - Qinyou An
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, Hubei, 441000, China
| |
Collapse
|
11
|
Eswara Rao CVV, Janardan S, Manjunatha H, Venkata Ratnam K, Kumar S, Chandrababu Naidu K, Ranjan S. Synthesis and electrochemical studies of NaCoPO 4 as an efficient cathode material using natural deep eutectic solvents for aqueous rechargeable sodium-ion batteries. Front Chem 2024; 12:1440639. [PMID: 39371594 PMCID: PMC11452910 DOI: 10.3389/fchem.2024.1440639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/27/2024] [Indexed: 10/08/2024] Open
Abstract
In this work, sodium cobalt phosphate (NaCoPO4) was successfully prepared by a cost-effective ionothermal method using a deep eutectic solvent (DES) for the first time. The synthesized NaCoPO4 was used to fabricate a cathode material for aqueous rechargeable sodium-ion batteries. The surface morphology of the prepared materials and its compositional analysis were done by using field emission scanning electron microscopy (FESEM) and energy-dispersive X-ray (EDX) analysis, respectively. The X-ray diffraction (XRD), SEM, and EDX studies revealed that the material has orthorhombic-shaped particle morphology with uniform distribution and is in nanoscale (approximately 50 nm). The nature of the cation inserted (Na+ ion insertion) was confirmed by recording CV profiles at different concentrations of the Na2SO4 electrolyte. The reversibility of the electrode redox reaction was studied by varying the scan rate in CV studies, and it was found that the electrode exhibits a reversible behavior with a resistive behavior. In GCPL studies, the cell TiO2/2MNa2SO4/NaCoPO4 showed significant reversibility with a prominent discharge capacity of 85 mAh g-1 at 0.1°C and 88% of capacity retention after 100 cycles. Thus, the prepared materials could be used as an effective futuristic alternative battery material for rechargeable batteries.
Collapse
Affiliation(s)
- C. V. V. Eswara Rao
- Department of Chemistry, GITAM School of Science, GITAM University, Bengaluru, India
| | - Sannapaneni Janardan
- Department of Chemistry, GITAM School of Science, GITAM University, Bengaluru, India
| | - H. Manjunatha
- Department of Chemistry, GITAM School of Science, GITAM University, Bengaluru, India
| | - K. Venkata Ratnam
- Department of Chemistry, GITAM School of Science, GITAM University, Bengaluru, India
| | - Sandeesh Kumar
- Department of Chemistry, GITAM School of Science, GITAM University, Bengaluru, India
| | - K. Chandrababu Naidu
- Department of Physics, GITAM School of Science, GITAM University, Bengaluru, India
| | - Shivendu Ranjan
- School of Nanoscience and Technology, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
12
|
Qiao X, Chen T, He F, Li H, Zeng Y, Wang R, Yang H, Yang Q, Wu Z, Guo X. Solvation Effect: The Cornerstone of High-Performance Battery Design for Commercialization-Driven Sodium Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401215. [PMID: 38856003 DOI: 10.1002/smll.202401215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Indexed: 06/11/2024]
Abstract
Sodium batteries (SBs) emerge as a potential candidate for large-scale energy storage and have become a hot topic in the past few decades. In the previous researches on electrolyte, designing electrolytes with the solvation theory has been the most promising direction is to improve the electrochemical performance of batteries through solvation theory. In general, the four essential factors for the commercial application of SBs, which are cost, low temperature performance, fast charge performance and safety. The solvent structure has significant impact on commercial applications. But so far, the solvation design of electrolyte and the practical application of sodium batteries have not been comprehensively summarized. This review first clarifies the process of Na+ solvation and the strategies for adjusting Na+ solvation. It is worth noting that the relationship between solvation theory and interface theory is pointed out. The cost, low temperature, fast charging, and safety issues of solvation are systematically summarized. The importance of the de-solvation step in low temperature and fast charging application is emphasized to help select better electrolytes for specific applications. Finally, new insights and potential solutions for electrolytes solvation related to SBs are proposed to stimulate revolutionary electrolyte chemistry for next generation SBs.
Collapse
Affiliation(s)
- Xianyan Qiao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ting Chen
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| | - Fa He
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Haoyu Li
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yujia Zeng
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ruoyang Wang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Huan Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qing Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhenguo Wu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xiaodong Guo
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
13
|
Huo P, Ming X, Wang Y, Yu Q, Liang R, Sun G. Stable Zinc Anode Facilitated by Regenerated Silk Fibroin-modified Hydrogel Protective Layer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400565. [PMID: 38602450 DOI: 10.1002/smll.202400565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Indexed: 04/12/2024]
Abstract
Inherent dendrite growth and side reactions of zinc anode caused by its unstable interface in aqueous electrolytes severely limit the practical applications of zinc-ion batteries (ZIBs). To overcome these challenges, a protective layer for Zn anode inspired by cytomembrane structure is developed with PVA as framework and silk fibroin gel suspension (SFs) as modifier. This PVA/SFs gel-like layer exerts similar to the solid electrolyte interphase, optimizing the anode-electrolyte interface and Zn2+ solvation structure. Through interface improvement, controlled Zn2+ migration/diffusion, and desolvation, this buffer layer effectively inhibits dendrite growth and side reactions. The additional SFs provide functional improvement and better interaction with PVA by abundant functional groups, achieving a robust and durable Zn anode with high reversibility. Thus, the PVA/SFs@Zn symmetric cell exhibits an ultra-long lifespan of 3150 h compared to bare Zn (182 h) at 1.0 mAh cm-2-1.0 mAh cm-2, and excellent reversibility with an average Coulombic efficiency of 99.04% under a large plating capacity for 800 cycles. Moreover, the PVA/SFs@Zn||PANI/CC full cells maintain over 20 000 cycles with over 80% capacity retention under harsh conditions at 5 and 10 A g-1. This SF-modified protective layer for Zn anode suggests a promising strategy for reliable and high-performance ZIBs.
Collapse
Affiliation(s)
- Peixian Huo
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Xing Ming
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, China
| | - Yueyang Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Qinglu Yu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| | - Rui Liang
- Department of Engineering Science, Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, 999078, China
| | - Guoxing Sun
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China
| |
Collapse
|
14
|
Che C, Wu F, Li Y, Li Y, Li S, Wu C, Bai Y. Challenges and Breakthroughs in Enhancing Temperature Tolerance of Sodium-Ion Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402291. [PMID: 38635166 DOI: 10.1002/adma.202402291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Lithium-based batteries (LBBs) have been highly researched and recognized as a mature electrochemical energy storage (EES) system in recent years. However, their stability and effectiveness are primarily confined to room temperature conditions. At temperatures significantly below 0 °C or above 60 °C, LBBs experience substantial performance degradation. Under such challenging extreme contexts, sodium-ion batteries (SIBs) emerge as a promising complementary technology, distinguished by their fast dynamics at low-temperature regions and superior safety under elevated temperatures. Notably, developing SIBs suitable for wide-temperature usage still presents significant challenges, particularly for specific applications such as electric vehicles, renewable energy storage, and deep-space/polar explorations, which requires a thorough understanding of how SIBs perform under different temperature conditions. By reviewing the development of wide-temperature SIBs, the influence of temperature on the parameters related to battery performance, such as reaction constant, charge transfer resistance, etc., is systematically and comprehensively analyzed. The review emphasizes challenges encountered by SIBs in both low and high temperatures while exploring recent advancements in SIB materials, specifically focusing on strategies to enhance battery performance across diverse temperature ranges. Overall, insights gained from these studies will drive the development of SIBs that can handle the challenges posed by diverse and harsh climates.
Collapse
Affiliation(s)
- Chang Che
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Feng Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Yu Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ying Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Shuqiang Li
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Chuan Wu
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Ying Bai
- Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| |
Collapse
|
15
|
Li Y, Zhang Y, Gong Y. NaSn 2F 5 nanocluster composed of nanoparticles with matched lattices induced by dislocations: Accelerated sodium-ion transport via in situ oxidation in solid-state sodium metal battery. J Colloid Interface Sci 2024; 664:824-837. [PMID: 38492384 DOI: 10.1016/j.jcis.2024.03.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Na metal batteries using inorganic solid-state electrolytes (SSEs) have attracted extensive attention due to their superior safety and high energy density. However, their development is plagued by the unclear structural/volumetric evolution of SSEs and the corresponding Na+ migration mechanisms. In this work, NaSn2F5 (NSF) clusters are composed of nanoparticles (NPs) with matched lattices induced by dislocations, which can mitigate the volume swelling/shrinkage of the NPs. NSF behaves like a single ion conductor with a high Na+ transference number (tNa+) of 0.79. Specially, the ionic conductivity (σ) of NSF is increased from 7.64 × 10-6 to 5.42 × 10-5 S cm-1 after partial irreversible oxidation of Sn2+ (0.118 Å) → Sn4+ (0.069 Å) with the shrunk ionic radius during the charge process, giving more spaces for Na+ migration. Furthermore, a poly(acrylonitrile)-NaSn2F5-NaPF6 composite polymer electrolyte (NSF CPE) was fabricated with a σ of 4.13 × 10-4 S cm-1 and a tNa+ of 0.60. The NSF CPE-based symmetric cell can operate over 3000 h due to the couplings between the different components in NSF CPE, which is beneficial for ion transfer and the construction of stable solid electrolyte interface. And the quasi-solid-state Na|NSF CPE|Na3V2(PO4)3 full cell displays excellent electrochemical performance.
Collapse
Affiliation(s)
- Yuan Li
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Yunhuai Zhang
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Yun Gong
- Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
16
|
Yuan C, Liu B, Zhang H, Ma H, Lu Z, Xie J, Hu J, Cao Y. Construction of WS 2/NC@C nanoflake composites as performance-enhanced anodes for sodium-ion batteries. NANOSCALE 2024; 16:7660-7669. [PMID: 38529700 DOI: 10.1039/d4nr00579a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
The development of layered metal sulfides with stable structure and accessible active sites is of great importance for sodium-ion batteries (SIBs). Herein, a simple liquid-mixing method is elaborately designed to immobilize WS2 nanoflakes on N-doped carbon (NC), then further coat carbon to produce WS2/NC@C. In the formation process of this composite, the presence of NC not only avoids the overlap and improves the dispersion of WS2 nanoflakes, but also creates a connection network for charge transfer, where the wrapped carbon provides a stable chemical and electrochemical reaction interface. Thus, the composite of WS2/NC@C exhibits the desired Na+ storage capacity as anticipated. The reversible capacity reaches the high value of 369.8 mA h g-1 at 0.2 A g-1 after 200 cycles, while excellent rate performances and cycle life are also acquired in that capacity values of 256.7 and 219.6 mA h g-1 at 1 and 5 A g-1 are preserved after 1000 cycles, respectively. In addition, the assembled sodium-ion hybrid capacitors (SIHCs, AC//WS2/NC@C) exhibit an energy/power density of 68 W h kg-1 at 64 W kg-1, and capacity retention of 82.9% at 1 A g-1 after 2000 cycles. The study provides insight into developing layered metal sulfides with eminent performance of Na+ storage.
Collapse
Affiliation(s)
- Chun Yuan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Baolin Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Hongyu Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Huan Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Zhenjiang Lu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Jing Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Jindou Hu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| | - Yali Cao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, P. R. China.
| |
Collapse
|
17
|
Wang Q, Wu J, Wang M, Yu H, Qiu X, Chen W. Vanadate-Based Fibrous Electrode Materials for High Performance Aqueous Zinc Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307872. [PMID: 38178606 PMCID: PMC10953546 DOI: 10.1002/advs.202307872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Aqueous zinc-ion batteries (AZIBs) are considered as attractive energy storage systems with great promise owing to their low cost, environmental friendliness and high safety. Nevertheless, cathode materials with stable structure and rapid diffusion of zinc ions are in great demand for AZIBs. In this work, a new kind of potassium vanadate compound (KV3 O8 ) is synthesized with fibrous morphology as an excellent cathode material for AZIBs, which shows outstanding electrochemical performance. KV3 O8 exhibits a high discharge capacity of 556.4 mAh g-1 at 0.8 A g-1 , and the capacity retention is 81.3% at 6 A g-1 even after a long cycle life of 5000 cycles. The excellent performance of the KV3 O8 cathode is benefited from the structural stability, sufficient active sites, and high conductivity, which is revealed by in situ X-ray diffraction and various other characterizations. This work offers a new design strategy into fabricating high efficiency cathode materials for AZIBs and beyond.
Collapse
Affiliation(s)
- Qimeng Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies)Nanjing Tech UniversityNanjing211816P. R. China
| | - Jianping Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies)Nanjing Tech UniversityNanjing211816P. R. China
| | - Mingming Wang
- Department of Applied ChemistrySchool of Chemistry and Materials ScienceHefei National Research Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Haizhou Yu
- Institute of Advanced Synthesis (IAS)School of Chemistry and Molecular EngineeringNanjing Tech UniversityNanjing211816P. R. China
| | - Xiaoyan Qiu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies)Nanjing Tech UniversityNanjing211816P. R. China
| | - Wei Chen
- Department of Applied ChemistrySchool of Chemistry and Materials ScienceHefei National Research Center for Physical Sciences at the MicroscaleUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| |
Collapse
|
18
|
Sun Q, Chai L, Chen S, Zhang W, Yang HY, Li Z. Dual-Salt Mixed Electrolyte for High Performance Aqueous Aluminum Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10061-10069. [PMID: 38372285 DOI: 10.1021/acsami.3c17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
A dual-salt electrolyte with 5 M Al(OTF)3 and 0.5 M LiOTF is proposed for aqueous aluminum batteries, which can effectively prevent the corrosion caused by the hydrogen evolution reaction. With the addition of LiOTF in the electrolyte, the solvation phenomenon has changed with the coordination mode of Al3+ conversion from an all octahedral structure to a mixed octahedral and tetrahedral structure. This change can reduce the hydrogen bond between water molecules, which will minimize the occurrence of hydrogen evolution reactions. Moreover, the new electrolyte improves the cycle life of the battery. With MnO as the cathode, 2.1 V high charging platform and 1.5 V high discharge platform can be obtained. The electrochemical stability window (ESW) has been improved to 3.8 V. The first cycle capacity is up to 437 mAh g-1, which can be maintained at 103 mAh g-1 after 100 cycles. This work provides solutions for the future development of electrolyte for aqueous aluminum batteries.
Collapse
Affiliation(s)
- Qiwen Sun
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Luning Chai
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Song Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| |
Collapse
|
19
|
Ilic S, Counihan MJ, Lavan SN, Yang Y, Jiang Y, Dhakal D, Mars J, Antonio EN, Kitsu Iglesias L, Fister TT, Zhang Y, Maginn EJ, Toney MF, Klie RF, Connell JG, Tepavcevic S. Effect of Antisolvent Additives in Aqueous Zinc Sulfate Electrolytes for Zinc Metal Anodes: The Case of Acetonitrile. ACS ENERGY LETTERS 2024; 9:201-208. [PMID: 38230374 PMCID: PMC10789094 DOI: 10.1021/acsenergylett.3c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024]
Abstract
Aqueous zinc-ion batteries (ZIBs) employing zinc metal anodes are gaining traction as batteries for moderate to long duration energy storage at scale. However, corrosion of the zinc metal anode through reaction with water limits battery efficiency. Much research in the past few years has focused on additives that decrease hydrogen evolution, but the precise mechanisms by which this takes place are often understudied and remain unclear. In this work, we study the role of an acetonitrile antisolvent additive in improving the performance of aqueous ZnSO4 electrolytes using experimental and computational techniques. We demonstrate that acetonitrile actively modifies the interfacial chemistry during Zn metal plating, which results in improved performance of acetonitrile-containing electrolytes. Collectively, this work demonstrates the effectiveness of solvent additive systems in battery performance and durability and provides a new framework for future efforts to optimize ion transport and performance in ZIBs.
Collapse
Affiliation(s)
- Stefan Ilic
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Material
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael J. Counihan
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Material
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sydney N. Lavan
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Material
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Yingjie Yang
- Department
of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Yinke Jiang
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Diwash Dhakal
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Department
of Materials Science and Engineering, University
of Washington, Seattle, Washington 98195, United States
| | - Julian Mars
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Emma N. Antonio
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Luis Kitsu Iglesias
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Timothy T. Fister
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Chemical
Sciences and Engineering Division, Argonne
National Laboratory, Lemont, Illinois 60439, United States
| | - Yong Zhang
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Edward J. Maginn
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Michael F. Toney
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Robert F. Klie
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Department
of Physics, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Justin G. Connell
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Material
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sanja Tepavcevic
- Joint
Center for Energy Storage Research, Argonne
National Laboratory, Lemont, Illinois 60439, United States
- Material
Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
20
|
Sui Y, Ji X. Electrolyte Interphases in Aqueous Batteries. Angew Chem Int Ed Engl 2024; 63:e202312585. [PMID: 37749061 DOI: 10.1002/anie.202312585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
The narrow electrochemical stability window of water poses a challenge to the development of aqueous electrolytes. In contrast to non-aqueous electrolytes, the products of water electrolysis do not contribute to the formation of a passivation layer on electrodes. As a result, aqueous electrolytes require the reactions of additional components, such as additives and co-solvents, to facilitate the formation of the desired solid electrolyte interphase (SEI) on the anode and cathode electrolyte interphase (CEI) on the cathode. This review highlights the fundamental principles and recent advancements in generating electrolyte interphases in aqueous batteries.
Collapse
Affiliation(s)
- Yiming Sui
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, USA
| | - Xiulei Ji
- Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003, USA
| |
Collapse
|
21
|
She K, Huang Y, Fan W, Yu M, Zhang J, Chen C. 3D flower-like hollow MXene@MoS 2 heterostructure for fast sodium storage. J Colloid Interface Sci 2023; 656:270-279. [PMID: 37995397 DOI: 10.1016/j.jcis.2023.11.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023]
Abstract
Constructing an anode with fast electron transport and high cycling stability is important but challenging for large-scale applications of sodium-ion batteries (SIB). In this study, hierarchical flower-like MXene structures were synthesized using poly (methyl methacrylate) (PMMA) microsphere as templates. Subsequently, a straightforward hydrothermal reaction was utilized to anchor small-sized MoS2 nanosheets. The resulting MXene@MoS2 heterostructure exhibits a distinctive three-dimensional (3D) porous hollow architecture. This structure effectively addresses challenges related to self-aggregation of MoS2 nanosheets and volume expansion of the electrode material during Na+ insertion/extraction processes. Furthermore, the robust hetero-interface supports fast and stable electron transfer, thereby enhancing electrochemical reaction kinetics. The prepared MXene@MoS2 electrode demonstrates the specific capacity of 682.1 mA h g-1 at 0.2 A/g and the reversible capacity of 494.4 mA h g-1 after 1000 cycles at 5 A/g. It is noteworthy that the full battery assembled with the composite material as the anode can still maintain the capacity of 456.2 mA h g-1 after 80 cycles at 0.5 A/g. This outstanding reversible capacity and sustained stability over numerous cycles highlights its potential for a wide range of applications.
Collapse
Affiliation(s)
- Kaihang She
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ying Huang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Wanqing Fan
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Meng Yu
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiaxin Zhang
- MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chen Chen
- School of Electrical Engineering, Xi'an University of Technology, Xi'an 710048, China.
| |
Collapse
|
22
|
Zhang K, Wang L, Ma C, Yuan Z, Wu C, Ye J, Wu Y. A Comprehensive Evaluation of Battery Technologies for High-Energy Aqueous Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2309154. [PMID: 37967335 DOI: 10.1002/smll.202309154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/21/2023] [Indexed: 11/17/2023]
Abstract
Aqueous batteries have garnered significant attention in recent years as a viable alternative to lithium-ion batteries for energy storage, owing to their inherent safety, cost-effectiveness, and environmental sustainability. This study offers a comprehensive review of recent advancements, persistent challenges, and the prospects of aqueous batteries, with a primary focus on energy density compensation of various battery engineering technologies. Additionally, cutting-edge high-energy aqueous battery designs are emphasized as a reference for future endeavors in the pursuit of high-energy storage solutions. Finally, a dual-compatibility battery configuration perspective aimed at concurrently optimizing cycle stability, redox potential, capacity utilization for both anode and cathode materials, as well as the selection of potential electrode candidates, is proposed with the ultimate goal of achieving cell-level energy densities exceeding 400 Wh kg-1 .
Collapse
Affiliation(s)
- Kaiqiang Zhang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Luoya Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Changlong Ma
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Zijie Yuan
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Chao Wu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Jilei Ye
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| | - Yuping Wu
- School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing, Jiangsu Province, 211816, China
| |
Collapse
|
23
|
Liu T, Du X, Wu H, Ren Y, Wang J, Wang H, Chen Z, Zhao J, Cui G. A Bio-Inspired Methylation Approach to Salt-Concentrated Hydrogel Electrolytes for Long-Life Rechargeable Batteries. Angew Chem Int Ed Engl 2023; 62:e202311589. [PMID: 37669903 DOI: 10.1002/anie.202311589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 09/07/2023]
Abstract
Hydrogel electrolytes hold great promise in developing flexible and safe batteries, but the presence of free solvent water makes battery chemistries constrained by H2 evolution and electrode dissolution. Although maximizing salt concentration is recognized as an effective strategy to reduce water activity, the protic polymer matrices in classical hydrogels are occupied with hydrogen-bonding and barely involved in the salt dissolution, which sets limitations on realizing stable salt-concentrated environments before polymer-salt phase separation occurs. Inspired by the role of protein methylation in regulating intracellular phase separation, here we transform the "inert" protic polymer skeletons into aprotic ones through methylation modification to weaken the hydrogen-bonding, which releases free hydrogen bond acceptors as Lewis base sites to participate in cation solvation and thus assist salt dissolution. An unconventionally salt-concentrated hydrogel electrolyte reaching a salt fraction up to 44 mol % while retaining a high Na+ /H2 O molar ratio of 1.0 is achieved without phase separation. Almost all water molecules are confined in the solvation shell of Na+ with depressed activity and mobility, which addresses water-induced parasitic reactions that limit the practical rechargeability of aqueous sodium-ion batteries. The assembled Na3 V2 (PO4 )3 //NaTi2 (PO4 )3 cell maintains 82.8 % capacity after 580 cycles, which is the longest cycle life reported to date.
Collapse
Affiliation(s)
- Tingting Liu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofan Du
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Han Wu
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Yongwen Ren
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Jinzhi Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Hao Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Zheng Chen
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Jingwen Zhao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
| | - Guanglei Cui
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
24
|
Yan B, Zhao Y, Peng H. Tissue-Matchable and Implantable Batteries Toward Biomedical Applications. SMALL METHODS 2023; 7:e2300501. [PMID: 37469190 DOI: 10.1002/smtd.202300501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/30/2023] [Indexed: 07/21/2023]
Abstract
Implantable electronic devices can realize real-time and reliable health monitoring, diagnosis, and treatment of human body, which are expected to overcome important bottlenecks in the biomedical field. However, the commonly used energy supply devices for them are implantable batteries based on conventional rigid device design with toxic components, which both mechanically and biologically mismatch soft biological tissues. Therefore, the development of highly soft, safe, and implantable tissue-matchable flexible batteries is of great significance and urgency for implantable bioelectronics. In this work, the recent advances of tissue-matchable and implantable flexible batteries are overviewed, focusing on the design strategies of electrodes/batteries and their biomedical applications. The mechanical flexibility, biocompatibility, and electrochemical performance in vitro and in vivo of these flexible electrodes/batteries are then discussed. Finally, perspectives are provided on the current challenges and possible directions of this field in the future.
Collapse
Affiliation(s)
- Bing Yan
- Institute of Flexible Electronics and Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yang Zhao
- Institute of Flexible Electronics and Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Northwestern Polytechnical University, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Huisheng Peng
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| |
Collapse
|
25
|
Huang J, Wu K, Xu G, Wu M, Dou S, Wu C. Recent progress and strategic perspectives of inorganic solid electrolytes: fundamentals, modifications, and applications in sodium metal batteries. Chem Soc Rev 2023. [PMID: 37365900 DOI: 10.1039/d2cs01029a] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Solid-state electrolytes (SEs) have attracted overwhelming attention as a promising alternative to traditional organic liquid electrolytes (OLEs) for high-energy-density sodium-metal batteries (SMBs), owing to their intrinsic incombustibility, wider electrochemical stability window (ESW), and better thermal stability. Among various kinds of SEs, inorganic solid-state electrolytes (ISEs) stand out because of their high ionic conductivity, excellent oxidative stability, and good mechanical strength, rendering potential utilization in safe and dendrite-free SMBs at room temperature. However, the development of Na-ion ISEs still remains challenging, that a perfect solution has yet to be achieved. Herein, we provide a comprehensive and in-depth inspection of the state-of-the-art ISEs, aiming at revealing the underlying Na+ conduction mechanisms at different length scales, and interpreting their compatibility with the Na metal anode from multiple aspects. A thorough material screening will include nearly all ISEs developed to date, i.e., oxides, chalcogenides, halides, antiperovskites, and borohydrides, followed by an overview of the modification strategies for enhancing their ionic conductivity and interfacial compatibility with Na metal, including synthesis, doping and interfacial engineering. By discussing the remaining challenges in ISE research, we propose rational and strategic perspectives that can serve as guidelines for future development of desirable ISEs and practical implementation of high-performance SMBs.
Collapse
Affiliation(s)
- Jiawen Huang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Kuan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shixue Dou
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China.
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, NSW 2522, Australia
| | - Chao Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
26
|
Liang Z, Tian F, Yang G, Wang C. Enabling long-cycling aqueous sodium-ion batteries via Mn dissolution inhibition using sodium ferrocyanide electrolyte additive. Nat Commun 2023; 14:3591. [PMID: 37328496 DOI: 10.1038/s41467-023-39385-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 06/09/2023] [Indexed: 06/18/2023] Open
Abstract
Aqueous sodium-ion batteries (AIBs) are promising candidates for large-scale energy storage due to their safe operational properties and low cost. However, AIBs have low specific energy (i.e., <80 Wh kg-1) and limited lifespans (e.g., hundreds of cycles). Mn-Fe Prussian blue analogues are considered ideal positive electrode materials for AIBs, but they show rapid capacity decay due to Jahn-Teller distortions. To circumvent these issues, here, we propose a cation-trapping method that involves the introduction of sodium ferrocyanide (Na4Fe(CN)6) as a supporting salt in a highly concentrated NaClO4-based aqueous electrolyte solution to fill the surface Mn vacancies formed in Fe-substituted Prussian blue Na1.58Fe0.07Mn0.97Fe(CN)6 · 2.65H2O (NaFeMnF) positive electrode materials during cycling. When the engineered aqueous electrolyte solution and the NaFeMnF-based positive electrode are tested in combination with a 3, 4, 9, 10-perylenetetracarboxylic diimide-based negative electrode in a coin cell configuration, a specific energy of 94 Wh kg-1 at 0.5 A g-1 (specific energy based on the active material mass of both electrodes) and a specific discharge capacity retention of 73.4% after 15000 cycles at 2 A g-1 are achieved.
Collapse
Affiliation(s)
- Zhaoheng Liang
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Fei Tian
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P. R. China
| | - Gongzheng Yang
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P. R. China.
| | - Chengxin Wang
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P. R. China.
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, 510275, Guangzhou, P. R. China.
| |
Collapse
|
27
|
Teng CP, Tan MY, Toh JPW, Lim QF, Wang X, Ponsford D, Lin EMJ, Thitsartarn W, Tee SY. Advances in Cellulose-Based Composites for Energy Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103856. [PMID: 37241483 DOI: 10.3390/ma16103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
The various forms of cellulose-based materials possess high mechanical and thermal stabilities, as well as three-dimensional open network structures with high aspect ratios capable of incorporating other materials to produce composites for a wide range of applications. Being the most prevalent natural biopolymer on the Earth, cellulose has been used as a renewable replacement for many plastic and metal substrates, in order to diminish pollutant residues in the environment. As a result, the design and development of green technological applications of cellulose and its derivatives has become a key principle of ecological sustainability. Recently, cellulose-based mesoporous structures, flexible thin films, fibers, and three-dimensional networks have been developed for use as substrates in which conductive materials can be loaded for a wide range of energy conversion and energy conservation applications. The present article provides an overview of the recent advancements in the preparation of cellulose-based composites synthesized by combining metal/semiconductor nanoparticles, organic polymers, and metal-organic frameworks with cellulose. To begin, a brief review of cellulosic materials is given, with emphasis on their properties and processing methods. Further sections focus on the integration of cellulose-based flexible substrates or three-dimensional structures into energy conversion devices, such as photovoltaic solar cells, triboelectric generators, piezoelectric generators, thermoelectric generators, as well as sensors. The review also highlights the uses of cellulose-based composites in the separators, electrolytes, binders, and electrodes of energy conservation devices such as lithium-ion batteries. Moreover, the use of cellulose-based electrodes in water splitting for hydrogen generation is discussed. In the final section, we propose the underlying challenges and outlook for the field of cellulose-based composite materials.
Collapse
Affiliation(s)
- Choon Peng Teng
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Ming Yan Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Jessica Pei Wen Toh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Qi Feng Lim
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Xiaobai Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Daniel Ponsford
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
- Department of Chemistry, University College London, London WC1H 0AJ, UK
- Institute for Materials Discovery, University College London, London WC1E 7JE, UK
| | - Esther Marie JieRong Lin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Si Yin Tee
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| |
Collapse
|
28
|
Lu M, Li T, Yang X, Liu Y, Xiang X. A Liquid-Phase Reaction Strategy to Construct Aqueous Sodium-Ion Batteries Anode with Enhanced Redox Reversibility and Cycling Stability. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
29
|
Wang S, Guan Y, Gan F, Shao Z. Charge Carriers for Aqueous Dual-Ion Batteries. CHEMSUSCHEM 2023; 16:e202201373. [PMID: 36136751 DOI: 10.1002/cssc.202201373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Environmental and safety concerns of energy storage systems call for application of aqueous battery systems which have advantages of low cost, environmental benignity, safety, and easy assembling. Among the aqueous battery systems, aqueous dual-ion batteries (ADIBs) provide high possibility for achieving excellent battery performance. Compared with the "rocking chair" batteries with only one type of carrier involved in the charging and discharging, ADIBs with both cations and anions as charge carriers possess diverse selections of electrodes and electrolytes. Charge carriers are the basis of the configuration of ADIBs. In this Review, cations and anions that could be applied in ADIBs are demonstrated with corresponding electrode materials and favorable electrolytes. Some insertion mechanisms are emphasized to provide insights for the possibilities to enhance the practical performances of ADIBs.
Collapse
Affiliation(s)
- Shaofeng Wang
- College of Environment and Ecology, Jiangsu Open University, Nanjing, 210017, Jiangsu, P. R. China
| | - Ying Guan
- College of Environment and Ecology, Jiangsu Open University, Nanjing, 210017, Jiangsu, P. R. China
| | - Fangqun Gan
- College of Environment and Ecology, Jiangsu Open University, Nanjing, 210017, Jiangsu, P. R. China
| | - Zongping Shao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 210009, Jiangsu, P. R. China
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA, 6845, Australia
| |
Collapse
|
30
|
Peng L, Wu X, Jia M, Qian W, Zhang X, Zhou N, Zhang L, Jian C, Zhang S. Solvating power regulation enabled low concentration electrolyte for lithium batteries. Sci Bull (Beijing) 2022; 67:2235-2244. [DOI: 10.1016/j.scib.2022.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/22/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
|
31
|
Guo M, Yuan C, Zhang T, Yu X. Solid-State Electrolytes for Rechargeable Magnesium-Ion Batteries: From Structure to Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106981. [PMID: 35182102 DOI: 10.1002/smll.202106981] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Rechargeable magnesium (Mg)-ion batteries have received growing attention as a next-generation battery system owing to their advantages of sufficient reserves, lower cost, better safety, and higher volumetric energy density than lithium-ion batteries. However, Mg as an anode can be easily passivated during charging/discharging by most common solvents, which are inconducive for magnesium deposition/stripping. Based on this, the development of Mg-ion solid-state electrolytes in the last decades led to the formulization of several concepts beyond previously reported designs. These exciting studies have once again sparked an interest in all-solid-state magnesium-ion batteries. In this review, Mg solid-state electrolytes, including inorganic (oxides, hydrides, and chalcogenides) and organic (metal-organic frameworks and polymers) materials are classified and summarized in detail. Moreover, the structural characteristics and the migration mechanism of Mg2+ ions are also discussed with a focus on pending questions and future prospects.
Collapse
Affiliation(s)
- Miao Guo
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Chongyang Yuan
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Tengfei Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
32
|
Lu Z, Yang H, Guo Y, He P, Wu S, Yang Q, Zhou H. Electrolyte Sieving Chemistry in Suppressing Gas Evolution of Sodium‐Metal Batteries. Angew Chem Int Ed Engl 2022; 61:e202206340. [DOI: 10.1002/anie.202206340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Ziyang Lu
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
- Nanoyang Group State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Huijun Yang
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
| | - Yong Guo
- Nanoyang Group State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Ping He
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
| | - Shichao Wu
- Nanoyang Group State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Quan‐Hong Yang
- Nanoyang Group State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Haoshen Zhou
- Graduate School of System and Information Engineering University of Tsukuba 1-1-1, Tennoudai Tsukuba 305-8573 Japan
- Center of Energy Storage Materials & Technology College of Engineering and Applied Sciences Jiangsu Key Laboratory of Artificial Functional Materials National Laboratory of Solid State Micro-structures and Collaborative Innovation Center of Advanced Micro-structures Nanjing University Nanjing 210093 P. R. China
| |
Collapse
|
33
|
Liu T, Wu H, Du X, Wang J, Chen Z, Wang H, Sun J, Zhang J, Niu J, Yao L, Zhao J, Cui G. Water-Locked Eutectic Electrolyte Enables Long-Cycling Aqueous Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:33041-33051. [PMID: 35849540 DOI: 10.1021/acsami.2c04893] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aqueous sodium batteries are one of the awaited technologies for large-scale energy storage, but remain poorly rechargeable because of the reactivity issues of water. Here, we present a hydrated eutectic electrolyte featuring a water-locked effect, which is exceptional in that the O-H bond of water is essentially strengthened via weak hydrogen bonding (relative to the original H2O-H2O hydrogen bonds) to low-donor-number anions and ligands. Even without interphase protection, both the anodic and cathodic water electrodecomposition reactions are delayed, extending the aqueous potential window to 3.4 V. Combined with the alleviated electrode dissolution, Na2MnFe(CN)6||NaTi2(PO4)3 batteries deliver a high energy density of ∼80 W h kg-1 at 0.5 C and undergo over 1000 cycles with a 74.5% capacity retention and a 99.4% Coulombic efficiency at 4.2 C. This work may offer a general guide to ultimately exploit the water's innate stability for realizing the promise of aqueous battery technologies.
Collapse
Affiliation(s)
- Tingting Liu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Han Wu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaofan Du
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Jinzhi Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zheng Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Hao Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Institute of Materials for Energy and Environment, Qingdao University, Qingdao 266071, P. R.China
| | - Jinran Sun
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianjun Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Jiaping Niu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lishan Yao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
| | - Jingwen Zhao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- Shandong Energy Institute, Qingdao 266101, P.R. China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
34
|
Guo G, Tan X, Wang K, Zhang H. High-Efficiency and Stable Zn-Na 3 V 2 (PO 4 ) 3 Aqueous Battery Enabled by Electrolyte-Induced Interphasial Engineering. CHEMSUSCHEM 2022; 15:e202200313. [PMID: 35344279 DOI: 10.1002/cssc.202200313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Aqueous zinc batteries have been regarded as a promising energy storage technology due to their high energy, high material abundance, low toxicity, and intrinsic safety. NASICON-type materials have been proposed as efficient cathodes for rechargeable batteries, yet they suffer from fast degradation and low Coulombic efficiency in aqueous batteries. Here we demonstrate that a rationally designed aqueous electrolyte containing a supporting Na salt and polymer additive can efficiently suppress the water activity through hydrogen bonding and facilitate the anion involvement in interfacial reactions, thus enabling the stable operation of sodium superionic conductor (NASICON) cathodes in aqueous zinc batteries. As exemplified by a Na3 V2 (PO4 )3 cathode, the cell with zinc metal anode exhibits high cycling Coulombic efficiencies (around 99.9 % in average) with a steady output voltage and capacity retention for 300 cycles. This work addresses the potential issues with NASICON-type cathodes in aqueous zinc batteries and proposes an effective solution via fundamental interphasial chemistry to design efficient and sustainable aqueous electrolytes.
Collapse
Affiliation(s)
- Gaoli Guo
- Ningbo Institute of Northwestern Polytechnical University & Institute of Flexible Electronics Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xiaoping Tan
- Ningbo Institute of Northwestern Polytechnical University & Institute of Flexible Electronics Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, P. R. China
| | - Kaidi Wang
- Ningbo Institute of Northwestern Polytechnical University & Institute of Flexible Electronics Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Huang Zhang
- Ningbo Institute of Northwestern Polytechnical University & Institute of Flexible Electronics Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518057, P. R. China
| |
Collapse
|
35
|
Lu Z, Yang H, Guo Y, He P, Wu S, Yang QH, Zhou H. Electrolyte Sieving Chemistry in Suppressing Gas Evolution of Sodium Metal Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ziyang Lu
- University of Tsukuba: Tsukuba Daigaku Department of Energy Science and Engineering JAPAN
| | - Huijun Yang
- University of Tsukuba: Tsukuba Daigaku Department of Energy Science and Engineering JAPAN
| | - Yong Guo
- Tianjin University School of Materials Science and Engineering school of Materials Science and Engineering CHINA
| | - Ping He
- Nanjing University Department of Energy Science and Engineering CHINA
| | - Shichao Wu
- Tianjin University School of Materials Science and Engineering school of Materials Science and Engineering CHINA
| | - Quan-Hong Yang
- Tianjin University School of Materials Science and Engineering school of Materials Science and Engineering CHINA
| | | |
Collapse
|
36
|
Li C, Li M, Xu H, Zhao F, Gong S, Wang H, Qi J, Wang Z, Fan X, Peng W, Liu J. Constructing hollow nanotube-like amorphous vanadium oxide and carbon hybrid via in-situ electrochemical induction for high-performance aqueous zinc-ion batteries. J Colloid Interface Sci 2022; 623:277-284. [PMID: 35597011 DOI: 10.1016/j.jcis.2022.05.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022]
Abstract
Aqueous zinc-ion batteries receive more and more attentions on account of their low cost, high theoretical density and inherent safety. Nevertheless, the lack of suitable cathode materials with excellent performance still severely impedes the development of aqueous zinc-ion batteries. Herein, an in-situ electrochemical induction strategy is developed to prepare hollow nanotube-like amorphous vanadium oxide and carbon (a-V2O5@C) hybrid and its electrochemical performance is investigated comprehensively as cathode materials for aqueous zinc-ion batteries. Benefitting from the unique amorphous structure of V2O5 and intimate contact between amorphous V2O5 and carbon, the a-V2O5@C hybrid possess the abundant ion storage sites, isotropic ion diffusion routes and excellent conductivity. As a result, the a-V2O5@C hybrid cathode shows outstanding specific capacity of 448 mAh g-1 at 0.15 A g-1. Impressively, the a-V2O5@C hybrid cathode exhibits superior cycling stability, even when cycling at high current density of 10 A g-1, that the 96.5% specific capacity retention can be gained over 1500 cycles, corresponding to an average specific capacity loss of only 0.0023% per cycle. Furthermore, the mechanism involved is illustrated by systematical characterizations. Therefore, this work affords a new way for developing high-performance cathode materials for aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Chunli Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Meng Li
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Huiting Xu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Fan Zhao
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Siqi Gong
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Honghai Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Junjie Qi
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Zhiying Wang
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Jiapeng Liu
- School of Chemical Engineering and Technology, National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
37
|
Bi-functional poly(vinylidene difluoride) coated Al anodes for highly rechargeable aqueous Al-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Melzack N, Wills RGA. A Review of Energy Storage Mechanisms in Aqueous Aluminium Technology. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.778265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This systematic review covers the developments in aqueous aluminium energy storage technology from 2012, including primary and secondary battery applications and supercapacitors. Aluminium is an abundant material with a high theoretical volumetric energy density of –8.04 Ah cm−3. Combined with aqueous electrolytes, which have twice the ionic storage potential as non-aqueous versions, this technology has the potential to serve many energy storage needs. The charge transfer mechanisms are discussed in detail with respect to aqueous aluminium-ion secondary batteries, where most research has focused in recent years. TiO2 nanopowders have shown to be promising negative electrodes, with the potential for pseudocapacitive energy storage in aluminuim-ion cells. This review summarises the advances in Al-ion systems using aqueous electrolytes, focusing on electrochemical performance.
Collapse
|
39
|
Recent Advance and Modification Strategies of Transition Metal Dichalcogenides (TMDs) in Aqueous Zinc Ion Batteries. MATERIALS 2022; 15:ma15072654. [PMID: 35407986 PMCID: PMC9000242 DOI: 10.3390/ma15072654] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/26/2022] [Accepted: 04/01/2022] [Indexed: 02/08/2023]
Abstract
In recent years, aqueous zinc ion batteries (ZIBs) have attracted much attention due to their high safety, low cost, and environmental friendliness. Owing to the unique layered structure and more desirable layer spacing, transition metal dichalcogenide (TMD) materials are considered as the comparatively ideal cathode material of ZIBs which facilitate the intercalation/ deintercalation of hydrated Zn2+ between layers. However, some disadvantages limit their widespread application, such as low conductivity, low reversible capacity, and rapid capacity decline. In order to improve the electrochemical properties of TMDs, the corresponding modification methods for each TMDs material can be designed from the following modification strategies: defect engineering, intercalation engineering, hybrid engineering, phase engineering, and in-situ electrochemical oxidation. This paper summarizes the research progress of TMDs as cathode materials for ZIBs in recent years, discusses and compares the electrochemical properties of TMD materials, and classifies and introduces the modification methods of MoS2 and VS2. Meanwhile, the corresponding modification scheme is proposed to solve the problem of rapid capacity fading of WS2. Finally, the research prospect of other TMDs as cathodes for ZIBs is put forward.
Collapse
|
40
|
Sakti AW, Wahyudi ST, Ahmad F, Darmawan N, Hardhienata H, Alatas H. Effects of Salt Concentration on the Water and Ion Self-Diffusion Coefficients of a Model Aqueous Sodium-Ion Battery Electrolyte. J Phys Chem B 2022; 126:2256-2264. [PMID: 35271293 DOI: 10.1021/acs.jpcb.1c09619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aqueous sodium-ion battery is a promising alternative to the well-known lithium-ion battery owing to the large abundance of sodium ion resources. Although it is safer than the lithium-ion battery, the voltage window of the sodium-ion battery is narrower than that of the lithium-ion battery, thus limiting its practical implementation. Therefore, a highly concentrated electrolyte is required to address this issue. In the present work, the effect of the salt concentration on the transport properties of water molecules is investigated via theoretical analyses at the quantum mechanical level. A molecular dynamics simulation at the quantum mechanical level revealed that as the salt concentration increases, the ion-water interactions became stronger, leading to a lower diffusivity and a lower electronic band gap. These imply that the superconcentrated aqueous-based electrolytes have high potentials for the sodium-ion battery applications.
Collapse
Affiliation(s)
- Aditya Wibawa Sakti
- Department of Chemistry, Faculty of Science and Computer, Universitas Pertamina, Jakarta 12220, Indonesia.,Theoretical Physics Division, Department of Physics, IPB University, Bogor 16680, Indonesia.,Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan.,Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia
| | - Setyanto Tri Wahyudi
- Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia.,Biophysics Division, Department of Physics, IPB University, Bogor 16680, Indonesia
| | - Faozan Ahmad
- Theoretical Physics Division, Department of Physics, IPB University, Bogor 16680, Indonesia.,Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia
| | - Noviyan Darmawan
- Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia.,Inorganic Chemistry Division, Department of Chemistry, IPB University, Bogor 16680, Indonesia
| | - Hendradi Hardhienata
- Theoretical Physics Division, Department of Physics, IPB University, Bogor 16680, Indonesia.,Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia
| | - Husin Alatas
- Theoretical Physics Division, Department of Physics, IPB University, Bogor 16680, Indonesia.,Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia
| |
Collapse
|
41
|
Liu S, Lei T, Song Q, Zhu J, Zhu C. High Energy, Long Cycle, and Superior Low Temperature Performance Aqueous Na-Zn Hybrid Batteries Enabled by a Low-Cost and Protective Interphase Film-Forming Electrolyte. ACS APPLIED MATERIALS & INTERFACES 2022; 14:11425-11434. [PMID: 35194987 DOI: 10.1021/acsami.1c23806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A hybrid aqueous Na-Zn ion battery derived from the Na3V2(PO4)3 cathode is one of the most promising systems among aqueous batteries because it exhibits higher energy density than a pure Zn ion battery due to different ion intercalation mechanisms related to various electrolytes. However, it is more difficult to improve the electrochemical performance of the hybrid aqueous Na-Zn ion battery versus Zn ion battery. In addition, searching for suitable protective interphase film-forming electrolyte additives in order to increase cycling stability and developing a new electrolyte recipe to improve the low temperature performance are significant and still big challenges for the hybrid aqueous Na-Zn battery. Herein, the introduction of protective interphase film-forming additives (VC), an economical 10 M NaClO4-0.17 M Zn(CH3COO)2-2 wt % VC electrolyte, was proposed. Based on such an electrolyte, the carbon-coated single crystalline Na3V2(PO4)3 nanofiber//Zn aqueous Na-Zn hybrid battery involving high energy, long cycle, and outstanding low temperature performance was successfully obtained. For example, it delivered a remarkable output voltage of 1.48 V and excellent cycle stability (retained 84% after 1000 cycles). The capacities were 94.4 mA h/g at 0.2 A/g at -10 °C and 90.0 mA h/g at 0.2 A/g at -20 °C, respectively.
Collapse
Affiliation(s)
- Si Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Department of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou, 510275 Guangdong, China
| | - Tong Lei
- State Key Laboratory of Optoelectronic Materials and Technologies, Department of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou, 510275 Guangdong, China
| | - Qianqian Song
- State Key Laboratory of Optoelectronic Materials and Technologies, Department of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou, 510275 Guangdong, China
| | - Jian Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Department of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou, 510275 Guangdong, China
| | - Changbao Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, Department of Materials Science and Engineering, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, Sun Yat-Sen University, Guangzhou, 510275 Guangdong, China
| |
Collapse
|
42
|
Gao L, Chen J, Chen Q, Kong X. The chemical evolution of solid electrolyte interface in sodium metal batteries. SCIENCE ADVANCES 2022; 8:eabm4606. [PMID: 35148184 PMCID: PMC8836821 DOI: 10.1126/sciadv.abm4606] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 12/21/2021] [Indexed: 05/21/2023]
Abstract
The solid electrolyte interface (SEI) formed on the anode is one of the key factors that determine the life span of sodium metal batteries (SMBs). However, the continuous evolution of SEI during charging/discharging processes complicates the fundamental understanding of its chemistry and structure. In this work, we studied the underlying mechanisms of the protection effect offered by the SEI derived from sodium difluoro(oxalato)borate (NaDFOB). In situ nuclear magnetic resonance (NMR) shows that the prior reduction of DFOB anion contributes to the SEI formation, and it suppresses the decomposition of carbonate solvents. Depth-profiling x-ray photoelectron spectroscopy and high-resolution solid-state NMR reveal that the DFOB anion is gradually turned into borate and fluoride-rich SEI with cycling. The protection effect of SEI reaches the optimum at 50 cycles, which triples the life span of SMB. The detailed investigations provide valuable guidelines for the SEI engineering.
Collapse
Affiliation(s)
- Lina Gao
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Juner Chen
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, China
| | - Qinlong Chen
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Xueqian Kong
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
- Corresponding author.
| |
Collapse
|
43
|
Shen X, Han M, Li X, Zhang P, Yang C, Liu H, Hu YS, Zhao J. Regulated Synthesis of α-NaVOPO 4 with an Enhanced Conductive Network as a High-Performance Cathode for Aqueous Na-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6841-6851. [PMID: 35100501 DOI: 10.1021/acsami.1c22655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The low-cost and profusion of sodium reserves make Na-ion batteries (NIBs) a potential candidate to lithium-ion batteries for grid-scale energy storage applications. NaVOPO4 has been recognized as one of the most promising cathodes for high-energy NIBs, owing to their high theoretical capacity and energy density. However, their further application is hindered by the multiphase transition and conductivity confinement. Herein, we proposed a feasible, one-step hydrothermal synthesis to regulate the synthesis of α-NaVOPO4 with controlled morphologies. The electrochemical properties of the NaVOPO4 electrode can be significantly enhanced taking Ketjen black (KB) as the optimized conductive carbon. Besides, combining with the nanocrystallization and construction of the conductive framework via high-energy ball milling, taking KB as the conductive carbon, the as-prepared NaVOPO4/5%KB exhibits superior Na-storage performance (140.2 mA h g-1 at 0.1 C and a capacity retention of 84.8% over 1000 cycles at 10 C) to the original NaVOPO4 (128.5 mA h g-1 at 0.1 C and a capacity retention of 83.1% over 1000 cycles at 10 C). Moreover, the aqueous full cell with NaTi2(PO4)3 as the anode delivers a capacity of 114.7 mA h g-1 at 0.2 C (141 W h kg-1 energy density) and 80.6% capacity retention over 300 cycles at 5 C. The excellent electrochemical performance can be attributed to the nanosized structural and enhanced interfacial effect, which could be rewarding to construct electron transportation tunnels, thus speeding up the Na+-diffusion kinetics. The modified strategy provides an efficient approach to intensify the electrochemical performance, which exhibits potential application of the NaVOPO4 cathode for NIBs.
Collapse
Affiliation(s)
- Xing Shen
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Miao Han
- Beijing Institute of Technology, Chongqing Innovation Center, Chongqing 401120, China
| | - Xiaowei Li
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Zhang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Yang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Huizhou Liu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yong-Sheng Hu
- Key Laboratory for Renewable Energy, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Junmei Zhao
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
44
|
Huang Z, Wang T, Li X, Cui H, Liang G, Yang Q, Chen Z, Chen A, Guo Y, Fan J, Zhi C. Small-Dipole-Molecule-Containing Electrolytes for High-Voltage Aqueous Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106180. [PMID: 34699667 DOI: 10.1002/adma.202106180] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/07/2021] [Indexed: 06/13/2023]
Abstract
High-voltage aqueous rechargeable batteries are promising competitors for next-generation energy storage systems with safety and high specific energy, but they are limited by the absence of low-cost aqueous electrolytes with a wide electrochemical stability window (ESW). The decomposition of aqueous electrolytes is mainly facilitated by the hydrogen bond network between water molecules and the water molecules in the solvation sheath. Here, three types of small dipole molecules (small molecules containing a dipole; glycerol (Gly), erythritol (Et), and acrylamide (AM)) are reported to develop aqueous electrolytes with high safety and wide ESW (over 2.5 V) for aqueous lithium-, sodium-, and zinc-ion batteries, respectively. The solvation-sheath structures are explored by ab initio molecular dynamics (MD) simulations, demonstrating that three types of dipole molecules deplete the water molecules in the solvation sheath of the charge carrier and break the hydrogen bond network between the water molecules, thus effectively expanding the ESW. A battery constructed from lithium titanate and lithium manganate in Gly-containing electrolyte exhibits an output voltage of 2.45 V and retains a specific capacity of 119.6 mAh g-1 after 400 cycles. This work provides another strategy for exploiting low-cost high-voltage electrolytes for aqueous energy-storage systems.
Collapse
Affiliation(s)
- Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, China
| | - Tairan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xinliang Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Huilin Cui
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Guojin Liang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Qi Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, China
| | - Ze Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Ying Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering, Hong Kong SAR, 999077, China
| |
Collapse
|
45
|
Sun T, Feng XL, Sun QQ, Yu Y, Yuan GB, Xiong Q, Liu DP, Zhang XB, Zhang Y. Solvation Effect on the Improved Sodium Storage Performance of N-Heteropentacenequinone for Sodium-Ion Batteries. Angew Chem Int Ed Engl 2021; 60:26806-26812. [PMID: 34582084 DOI: 10.1002/anie.202112112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Indexed: 11/07/2022]
Abstract
The performance of electrode material is correlated with the choice of electrolyte, however, how the solvation has significant impact on electrochemical behavior is underdeveloped. Herein, N-heteropentacenequinone (TAPQ) is investigated to reveal the solvation effect on the performance of sodium-ion batteries in different electrolyte environment. TAPQ cycled in diglyme-based electrolyte exhibits superior electrochemical performance, but experiences a rapid capacity fading in carbonate-based electrolyte. The function of solvation effect is mainly embodied in two aspects: one is the stabilization of anion intermediate via the compatibility of electrode and electrolyte, the other is the interfacial electrochemical characteristics influenced by solvation sheath structure. By revealing the failure mechanism, this work presents an avenue for better understanding electrochemical behavior and enhancing performance from the angle of solvation effect.
Collapse
Affiliation(s)
- Tao Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xi-Lan Feng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Qi-Qi Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yue Yu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guo-Bao Yuan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Qi Xiong
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Da-Peng Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
| | - Xin-Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
46
|
Sun T, Feng X, Sun Q, Yu Y, Yuan G, Xiong Q, Liu D, Zhang X, Zhang Y. Solvation Effect on the Improved Sodium Storage Performance of N‐Heteropentacenequinone for Sodium‐Ion Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Tao Sun
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Xi‐Lan Feng
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 China
| | - Qi‐Qi Sun
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Yue Yu
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Guo‐Bao Yuan
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 China
| | - Qi Xiong
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Da‐Peng Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 China
| | - Xin‐Bo Zhang
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 China
| | - Yu Zhang
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry Beihang University Beijing 100191 China
- Beijing Advanced Innovation Center for Biomedical Engineering Beihang University Beijing 100191 China
| |
Collapse
|
47
|
Tang X, Wang P, Bai M, Wang Z, Wang H, Zhang M, Ma Y. Unveiling the Reversibility and Stability Origin of the Aqueous V 2 O 5 -Zn Batteries with a ZnCl 2 "Water-in-Salt" Electrolyte. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102053. [PMID: 34665530 PMCID: PMC8655202 DOI: 10.1002/advs.202102053] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/21/2021] [Indexed: 05/28/2023]
Abstract
Aqueous V2 O5 -Zn batteries, an alternative chemistry format that is inherently safer to operate than lithium-based batteries, illuminates the low-cost deployment of the stationary energy storage devices. However, the cathode structure collapse caused by H2 O co-insertion in aqueous solution dramatically deteriorates the electrochemical performance and hampers the operation reliability of V2 O5 -Zn batteries. The real-time phase tracking and the density functional theory (DFT) calculation prove the high energy barrier that inhibits the Zn2+ diffusion into the bulk V2 O5 , instead the ZnCl2 "water-in-salt electrolyte" (WiSE) can enable the dominant proton insertion with negligible lattice strain or particle fragment. Thus, ZnCl2 WiSE enables the enhanced reversibility and extended shelf life of the V2 O5 -Zn battery upon the high temperature storage. The improved electrochemical performance also benefits by the inhibition of vanadium cation dissolution, enlarged voltage window, as well as the suppression of the Zn dendrite protrusion. This study comprehensively elucidates the pivotal role of a concentrated ZnCl2 electrolyte to stabilize the aqueous batteries at both the static storage and dynamic operation scenarios.
Collapse
Affiliation(s)
- Xiaoyu Tang
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072China
| | - Pan Wang
- State Key Laboratory of Solidification ProcessingSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'an710072China
| | - Miao Bai
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072China
| | - Zhiqiao Wang
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072China
| | - Helin Wang
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072China
| | - Min Zhang
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072China
| | - Yue Ma
- State Key Laboratory of Solidification ProcessingCenter for Nano Energy MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene (NPU)Xi'an710072China
- Training Center for Engineering PracticesNorthwestern Polytechnical UniversityXi'an710129China
| |
Collapse
|
48
|
NAKAMOTO K, SAKAMOTO R, NISHIMURA Y, XIA J, ITO M, OKADA S. A Trifluoroacetate-based Concentrated Electrolyte for Symmetrical Aqueous Sodium-ion Battery with NASICON-type Na 2VTi(PO 4) 3 Electrodes. ELECTROCHEMISTRY 2021. [DOI: 10.5796/electrochemistry.21-00056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Kosuke NAKAMOTO
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Ryo SAKAMOTO
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Yuki NISHIMURA
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University
| | - Jingyu XIA
- Graduate School of Mechanical Engineering, Pusan National University
| | - Masato ITO
- Institute for Materials Chemistry and Engineering, Kyushu University
| | - Shigeto OKADA
- Institute for Materials Chemistry and Engineering, Kyushu University
| |
Collapse
|