1
|
Meng L, Jia X, Tang Z, Hu Y, Chen L, Zhao J. Electrochemical Biosensor Based on Dual-Ligand Functionalized Lanthanide-Encapsulated Polyoxometalate Conductive Polymer Film for Detecting Broad-Spectrum Tumor Marker MicroRNA-155. Inorg Chem 2024. [PMID: 39486069 DOI: 10.1021/acs.inorgchem.4c03674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In this work, a dual-ligand functionalized lanthanide-encapsulated selenotungstate [H2N(CH3)2]16Na2H10[Ho6(H2O)10(HPACA)4W10O28(Ac)2][SeW9O33]6 · 60H2O (1, HPACA = 2-pyrazinecarboxylic acid, HAc = acetic acid) was successfully acquired by simultaneously incorporating rigid HPACA and flexible Ac- ligands to one reaction system. Interestingly, the polyanion [Ho6(H2O)10(HPACA)4W10O28(Ac)2][SeW9O33]628- of 1 is composed of six trivacant Keggin-type [B-α-SeW9O33]8- units interconnected through an organic-inorganic hybrid dual-ligand bimetallic [Ho6(H2O)10(HPACA)4W10O28(Ac)2]20+ cluster. Moreover, the 1@PNMPy film (PNMPy = poly(N-methylpyrrole)) was successfully prepared through an electrochemical polymerization strategy. The doping of 1 significantly narrows the bandgap in the 1@PNMPy film, which enables the 1@PNMPy film to exhibit remarkable conductivity and rapid electron transfer capability. Then, the 1@PNMPy film-modified glassy carbon electrode was used to construct a 1@PNMPy-based electrochemical biosensor (ECBS), which achieves sensitive electrochemical detection (a low limit of detection of 0.108 fM and a wide concentration detection range of 10-8-10-15 M) for broad-spectrum tumor marker microRNA-155. Also, the 1@PNMPy-based ECBS has a good specific recognition performance for microRNA-155 in a variety of interfering media. The research not only contributes to a deeper understanding of the synthetic chemistry of multicomponent polyoxometalate (POM)-based materials but also can further expand innovative applications of multicomponent POM-based materials in electrochemical detection and electrochemical devices.
Collapse
Affiliation(s)
- Lina Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Xiaodan Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Yalun Hu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Wang S, Gong T, Chen L, Zhao J. Pyrazine Dicarboxylic Acid and Phosphite-Bridging Lanthanide-Incorporated Tellurotungstates and Their Fluorescence Performances. Inorg Chem 2024; 63:20470-20481. [PMID: 39418332 DOI: 10.1021/acs.inorgchem.4c03010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Two pyrazine dicarboxylic acid and phosphite-bridging lanthanide-incorporated tellurotungstates [H2N(CH3)2]12 Na4[Ln4(H2O)2(H2PDBA)2(HPO3)2W6O10][B-α-TeW8O31]4 · 70H2O [Ln = Eu3+ (1), Tb3+ (2); H2PDBA = 2,5-pyrazine dicarboxylic acid) were prepared, which contain four [B-α-TeW8O31]10- subunits and a deca-nuclear heterometallic [Ln(H2O)2(HPO3)2 (H2PDBA)2(W3O5)2]24+ cluster. Strikingly, two H2PDBA ligands connect two equivalent {W3Eu2O5(H2O)(B-α-TeW8O31)2(HPIIIO3)}8- moieties to form the polyanion skeleton, while the phosphite plays a bridging role in joining two lanthanide centers in the {W3Eu2O5(H2O)(B-α-TeW8O31)2(HPIIIO3)}8- moiety. In addition to the fluorescence (FL) properties of 1 and 2 at room temperature, their temperature-dependent FL properties were also investigated. In 80-298 K, FL intensities of 1 and 2 decrease as temperature increases, and their maximum relative sensitivities (Sr) are 3.70 and 1.99% K-1, whereas the minimum temperature uncertainties (δT) are 1.25 and 1.18 K for 1 and 2. In 298-973 K, upon increasing temperature, FL intensities of 1 and 2 initially rise to their maxima at 373 K and subsequently decrease. This is because samples of 1 and 2 undergo dehydration together with amorphization below 473 K and decomposition above this temperature. This work lays a foundation for the development for luminescent thermometers based on lanthanide-incorporated polyoxometalates.
Collapse
Affiliation(s)
- Shuo Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Tiantian Gong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
3
|
Liu L, Cui L, Jiang J, Chen L, Zhao J. Nicotinate-Modified Lanthanide-Substituted Selenotungstate and Its Catalase-like Activity for the Detection of H 2O 2 and Ascorbic Acid. Inorg Chem 2024; 63:20531-20540. [PMID: 39423351 DOI: 10.1021/acs.inorgchem.4c03165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
A rigid nicotinate-modified lanthanide-substituted selenotungstate [H2N(CH3)2]6Na3H[La4SeW8(H2O)16(nica)2O28][SeW9O33]2·32H2O (1, Hnica = nicotinic acid) was synthesized and consists of two trivacant Keggin [B-α-SeW9O33]8- fragments and one unusual [SeW4O18]8- fragment bridged by a heterometallic [La4W4(H2O)16(nica)2O28]18- cluster. In the heterometallic cluster, two carboxyl O atoms in two nicotinate ligands directly coordinate with two W atoms in a stable C-O-W-O-W-O six-membered ring fashion. According to its catalase-like activity, 1 was utilized to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by H2O2 to produce blue oxidized TMB (ox-TMB), which can be used to establish a colorimetric sensing method for the detection of ascorbic acid. This work not only provides a promising platform for detecting H2O2 and ascorbic acid but also expands the application potential of polyoxometalate-based materials in biological and clinical analyses.
Collapse
Affiliation(s)
- Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Limin Cui
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
4
|
Liu H, Tian A, Liu T, Ying J. Syntheses and performance study of three POM-viologen compounds with photo- and electric-stimulation response. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125143. [PMID: 39299071 DOI: 10.1016/j.saa.2024.125143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In recent years, stimulus responsive materials have received widespread attention. Under solvothermal conditions, three polyoxometalates-viologen organic-inorganic hybrid compounds were successfully constructed by combining a viologen ligand 1-(3-Nitro-benzyl)-[4,4']bipyridinyl-1-ium bromide (1,3-nibipy·Br) with octamolybdate, namely [Cu2(1,3-nibipy)4(H2O)2(β-Mo8O26)2]·2H2O (1), [Cu2(1,3-nibipy)4(H2O)4(β-Mo8O26)]·(β-Mo8O26) (2) and (1,3-Hnibipy)2·(β-Mo8O26) (3). These three compounds can exhibit color changing properties under both light and electrical stimulation. Through characterizations of PXRD, FT-IR, UV-vis spectra, XPS, EPR, CV, and other tests, the photochromic and electrochromic properties of these three compounds are caused by the generation of viologen radicals. Compounds 1-3 have a rapid photoresponse efficiency and can be made into mixed matrix films for use as ultraviolet detectors. In addition, coated filter paper synthesized from acetonitrile and compounds can serve as an innovative erasable ink-free printing material medium, which is suitable for various erasable ink-free printing and anti-counterfeiting fields. We further investigated the electrochromic devices prepared from compounds 1-3, which achieved color change at a voltage of around -0.2 V and exhibited good stability after 500 cycles.
Collapse
Affiliation(s)
- Huan Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China.
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
5
|
Zhao HF, Liu FF, Ding QR, Wang D, Zhang J, Zhang L. Modulated assembly and structural diversity of heterometallic Sn-Ti oxo clusters from inorganic tin precursors. NANOSCALE 2024; 16:16451-16457. [PMID: 39171723 DOI: 10.1039/d4nr02644f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Through modulating the multidentate ligands, solvent environments, and inorganic tin precursors during the synthesis processes, we have successfully prepared a series of unprecedented heterometallic Sn-Ti oxo clusters with structural diversity and different physiochemical attributes. Initially, two Sn6Ti10 clusters were synthesized using trimethylolpropane as a structure-oriented ligand and SnCl4·5H2O as a tin source. Then, when a larger pentadentate ligand di(trimethylolpropane) was used instead of trimethylolpropane and aprotic acetonitrile solvent was introduced into the reaction system, four low-nuclearity Sn-Ti oxo clusters were discovered, including two Sn1Ti1, one Sn2Ti2 and one Sn2Ti6. Finally, two mixed-valence state clusters, SnII4SnIV2TiIV14 and SnII4SnIV4TiIV20, were obtained by transforming the tin precursor from SnCl4·5H2O to SnCl2·2H2O and adjusting the acetonitrile solution with trace acetic acid/formic acid. Sn8Ti20 is the highest-nuclearity heterometallic Sn-Ti oxo cluster to date. Moreover, comparative electrocatalytic CO2 reduction experiments were carried out, and it was concluded that the Sn8Ti20-decorated electrode showed the most satisfactory performance due to the influence of mixed-valence states of the Sn atoms and the charging effects provided by 20 Ti4+ ions. This study presents important guiding significance for the design, synthesis and application optimization of functional heterometallic nanoclusters.
Collapse
Affiliation(s)
- Hui-Fang Zhao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Fang-Fang Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Qing-Rong Ding
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Di Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- Institute of Modern Optics, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
6
|
Cong YC, Zhu ZK, Sun C, Li XX, Zheng ST. Indium-Assisted Construction of {SiNb 18O 54}-Based Aggregates and Their Assembly into Extended Polyoxoniobate Architectures. Inorg Chem 2024. [PMID: 39259874 DOI: 10.1021/acs.inorgchem.4c03035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
In this research, indium ions were introduced into polyoxoniobates (PONbs) reaction systems to facilitate the construction of different {SiNb18O54}-based aggregates, including an {In(en)2{SiNb18O54}2} (en = ethylenediamine) dimer, an {[InO2][In2(en)O3]2{SiNb18O54}3} trimer, and an {[In(en)2][InO2][In7(en)5O9]{SiNb18O54}4} tetramer. Interestingly, these aggregates were further assembled into three uncommon extended PONb architectures in the presence of [Cu(en)2]2+ complexes, namely, H3[Cu(en)2(H2O)][Cu(en)2]6[Cu(en)2]2{[In(en)2][K2{SiNb18O54}(H2O)6]2}·1.5en·16H2O, H9{[Cu(en)2]6{[Cu(en)2]3[Cu(en)2(H2O)][In(H2O)2][In2(en)(H2O)2(OH)]2{SiNb18O54}3}·5en·29H2O, and H14[Cu(en)2]0.5[Cu(en)2(H2O)]{[Cu(en)2]2{[Cu(en)2]3[Cu(en)2(H2O)]5[K(H2O)2][In(H2O)2][In(en)2][In7(OH)9(en)5]{SiNb18O54}4}·7en·39H2O. In addition, all of them have good water vapor adsorption capacities and moderate proton transport capabilities. The above results indicate that introducing suitable heteroatoms to induce the aggregation PONb building blocks and further assembling them into new structures is an effective strategy to enrich the PONbs' structural diversity and develop new functional materials.
Collapse
Affiliation(s)
- Yu-Chen Cong
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zeng-Kui Zhu
- College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
7
|
Lin JW, Zhou Y, Xiao HP, Wu LL, Li PC, Huang MD, Xie D, Xu P, Li XX, Li ZX. Antitumor effects of a Sb-rich polyoxometalate on non-small-cell lung cancer by inducing ferroptosis and apoptosis. Chem Sci 2024:d4sc03856h. [PMID: 39246335 PMCID: PMC11376145 DOI: 10.1039/d4sc03856h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Polyoxometalates (POMs) are a class of anionic metal-oxygen clusters with versatile biological activities. Over the past decade, an increasing number of POMs, especially Sb-rich POMs, have been proven to exert antitumor activity. However, the antitumor effects and mechanisms of POMs in the treatment of non-small cell lung cancer (NSCLC) remain largely unexplored. This study employed a Sb-rich {Sb21Tb7W56} POM (POM-1) for NSCLC therapy and investigated its mechanism of action. Our results demonstrated that POM-1 exhibited cytotoxicity against H1299 and A549 cells with IC50 values of 3.245 μM and 3.591 μM, respectively. The migration and invasion were also inhibited by 28.05% and 76.18% in H1299 cells, as well as 36.88% and 36.98% in A549 cells at a concentration of 5 μM. In a tumor xenograft mouse model, POM-1 suppressed tumor growth by 76.92% and 84.62% at doses of 25 and 50 mg kg-1, respectively. Transcriptomic analysis indicated the alteration of ferroptosis and apoptosis signaling pathways in POM-treated NSCLC cells. Subsequent experimentation confirmed the induction of ferroptosis, evidenced by 5.6-fold elevated lipid peroxide levels with treatment of 5 μM POM-1, alongside increased expression of ferroptosis-associated proteins. Additionally, the apoptosis induced by POM-1 was also validated by the 19.67% and 30.1% increase in apoptotic cells in H1299 and A549 cells treated with 5 μM POM-1, respectively, as well as the upregulated activation of caspase-3. In summary, this study reveals, for the first time, ferroptosis as the antitumor mechanism of Sb-rich POM, and that synergism with ferroptosis and apoptosis is a highly potent antitumor strategy for POM-based antitumor therapy.
Collapse
Affiliation(s)
- Jie-Wei Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Yang Zhou
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
- College of Biological Science and Engineering, Fuzhou University Fuzhou Fujian 350108 China
| | - Hui-Ping Xiao
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou Zhejiang 310005 China
| | - Peng-Cheng Li
- Shanghai Tumor Hospital, Fudan University Shanghai 200032 China
| | - Ming-Dong Huang
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
- College of Biological Science and Engineering, Fuzhou University Fuzhou Fujian 350108 China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University Fuzhou Fujian 350108 China
| | - Xin-Xiong Li
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| | - Zhi-Xin Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| |
Collapse
|
8
|
Liu G, Zeng B, Liu Y, Cui Q, Wang Y, Li Y, Chen L, Zhao J. A Lanthanide-Incorporated Phospho(III)tungstate Aggregate Constructed from [HP IIIW 8O 31] 10- and [W 11O 39] 12- Building Blocks and Its Nanocomposite with CdS for Ultrasensitive Photoelectrochemical Detection of Oxytetracycline. Inorg Chem 2024; 63:15348-15358. [PMID: 39106517 DOI: 10.1021/acs.inorgchem.4c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
A novel tartronic acid decorated hexa-CeIII-incorporated phospho(III)tungstate aggregate (C4H12NO)6Na18H2[(HPW8O31)2[W11O39]2(H2TAD)4(H2O)4W4Ce6H2P2O14]·84H2O (1, H3TAD = tartronic acid) was synthesized by a one-step assembly strategy. Its main skeleton is constructed from two [W11O39]12- fragments, two [HPIIIW8O31]10- segments and one H2TAD--ornamented dodecanuclear heterometallic [W4Ce6H2PIII2O14(H2TAD)4(H2O)4]18+ cluster. In the structure, the [HPIIIO3]2- groups not only work as the heteroatom template to induce the formation of lacunary [HPIIIW8O31]10- segments but also function as the connector to bridge Ce3+ cations. With the help of a reaction strategy of combining ultrasonication treatment with the continuous ion layer adsorption method, the 1/CdS composite was constructed and exhibits prominent photoelectrochemical activity. The 1/CdS composite was used as a photoelectrochemical sensor for oxytetracycline detection at 0 V (vs Ag/AgCl), which displays excellent properties with quick response and low limit of detection (0.042 nM). This work can provide some helpful references in the construction of novel PIII-induced polyoxometalates consisting of different building blocks and can extend the applications of polyoxometalate-based nanocomposites into photoelectrochemical detection for antibiotics as well as biomolecules.
Collapse
Affiliation(s)
- Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Baoxing Zeng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Qingqing Cui
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanying Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
9
|
Wang D, Tang Z, Zhang W, Chen Y, Chen L, Song S, Zhao J. Unprecedented Organogermanium Functionalized Ge IV-Sb III-Templating Polyoxotungstate Nanocluster for Photothermal-Chemodynamic Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405068. [PMID: 39077978 DOI: 10.1002/smll.202405068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Indexed: 07/31/2024]
Abstract
The function-oriented synthesis of polyoxometalate (POM) nanoclusters has become an increasingly important area of research. Herein, the well-known broad-spectrum anticancer drug Ge-132 which contains GeIV as potential heteroatoms and carboxyl coordination sites, is introduced to the POM system, leading to the first organogermanium functionalized GeIV-SbIII-templating POM nanocluster Na4[H2N(CH3)2]16 H18[Sm4(H2O)12W4O14Ge(CH2CH2COOH)]2[SbW9O33]4[Ge(CH2CH2COOH) SbW15O54]2·62H2O (1). An unprecedented organogermanium templating Dawson-like [Ge(CH2CH2COOH)SbW15O54]12- building block is discovered. To take advantage of the potential pharmaceutical activity of such an organogermanium-functionalized POM cluster, 1 is further composited with gold nanoparticles (NPs) to prepare 1-Au NPs, which doubles the blood circulation time of 1-based nanodrug. Efficient separation of photogenerated charges in 1-Au NPs largely boosts the photothermal conversion efficiency (PCE = 55.0%), which is nearly 2.1 times that of either single 1 (PCE = 26.7%) or Au NPs (PCE = 26.2%), and simultaneously facilitate the generation of toxic activate reactive oxygen species in tumor microenvironment. Based on these findings, it is demonstrated that 1-Au NPs are a multifunctional and renal clearable nanomedicine with great potential in photoacoustic imaging guiding photothermal-chemodynamic therapy for breast cancer.
Collapse
Affiliation(s)
- Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Wenshu Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yan Chen
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Shiyong Song
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
10
|
Hui K, Liu T, Yang ML, Tian AX, Ying J. Four polyoxomolybdated-based 3D compounds as supercapacitors and amperometric sensors. Mikrochim Acta 2024; 191:410. [PMID: 38900272 DOI: 10.1007/s00604-024-06457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Four polyoxomolybdated compounds based on Tetp (Tetp = 4-[4-(2-Thiophen-2-yl-ethyl)-4H-[1, 2, 4]triazole-3-yl]-pyridine), namely [Zn(Tetp)2(H2O)2][(β-Mo8O26)0.5] (Zn-Mo8), [Co(Tetp)2(H2O)2][(β-Mo8O26)0.5] (Co-Mo8), [Cu4(Tetp)6(H2O)2]{H3[K(H2O)3](θ-Mo8O26)(Mo12O40)}·8H2O (Cu-Mo20) and [Cu3(Tetp)3][PMo12O40]·H2O (Cu-PMo12) are synthesized by hydrothermal methods and are used as electrode materials for supercapacitors(SCs) and electrochemical sensors. Inserting polyoxometalates (POMs) with redox active sites into transition metal compounds (TMCs) can improve the internal ion/electron transfer rate, thus effectively enhancing the electrochemical performance. Compared with the parent POMs, four compounds exhibit excellent electrochemical properties. In particular, Cu-PMo12 shows an excellent specific capacitance (812.3 F g-1 at 1 A g-1) and stability (94.42%), as well as a wide detection range (0.05 to 1250 µM) and a low detection limit (0.057 µM) for NO2- sensing.
Collapse
Affiliation(s)
- Kaili Hui
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Mengle L Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China.
| | - Aixiang X Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China.
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China
| |
Collapse
|
11
|
Cong YC, Xiao HP, Cai PW, Sun C, Sun YQ, Qi MQ, Li XX, Zheng ST. An Organodiphosphate-Containing Polyoxoniobate Ring and Its Assembly into a Three-Dimensional Framework through Hydrogen Bonding. Inorg Chem 2024; 63:9204-9211. [PMID: 38701353 DOI: 10.1021/acs.inorgchem.4c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In this work, a novel organodiphosphate-containing inorganic-organic hybrid polyoxoniobate (PONb) ring {(PO3CH2CH2PO3H)4Nb8O16}4- (Nb8P8) has been achieved by a one-pot hydrothermal method. The ring is constructed from a tetragonal {Nb8O36} motif and four {PO3CH2CH2PO3H} ligands. Interestingly, Nb8P8 can be joined together via K-H2O clusters {K2(H2O)4(OH)2} to form one-dimensional chains {[K2(H2O)4(OH)2]Nb8P8}n and further linked by {Cu(en)2}2+ (en = ethylenediamine) complexes, resulting in a three-dimensional supramolecular framework {[Cu(en)2]2[K2(H2O)4(OH)2]Nb8P8}·3en·H2O (1). 1 exhibits good chemical and thermal stability and has a high water vapor adsorption capacity of ≤224 cm3 g-1 (22.71 mol·mol-1) at 298 K, outperforming most of the known polyoxometalate-based materials. Impedance measurements prove that 1 can transfer protons with moderate conductivity. This study not only contributes to the structural diversity of organodiphosphate-containing PONbs and PONb rings but also provides a reference for the development of PONb-based materials with unique performance.
Collapse
Affiliation(s)
- Yu-Chen Cong
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hui-Ping Xiao
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ping-Wei Cai
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Ming-Qiang Qi
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
12
|
Gong Y, Liu T, Yang M, Tian A, Ying J. A series of viologen/POM materials with discoloration properties under the stimulation of X-ray, UV, electricity, and organic amines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124154. [PMID: 38492466 DOI: 10.1016/j.saa.2024.124154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
At present, viologen-based compounds can undergo reversible chemical/physical changes under external stimuli such as light and electricity. This makes these compounds have potential applications in smart windows, displays, and sensors. In order to obtain such materials, three viologen-POM inorganic-organic hybrid compounds have been successfully synthesized by a hydrothermal method, namely {[Cu2(cybpy)8(α-P2W18O62)2}·18H2O (1), (Hbpy)·(cybpy)·[H4(α-P2W18O62)]}·32H2O (2) and {(Hcybpy)2(β-Mo8O26)}·2H2O (3) (cybpy·Br = 1-cyclobutylmethyl-[4,4']bipyridinyl-1-ium bromide, bpy = 4,4'-bipyridine). Three compounds exhibit good discoloration behaviors under various external stimuli, especially under the stimulation of X-ray, UV, electricity, and organic amines. In addition, in order to promote the compounds in the actual production of more applications, they were doped into the polymer matrix to construct hybrid films, which not only have the same response to external stimulation but also increase the repeatability of the photochromic process. Moreover, 1-3 powder samples in ethanol solution were ultrasonic treated and deposited on filter paper, which can be successfully used in erasable inkless printing.
Collapse
Affiliation(s)
- Yuan Gong
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China
| | - Tao Liu
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China
| | - Mengle Yang
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China.
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China.
| |
Collapse
|
13
|
Niu B, Song Y, Yu A, Ma P, Wang J, Niu J. Tetra-Ln 3+-Implanted Tellurotungstates Covalently Modified by dl-Malic Acid: Proton Conduction and Photochromic Properties. Inorg Chem 2024; 63:8791-8798. [PMID: 38687152 DOI: 10.1021/acs.inorgchem.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Three unique dl-malic acid covalently modified tetra-Ln3+-implanted tellurotungstates [H2(CH3)2]9NaH9[Ln4(H2O)14W6O13(OH)5(Mal)2(B-α-TeW9O33)4]·48H2O [Ln = La3+ (1), Ce3+ (2), Pr3+ (3); H3Mal = dl-malic acid] were fabricated by reacting Na2TeO3, Na2WO4·2H2O, Mal, and LnCl3·6H2O with dimethylamine hydrochloride in an aqueous solution. The most prominent architectural feature of these compounds is the covalent connection mode of an organic ligand and a polyoxometallate backbone, which is relatively rare in the realm of polyoxotungstates. The tetrameric polyanion can be deemed as four [TeW9O33]8- fragments fused together via an intriguing hexanuclearity [W6O13(OH)5(Mal)2Ln4(H2O)14]13+ cluster. Impedance measurements manifest that all three complexes display splendid proton conduction properties, with an exceptional conductivity for 2 up to 2.48 × 10-2 S·cm-1 under 85 °C and 95% relative humidity. Moreover, compounds 1 and 3 exhibited fast reversible photochromic properties with allochroic half-life periods t1/2 of 1.046 and 0.544 min, respectively.
Collapse
Affiliation(s)
- Bingxue Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yizhen Song
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Anqi Yu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
14
|
Liu Y, Liu G, Zeng B, Li Y, Chen L, Zhao J. 2,5-Thiophenedicarboxylic Acid Bridging Hexameric Ce III-Substituted Selenotungstate and Its Application for Detecting Mucin 1. Inorg Chem 2024; 63:7858-7868. [PMID: 38634470 DOI: 10.1021/acs.inorgchem.4c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The development of polyoxometalate chemistry not only is derived from the continuous discovery of novel polyoxometalates (POMs) but also stems from the exploitation of their new functionalities. In this work, we obtained a rigid sulfur-containing heterocyclic ligand-linking aggregate [N(CH3)4]10Na6H6[Ce8(H2O)26W8(HTDA)2(TDA)2O20][SeW4O18]2[SeW9O33]4·112H2O (1) (H2TDA = 2,5-thiophenedicarboxylic acid). Its polyanionic unit consists of one [Ce4(H2O)13W4O10(HTDA)(TDA)O10]18+ cluster and two kinds of Keggin-type [SeW4O18] and [SeW9O33] segments. It is noteworthy that H2TDA ligands not only work as connectors to link two symmetrical {[Ce4(H2O)13W4(HTDA)(TDA)O10][SeW4O18][SeW9O33]2}11- units but also function as ornaments to graft to the polyanionic backbone. Furthermore, 1 and 3,4-ethylenedioxythiophene (EDOT) were deposited on the glassy carbon electrode (GCE) by the electropolymerization (EPM) method, resulting in a 1-poly(3,4-ethylenedioxythiophene) (1-PEDOT) composite film, which can provide sufficient binding sites to immobilize Au nanoparticles (Au NPs). Hereafter, the Au NPs-immobilized 1-PEDOT modified electrode (Au/1-PEDOT/GCE) was used to construct an electrochemical aptasensor to detect mucin 1, showing a low detection limit of 29.5 fM in the Tris solution. This work not only demonstrates that rigid heterocyclic ligands are beneficial for the creation of novel rare-earth-substituted selenotungstate hybrids but also provides more enlightenment for POM-based materials used for electrochemical detection of cancer markers.
Collapse
Affiliation(s)
- Yu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Baoxing Zeng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
15
|
Sun Y, Xie S, Tang Z, Zhao J, Chen L. An Innovative Sb III-W VI-Cotemplated Antimonotungstate with Potential in Sensing Paroxetine Electrochemically. Inorg Chem 2024; 63:7123-7136. [PMID: 38591874 DOI: 10.1021/acs.inorgchem.3c03605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Advances in polyoxometalate (POM) self-assembly chemistry are always accompanied by new developments in molecular blocks. The exploration and discovery of uncommon building blocks offer great possibilities for generating unprecedented POM clusters. An intriguing SbIII-WVI-cotemplated antimonotungstate [H2N(CH3)2]11Na[SbW9O33]Er2(H2O)2Sb2[SbWVIW15O57]·22H2O (1) was synthesized, which comprises a classical trivacant Keggin [SbW9O33]9- ({SbW9}) fragment and an unclassical lacunary Dawson-like [SbWVIW15O57]15- ({SbWVIW15}) subunit. Notably, the Dawson-like {SbWVIW15} subunit is the first example of a [SbO3]3- and [WVIO6]6- mixed-heteroatom-directing POM segment. Hexacoordinated [WVIO6]6- can not only serve as the heteroatom function but its additional oxygen sites can also link to lanthanide, main-group metal, and transition-metal centers to form the innovative structure. {SbWVIW15} and {SbW9} subunits are joined by the heterometallic [Er2(H2O)2Sb2O17]22- cluster to give rise to an asymmetric sandwich-type architecture. To further realize its potential application in electrochemical sensing, a conductive 1@rGO composite was obtained by the electrochemical deposition of 1 with graphene oxide (GO). Using a 1@rGO-modified glassy carbon electrode as the working electrode, an electrochemical biosensor for detecting the antidepressant drug paroxetine (PRX) was successfully constructed. This work can provide a viable strategy for synthesizing mixed-heteroatom-directing POMs and demonstrates the application of POM-based materials for the electrochemical detection of drug molecules.
Collapse
Affiliation(s)
- Yancai Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Saisai Xie
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
16
|
Zhang XY, Fan JA, Chen ZH, Sun C, Zheng ST. The mechanism governing the formation of intermolecular charge transfer bands: a series of polyoxomolybdates as a case study. Dalton Trans 2024; 53:6162-6167. [PMID: 38488144 DOI: 10.1039/d4dt00108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A series of proof-of-concept models of polyoxomolybdates with different protonated disubstituted aniline counterions and the same β-Mo8O26 polyanion were synthesized to study the mechanism governing the formation of the intermolecular charge transfer (inter-CT) band.
Collapse
Affiliation(s)
- Xiao-Yue Zhang
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Jin-Ai Fan
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Zhe-Hong Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China.
| |
Collapse
|
17
|
Li B, Lan Y, Su H, Xu J, Zhao Q, Ma Y, Zheng Q, Xuan W. {Mo 4}-directed structural evolution of highly reduced molybdenum red clusters for efficient proton conduction. Dalton Trans 2024; 53:6184-6189. [PMID: 38511430 DOI: 10.1039/d4dt00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
A series of highly reduced Mo red clusters {Mo28} (1), {Mo30} (2), and {Mo40} (3) are synthesized from the rational assembly of planar {MoV4} building blocks and employed for proton conduction. 3 exhibits the best conductivity of 7.56 × 10-3 S cm-1 under optimal conditions due to the most efficient hydrogen-bonding network.
Collapse
Affiliation(s)
- Bingbing Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| | - Yuxin Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| | - Heyang Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| | - Jiaxin Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| | - Qixin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| | - Yubin Ma
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| | - Qi Zheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, P R China.
| | - Weimin Xuan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, P R China.
| |
Collapse
|
18
|
Hao X, Liu T, Li Y, Ying J, Tian A, Yang M, Wang X. Four POM-Viologen Color-Changing Materials with Fast Color Response under Various External Stimuli. Inorg Chem 2024; 63:5852-5864. [PMID: 38507718 DOI: 10.1021/acs.inorgchem.3c04282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Four kinds of polyoxometalate (POM)-viologen compounds were synthesized by hydrothermal method, namely (1-cby)2·[H2(SiMo12O40)]·2H2O (1), (1-cby)2·[H2(SiW12O40)]·2H2O (2), (1-cby)2·(1,1'-bcby)2·{H4[Co4(H2O)2(PW9O34)2]}·12H2O (3), (1-cby)·(1,1'-bcby)·[H(α-PW11O39)CoII(1-cby)]·8H2O (4) (1-cby·Br = 1-Cyclopropylmethyl-[4,4']bipyridinyl-1-ium bromide, 1,1'-bcby·Br = 1,1'-Bis-cyclopropylmethyl-[4,4']bipyridinyl-1-ium bromide). These four POM-viologen compounds exhibit one-dimensional supramolecular network structures. Especially, compound 3 contains a rare sandwich POM subunit {Co4(H2O)2(PW9O34)2}10-. These four compounds can be used as color-changing materials, and they all exhibit noticeable color changes upon exposure to light, heat, and electricity. The discoloration mechanism involves viologen derivatives with electron-deficient properties accepting electrons from POM with electron-rich properties under external stimulation, leading to the formation of viologen free radicals. Among them, compounds 1 and 2 also have good properties for ink-free erasable printing, double anticounterfeiting, and ultraviolet detector because of their rapid color response to ultraviolet (UV) light. In addition, compounds 1-4 also show different color changes in the detection of volatile amines.
Collapse
Affiliation(s)
- Xinxin Hao
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Yang Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Mengle Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
19
|
Yu L, Ye J, Li DH, Sun YQ, Li XX, Zheng ST. A tetrahedron-shaped polyoxoantimotungstate encapsulating a hexanuclear octahedral lanthanide-oxo cluster for an amperometric bromate sensor. Dalton Trans 2024; 53:5258-5265. [PMID: 38407346 DOI: 10.1039/d3dt03789d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
An inorganic hexalanthanide-oxo-cluster-encapsulated antimotungstate, K2Na3H43[Nd6(OH)6(H2O)6(B-α-SbW9O33)4]2·67H2O (1), has been successfully synthesized by a facile one-step hydrothermal reaction method. The tetrahedron-shaped two-shell {Nd6(OH)6(H2O)6(B-α-SbW9O33)4}(1a) polyanion is composed of a novel pure lanthanide-oxo {Nd6(μ3-OH)6(H2O)6} octahedron and {(B-α-SbW9O33)4} tetrahedron. After being effectively loaded onto a glassy carbon electrode (GCE) by electrostatic adsorption using polydiallyldimethyl ammonium chloride (PDDA)-functionalized multi-walled carbon nanotubes (MWCNTs), compound 1 exhibits electrochemical activity for the reduction of bromate ions with good selectivity, a high sensitivity of 186 μA mM-1 and a detection limit that has reached 1.9 μM. To the best of our knowledge, this is the first example of an amperometric bromate sensor based on Ln-containing antimotungstates, which will provide new materials for electrochemical sensors.
Collapse
Affiliation(s)
- Lan Yu
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Jing Ye
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Da-Huan Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Yan-Qiong Sun
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Xin-Xiong Li
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| | - Shou-Tian Zheng
- College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, People's Republic of China.
| |
Collapse
|
20
|
Zhang D, Wang C, Lin Z, Dong LZ, Zhang C, Yao Z, Lei P, Dong J, Du J, Chi Y, Lan YQ, Hu C. Fullerene-like Niobovanadate Cage Built from {(Nb)V 5 } Pentagon. Angew Chem Int Ed Engl 2024; 63:e202320036. [PMID: 38191990 DOI: 10.1002/anie.202320036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
The striking aesthetic appeal of fullerene-like clusters has captured the interest of researchers. Nevertheless, the assembly of fullerene-like polyoxovadanadate (POV) cages remains a significant challenge due to the scarcity of suitable pentagonal motif. Herein, we have successfully synthesized the first fullerene-like all-inorganic POV cage, {(V2 O)V30 Nb12 O102 (H2 O)12 } (V30 Nb12 ), by introducing Nb into the POVs. V30 Nb12 is assembled by 12 heterometallic {(Nb)V5 } pentagons through sharing V centers with Ih symmetry, reminiscent of C60 . To our knowledge, the fullerene-like V30 Nb12 not only represents the highest-nuclearity POV cage but also stands as the first niobovanadate cluster. Notably, V30 Nb12 exhibits excellent solution stability, as confirmed by ESI-MS, FT-IR and UV/Vis spectra. As there is no protection organic ligand on its outer surface, V30 Nb12 can be further modified with Cu-complexes to form a fullerene-like cluster based zigzag chain (Cu-V30 Nb12 ).
Collapse
Affiliation(s)
- Di Zhang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Changan Wang
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Zhengguo Lin
- College of Chemistry and Materials Science, Hebei Normal University, Hebei, 050024, P. R. China
| | - Long-Zhang Dong
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Chao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, Henan University, Henan, 450046, P. R. China
| | - Zishuo Yao
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Peng Lei
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jing Dong
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jianxin Du
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yingnan Chi
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Changwen Hu
- Key Laboratory of Cluster Science Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
21
|
Song N, Lu M, Liu J, Lin M, Shangguan P, Wang J, Shi B, Zhao J. A Giant Heterometallic Polyoxometalate Nanocluster for Enhanced Brain-Targeted Glioma Therapy. Angew Chem Int Ed Engl 2024; 63:e202319700. [PMID: 38197646 DOI: 10.1002/anie.202319700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Giant heterometallic polyoxometalate (POM) clusters with precise atom structures, flexibly adjustable and abundant active sites are promising for constructing functional nanodrugs. However, current POM drugs are almost vacant in orthotopic brain tumor therapy due to the inability to effectively penetrate the blood-brain barrier (BBB) and low drug activity. Here, we designed the largest (3.0 nm × 6.0 nm) transition-metal-lanthanide co-encapsulated POM cluster {[Ce10 Ag6 (DMEA)(H2 O)27 W22 O70 ][B-α-TeW9 O33 ]9 }2 88- featuring 238 metal centers via synergistic coordination between two geometry-unrestricted Ce3+ and Ag+ linkers with tungsten-oxo cluster fragments. This POM was combined with brain-targeted peptide to prepare a brain-targeted nanodrug that could efficiently traverse BBB and target glioma cells. The Ag+ active centers in the nanodrug specifically activate reactive oxygen species to regulate the apoptosis pathway of glioma cells with a low half-maximal inhibitory concentration (5.66 μM). As the first brain-targeted POM drug, it efficiently prolongs the survival of orthotopic glioma-bearing mice.
Collapse
Affiliation(s)
- Nizi Song
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Mengya Lu
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Jiancai Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ming Lin
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ping Shangguan
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Jiefei Wang
- Academy for Advanced Interdisciplinary Studies, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Bingyang Shi
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan, 475004, China
| |
Collapse
|
22
|
Li B, Xu X, Lv Y, Wu Z, He L, Song YF. Polyoxometalates as Potential Artificial Enzymes toward Biological Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305539. [PMID: 37699754 DOI: 10.1002/smll.202305539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/09/2023] [Indexed: 09/14/2023]
Abstract
Artificial enzymes, as alternatives to natural enzymes, have attracted enormous attention in the fields of catalysis, biosensing, diagnostics, and therapeutics because of their high stability and low cost. Polyoxometalates (POMs), a class of inorganic metal oxides, have recently shown great potential in mimicking enzyme activity due to their well-defined structure, tunable composition, high catalytic efficiency, and easy storage properties. This review focuses on the recent advances in POM-based artificial enzymes. Different types of POMs and their derivatives-based mimetic enzyme functions are covered, as well as the corresponding catalytic mechanisms (where available). An overview of the broad applications of representative POM-based artificial enzymes from biosensing to theragnostic is provided. Insight into the current challenges and the future directions for POMs-based artificial enzymes is discussed.
Collapse
Affiliation(s)
- Bole Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaotong Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yanfei Lv
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhaohui Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lei He
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
23
|
Liu Y, Zheng Y, Zhang P, Hou J. Highly Efficient Oxygen Reduction N-Doped Carbon Nanosheets Were Prepared by Hydrothermal Carbonization. Molecules 2023; 29:3. [PMID: 38202586 PMCID: PMC10780226 DOI: 10.3390/molecules29010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
A metal-free carbon catalyst is a kind of oxygen reduction catalyst with great prospects. It is an important material with potential to replace the traditional Pt catalyst. In this paper, a kind of irregular and ultra-thin carbon nanosheet (K180M-300-900) with high catalytic activity was synthesized by hydrothermal calcination using okra as a biomass and NH4Cl as an N source. The prepared nitrogen-doped metal-free catalyst with high pyridine-N and graphitic-N provides an extremely large number of active sites and has certain lattice defects. Ultra-thin carbon nanosheets promote sufficient contact between the catalyst and electrolyte, promote the diffusion of oxygen, and result in a faster transfer rate of electrons. The initial potential and half-slope potential of K180M-300-900 are 0.99 V and 0.82 V, respectively, which are comparable to those of 20% Pt/C. In addition, the stability and methanol tolerance of this catalyst (K180M-300-900) are better than 20% Pt/C, so it has great development potential and application value. This result provides a new method to prepare metal-free carbon materials that will take the place of traditional Pt catalysts.
Collapse
Affiliation(s)
- Yuchen Liu
- School of Physics and Information Engineering, Shanxi Normal University, No.339 Taiyu Road, Xiaodian District, Taiyuan 030031, China; (Y.L.); (Y.Z.); (P.Z.)
| | - Yajie Zheng
- School of Physics and Information Engineering, Shanxi Normal University, No.339 Taiyu Road, Xiaodian District, Taiyuan 030031, China; (Y.L.); (Y.Z.); (P.Z.)
| | - Peiyun Zhang
- School of Physics and Information Engineering, Shanxi Normal University, No.339 Taiyu Road, Xiaodian District, Taiyuan 030031, China; (Y.L.); (Y.Z.); (P.Z.)
| | - Junhua Hou
- School of Physics and Information Engineering, Shanxi Normal University, No.339 Taiyu Road, Xiaodian District, Taiyuan 030031, China; (Y.L.); (Y.Z.); (P.Z.)
- Extreme Optical Collaborative Innovation Center, Shanxi University, No. 92, Wucheng Road, Xiaodian District, Taiyuan 030006, China
- Modern College of Humanities and Sciences, Shanxi Normal University, No.501 Binhe West Road, Yaodu District, Linfen 041000, China
| |
Collapse
|
24
|
Yu S, Liu T, Ying J, Tian A, Yang M, Wang X. A series of isopolymolybdate-viologen hybrids with photo-, thermo- and electro-chromic properties. Dalton Trans 2023; 52:16631-16639. [PMID: 37888872 DOI: 10.1039/d3dt02928j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The combination of electron-deficient viologen ligands with electron-rich POMs is a typical acceptor-donor system that has recently received much attention. Under solvothermal and hydrothermal conditions, by introducing three symmetric viologen ligands into POM-based hybrid materials, we successfully constructed four POMs-viologen inorganic-organic hybrid compounds, namely (1,3-bcbpy)2·(δ-Mo8O26) (1) (1,3-bcbpy·2Cl = 1,1'-bis(3-carboxybenzyl)-4,4'-bipyridine dichloride), {CoII(1,4-bcbpy)2(H2O)2[H2(β-Mo8O26)]}·2H2O·2CH2O (2), (1,4-bcbpy)2·(δ-Mo8O26)·2H2O (3) (1,4-bcbpy·2Cl = 1,1'-bis(4-carboxybenzyl)-4,4'-bipyridine dichloride, CH2O = formaldehyde), and {CuII(1,1-pmbby)2(H2O)[H2(β-Mo8O26)2]}·5H2O·C2H7N (4) (1,1-pmbby·2Cl = 1,1'-[1,4-phenylbis(methylene)]bis-(4,4'-bipyridine)dichloride, C2H7N = dimethylamine). These four compounds exhibit different fascinating structures, especially compound 4 is a typical metal-organic framework. Compounds 1-4 exhibit good discoloration behaviors under various external stimuli. For example, compounds 1-4 showed a positive response to the irradiation from a 300 W Xe lamp. When a positive voltage was applied to the ECD based on compounds 1-4, 1/2/3/4-ECD underwent a significant color conversion. What's more, compound 4 also showed obvious discoloration results after heating. In a word, 1-4 are multifunctional discoloration materials under different external stimuli. In addition, the coated filter paper prepared based on compound 3 can be used as a new printing material medium and can be successfully applied in erasable inkless printing and dual anti-counterfeiting.
Collapse
Affiliation(s)
- Shuang Yu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Mengle Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| |
Collapse
|
25
|
Cao YD, Mu WX, Gong M, Fan LL, Han J, Liu H, Qi B, Gao GG. Enhanced catalysis of a vanadium-substituted Keggin-type polyoxomolybdate supported on the M 3O 4/C (M = Fe or Co) surface enables efficient and recyclable oxidation of HMF to DFF. Dalton Trans 2023; 52:16303-16314. [PMID: 37855372 DOI: 10.1039/d3dt02935b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
In the reaction of oxidizing 5-hydroxymethylfurfural (HMF), attaining high efficiency and selectivity in the conversion of HMF into DFF presents a challenge due to the possibility of forming multiple products. Polyoxometalates are considered highly active catalysts for HMF oxidation. However, the over-oxidation of products poses a challenge, leading to decreased purity and yield. In this work, metal-organic framework-derived Fe3O4/C and Co3O4/C were designed as carriers for the vanadium-substituted Keggin-type polyoxomolybdate H5PMo10V2O40·35H2O (PMo10V2). In this complex system, spinel oxides can effectively adsorb HMF molecules and cooperate with PMo10V2 to catalyze the aerobic oxidation of HMF. As a result, the as-prepared PMo10V2@Fe3O4/C and PMo10V2@Co3O4/C catalysts can achieve efficient conversion of HMF into DFF with almost 100% selectivity. Among them, PMo10V2@Fe3O4/C exhibits a higher conversion rate (99.1%) under milder reaction conditions (oxygen pressure of 0.8 MPa). Both catalysts exhibited exceptional stability and retained their activity and selectivity even after undergoing multiple cycles. Studies on mechanisms by in situ diffuse reflectance infrared Fourier transform spectroscopy and X-ray photoelectron spectroscopy revealed that the V5+ and Mo6+ in PMo10V2, together with the metal ions in the spinel oxides, act as active centers for the catalytic conversion of HMF. Therefore, it is proposed that PMo10V2 and M3O4/C (M = Fe, Co) cooperatively catalyze the transformation of HMF into DFF via a proton-coupled electron transfer mechanism. This study offers an innovative approach for designing highly selective and recyclable biomass oxidation catalysts.
Collapse
Affiliation(s)
- Yun-Dong Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Wen-Xia Mu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Mengdi Gong
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Lin-Lin Fan
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Jie Han
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong, China
| | - Hong Liu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Bin Qi
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| | - Guang-Gang Gao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.
| |
Collapse
|
26
|
Song J, Jiang Y, Lu Y, Cao Y, Zhang Y, Fan L, Liu H, Gao G. A Forceful "Dendrite-Killer" of Polyoxomolybdate with Reusability Effectively Dominating Dendrite-Free Lithium Metal Anode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301740. [PMID: 37312611 DOI: 10.1002/smll.202301740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/29/2023] [Indexed: 06/15/2023]
Abstract
In this work, a series of Mo-containing polyoxometalates (POMs) modified separators to inhibit the growth of lithium dendrites, and thus improving the lifespan and safety of the cells is proposed. When the deposited lithium forms dendrites and touches the separator, the optimized Dawson-type POM of (NH4 )6 [P2 Mo18 O62 ]·11H2 O (P2 Mo18 ) with the stronger oxidizability, acts like a "killer", is more inclined to oxidize Li0 into Li+ , thus weakening the lethality of lithium dendrites. The above process is accompanied by the formation of Lix [P2 Mo18 O62 ] (x = 6-10) in its reduced state. Converting to the stripping process, the reduced state Lix [P2 Mo18 O62 ] (x = 6-10) can be reoxidized to P2 Mo18 , which achieves the reusability of P2 Mo18 functional material. Meanwhile, lithium ions are released into the cell system to participate in the subsequent electrochemical cycles, thus the undesired lithium dendrites are converted into usable lithium ions to prevent the generation of "dead lithium". As a result, the Li//Li symmetrical cell with P2 Mo18 modified separator delivers exceptional cyclic stability for over 1000 h at 3 mA cm-2 and 5 mAh cm-2 , and the assembled Li-S full cell maintains superior reversible capacity of 600 mAh g-1 after 200 cycles at 2 C.
Collapse
Affiliation(s)
- Jian Song
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yuanyuan Jiang
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yizhong Lu
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yundong Cao
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yuxi Zhang
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Linlin Fan
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Hong Liu
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Guanggang Gao
- Collaborative Innovation Center of Metal Nanoclusters & Photo/Electro-Catalysis and Sensing, School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| |
Collapse
|
27
|
Lu X, Huang JJ, Chen T, Zheng J, Liu M, Wang XY, Li YX, Niu X, Dang LL. A Coordination-Driven Self-Assembly and NIR Photothermal Conversion Study of Organometallic Handcuffs. Molecules 2023; 28:6826. [PMID: 37836669 PMCID: PMC10574444 DOI: 10.3390/molecules28196826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Due to their fascinating topological structures and application prospects, coordination supramolecular complexes have continuously been studied by scientists. However, the controlled construction and property study of organometallic handcuffs remains a significant and challenging research subject in the area of supramolecular chemistry. Hence, a series of tetranuclear organometallic and heterometallic handcuffs bearing different size and metal types were rationally designed and successfully synthesized by utilizing a quadridentate pyridyl ligand (tetra-(3-pyridylphenyl)ethylene) based on three Cp*Rh (Cp* = η5-C5Me5) fragments bearing specific longitudinal dimensions and conjugated planes. These results were determined with single-crystal X-ray diffraction analysis technology, ESI-MS NMR spectroscopy, etc. Importantly, the photoquenching effect of Cp* groups and the discrepancy of intermolecular π-π stacking interactions between building block and half-sandwich fragments promote markedly different photothermal conversion results. These results will further push the synthesis of topological structures and the development of photothermal conversion materials.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Jing-Jing Huang
- Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Tian Chen
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Jie Zheng
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China
| | - Ming Liu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xin-Yi Wang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Yu-Xin Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
- College of Science, Shihezi University, Shihezi 832003, China
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
28
|
Jia X, Tang Z, Meng L, Wang Z, Wang D, Chen L, Zhao J. Cerium-Encapsulated Sb III-Se IV-Templating Polyoxotungstate for Electrochemically Sensing Human Multidrug Resistance Gene Segment. Inorg Chem 2023; 62:13639-13648. [PMID: 37561009 DOI: 10.1021/acs.inorgchem.3c02111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A tower-like SbIII-SeIV-templating polyoxotungstate [H2N(CH3)2]12Na7H3[Ce0.5/Na0.5(H2O)5]2[SbSe2W21O75]2·50H2O (1) was synthesized, whose skeleton is assembled from two prolonged lacunary Dawson [SbSe2W21O75]13- units and two [Ce0.5/Na0.5(H2O)5]2+ linkers. The uncommon [SbSe2W21O75]13- unit can be viewed as a combination of one [SeW6O21]2- group grafted onto a trivacant Dawson [SbSeW15O54]11- subunit. The conductive composite 1-Au@rGO containing 1, gold nanoparticles, and reduced graphene oxide (rGO) was conveniently prepared, using which the 1-Au@rGO-based electrochemical genosensor was constructed for detecting human multidrug resistance gene segment. This work enriches structural types of dual-heteroatom-inserted polyoxometalates and promotes the application of polyoxometalates in genosensors.
Collapse
Affiliation(s)
- Xiaodan Jia
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lina Meng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Zixu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
29
|
Zhang L, Di S, Lin H, Wang C, Yu K, Lv J, Wang C, Zhou B. Nanomaterial with Core-Shell Structure Composed of {P 2W 18O 62} and Cobalt Homobenzotrizoate for Supercapacitors and H 2O 2-Sensing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1176. [PMID: 37049271 PMCID: PMC10097129 DOI: 10.3390/nano13071176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Designing and preparing dual-functional Dawson-type polyoxometalate-based metal-organic framework (POMOF) energy storage materials is challenging. Here, the Dawson-type POMOF nanomaterial with the molecular formula CoK4[P2W18O62]@Co3(btc)2 (abbreviated as {P2W18}@Co-BTC, H3btc = 1,3,5-benzylcarboxylic acid) was prepared using a solid-phase grinding method. XRD, SEM, TEM et al. analyses prove that this nanomaterial has a core-shell structure of Co-BTC wrapping around the {P2W18}. In the three-electrode system, it was found that {P2W18}@Co-BTC has the best supercapacitance performance, with a specific capacitance of 490.7 F g-1 (1 A g-1) and good stability, compared to nanomaterials synthesized with different feedstock ratios and two precursors. In the symmetrical double-electrode system, both the power density (800.00 W kg-1) and the energy density (11.36 Wh kg-1) are greater. In addition, as the electrode material for the H2O2 sensor, {P2W18}@Co-BTC also exhibits a better H2O2-sensing performance, such as a wide linear range (1.9 μM-1.67 mM), low detection limit (0.633 μM), high selectivity, stability (92.4%) and high recovery for the detection of H2O2 in human serum samples. This study provides a new strategy for the development of Dawson-type POMOF nanomaterial compounds.
Collapse
Affiliation(s)
- Lanyue Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Shan Di
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Hong Lin
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Chunmei Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Chunxiao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin 150025, China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
30
|
Wen WY, Hu B, Pan TY, Li ZW, Hu QQ, Huang XY. Structural Evolution and Properties of Praseodymium Antimony Oxochlorides Based on a Chain-like Tertiary Building Unit. Molecules 2023; 28:molecules28062725. [PMID: 36985695 PMCID: PMC10051633 DOI: 10.3390/molecules28062725] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/01/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Unveiling the structural evolution of single-crystalline compounds based on certain building units may help greatly in guiding the design of complex structures. Herein, a series of praseodymium antimony oxohalide crystals have been isolated under solvothermal conditions via adjusting the solvents used, that is, [HN(CH2CH3)3][FeII(2,2′-bpy)3][Pr4Sb12O18Cl15]·EtOH (1) (2,2′-bpy = 2,2′-bipyridine), [HN(CH2CH3)3][FeII(2,2′-bpy)3]2[Pr4Sb12O18Cl14)2Cl]·N(CH2CH3)3·2H2O (2), and (H3O)[Pr4Sb12O18Cl12.5(TEOA)0.5]·2.5EtOH (3) (TEOA = mono-deprotonated triethanolamine anion). Single-crystal X-ray diffraction analysis revealed that all the three structures feature an anionic zig-zag chain of [Pr4Sb12O18Cl15−x]n as the tertiary building unit (TBU), which is formed by interconnections of praseodymium antimony oxochloride clusters (denoted as {Pr4Sb12}) as secondary building units. Interestingly, different arrangements or linkages of chain-like TBUs result in one-dimensional, two-dimensional layered, and three-dimensional structures of 1, 2, and 3, respectively, thus demonstrating clearly the structural evolution of metal oxohalide crystals. The title compounds have been characterized by elemental analysis, powder X-ray diffraction, thermogravimetric analysis, and UV-Vis spectroscopy, and the photodegradation for methyl blue in an aqueous solution of compound 1 has been preliminarily studied. This work offers a way to deeply understand the assembly process of intricate lanthanide-antimony(III) oxohalide structures at the atomic level.
Collapse
Affiliation(s)
- Wei-Yang Wen
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Bing Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.H.); (X.-Y.H.); Tel.: +86-591-6317-3145 (X.-Y.H.)
| | - Tian-Yu Pan
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Zi-Wei Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Qian-Qian Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (B.H.); (X.-Y.H.); Tel.: +86-591-6317-3145 (X.-Y.H.)
| |
Collapse
|
31
|
Si C, Liu X, Zhang T, Xu J, Li J, Fu J, Han Q. Constructing a Photocatalyst for Selective Oxidation of Benzyl Alcohol to Benzaldehyde by Photo-Fenton-like Catalysis. Inorg Chem 2023; 62:4210-4219. [PMID: 36856314 DOI: 10.1021/acs.inorgchem.2c04318] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
A photoactive metal-organic framework (MOF), [K(H2O)][Cu(DPNDI)][Cu(DPNDI)(CH3CN)(H2O)] [Cu1.5(DPNDI)1.5H1.5P2W18O62]·2H2O (Cu(Ι)W-DPNDI), was prepared by combining a functional photosensitizer N, N'-bis(4-pyridylmethyl)naphthalene diimide (DPNDI), copper(I) ions, and an oxidation catalyst [P2W18O62]6- into a single framework via a hydrothermal process. Cu(Ι)W-DPNDI exhibited a stable structure, strong light absorption capacity, a suitable band gap, and photoelectric properties, which provided favorable conditions for photocatalysis. In the confined space, the well-aligned Cu(I) ions and POM polyanions played a synergetic effect in the electron-transfer process and reactive oxygen species generation. By coupling photocatalysis and heterogeneous Fenton-like catalysis, Cu(Ι)W-DPNDI displayed high efficiency for the selective oxidation of aromatic alcohols, with up to >99% selectivity and 75% yield.
Collapse
Affiliation(s)
- Chen Si
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xueling Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Ting Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jiangbo Xu
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jie Li
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China.,School of Chemistry & Chemical Engineering, Zhoukou Normal University, Zhoukou, Henan 466001, P. R. China
| | - Jiya Fu
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Qiuxia Han
- Henan Key Laboratory of Polyoxometalate Chemistry, School of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
32
|
Carvalho F, Aureliano M. Polyoxometalates Impact as Anticancer Agents. Int J Mol Sci 2023; 24:ijms24055043. [PMID: 36902473 PMCID: PMC10003337 DOI: 10.3390/ijms24055043] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Polyoxometalates (POMs) are oxoanions of transition metal ions, such as V, Mo, W, Nb, and Pd, forming a variety of structures with a wide range of applications. Herein, we analyzed recent studies on the effects of polyoxometalates as anticancer agents, particularly their effects on the cell cycle. To this end, a literature search was carried out between March and June 2022, using the keywords "polyoxometalates" and "cell cycle". The effects of POMs on selected cell lines can be diverse, such as their effects in the cell cycle, protein expression, mitochondrial effects, reactive oxygen species (ROS) production, cell death and cell viability. The present study focused on cell viability and cell cycle arrest. Cell viability was analyzed by dividing the POMs into sections according to the constituent compound, namely polyoxovanadates (POVs), polyoxomolybdates (POMos), polyoxopaladates (POPds) and polyoxotungstates (POTs). When comparing and sorting the IC50 values in ascending order, we obtained first POVs, then POTs, POPds and, finally, POMos. When comparing clinically approved drugs and POMs, better results of POMs in relation to drugs were observed in many cases, since the dose required to have an inhibitory concentration of 50% is 2 to 200 times less, depending on the POMs, highlighting that these compounds could become in the future an alternative to existing drugs in cancer therapy.
Collapse
Affiliation(s)
- Fátima Carvalho
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
- Correspondence: ; Tel.: +351-289-900-805
| |
Collapse
|
33
|
Hu B, Wen WY, Sun HY, Wang YQ, Du KZ, Ma W, Zou GD, Wu ZF, Huang XY. Single-Crystal Superstructures via Hierarchical Assemblies of Giant Rubik's Cubes as Tertiary Building Units. Angew Chem Int Ed Engl 2023; 62:e202219025. [PMID: 36646648 DOI: 10.1002/anie.202219025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Intricate superstructures possess unusual structural features and promising applications. The preparation of superstructures with single-crystalline nature are conducive to understanding the structure-property relationship, however, remains an intriguing challenge. Herein we put forward a new hierarchical assembly strategy towards rational and precise construction of intricate single-crystal superstructures. Firstly, two unprecedented superclusters in Rubik's cube's form with a size of ≈2×2×2 nm3 are constructed by aggregation of eight {Pr4 Sb12 } oxohalide clusters as secondary building units (SBUs). Then, the Rubik's cubes further act as isolable tertiary building units (TBUs) to assemble diversified single-crystal superstructures. Importantly, intermediate assembly states are captured, which helps illustrate the evolution of TBU-based superstructures and thus provides a profound understanding of the assembly process of superstructures at the atomic level.
Collapse
Affiliation(s)
- Bing Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-Yang Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350002, P. R. China
| | - Hai-Yan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan-Qi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou, Fujian, 350007, P. R. China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Guo-Dong Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhao-Feng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
34
|
Chen H, Zheng K, Wang J, Niu B, Ma P, Wang J, Niu J. Discovery and Isolation of Two Arsenotungastate Species: [As 4W 48O 168] 36- and [As 2W 21O 77(H 2O) 3] 22. Inorg Chem 2023; 62:3338-3342. [PMID: 36790222 DOI: 10.1021/acs.inorgchem.2c04280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Two novel arsenotungstate species, [As4W48O168]36- (1a) and [As2W21O77(H2O)3]22- (2a), have been successfully isolated under a one-pot synthetic method. 1a is the second largest arsenotungstate cluster and is constructed from four {AsW12} clusters combined together. 2a can be described as lacunary sites of {As2W19} filled by {W2O8} units. Compounds 1 and 2 exhibit proton conductivity properties, and the conductivity value of 1 is 5.0 × 10-3 S cm-1 at 98% relative humidity and 75 °C. This work proves that the lattice water molecules and polyoxoanions can participate in the formation of a hydrogen bond, acting as effective pathway for intermolecular proton conduction.
Collapse
Affiliation(s)
- Hanhan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Kangting Zheng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingru Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Bingxue Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
35
|
Wang Y, Xin X, Feng Y, Chi M, Wang R, Liu T, Lv H. Structurally-New Hexadecanuclear Ni-Containing Silicotungstate with Catalytic Hydrogen Generation Activity. Molecules 2023; 28:molecules28052017. [PMID: 36903264 PMCID: PMC10004391 DOI: 10.3390/molecules28052017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
A structurally-new, carbon-free hexadecanuclear Ni-containing silicotungstate, [Ni16(H2O)15(OH)9(PO4)4(SiW9O34)3]19-, has been facilely synthesized using a one-pot, solution-based synthetic method systematically characterized by single-crystal X-ray diffraction and several other techniques. The resulting complex works as a noble-metal-free catalyst for visible-light-driven catalytic generation of hydrogen, by coupling with a [Ir(coumarin)2(dtbbpy)][PF6] photosensitizer and a triethanolamine (TEOA) sacrificial electron donor. Under minimally optimized conditions, a turnover number (TON) of 842 was achieved for TBA-Ni16P4(SiW9)3-catalyzed hydrogen evolution system. The structural stability of TBA-Ni16P4(SiW9)3 catalyst under photocatalytic conditions was evaluated by the mercury-poisoning test, FT-IR, and DLS measurements. The photocatalytic mechanism was elucidated by both time-solved luminescence decay and static emission quenching measurements.
Collapse
|
36
|
Granadeiro CM, Julião D, Ribeiro SO, Cunha-Silva L, Balula SS. Recent advances in lanthanide-coordinated polyoxometalates: from structural overview to functional materials. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Jiang J, Li Y, Liu L, Chen L, Zhao J, Streb C, Song YF. First Ultrathin Pure Polyoxometalate 2D Material as a Peroxidase-Mimicking Catalyst for Detecting Oxidative Stress Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1486-1494. [PMID: 36578107 DOI: 10.1021/acsami.2c15579] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although two-dimensional (2D) materials with ultrathin geometry and extraordinary electrical attributes have attracted substantial concern, exploiting new-type 2D materials is still a great challenge. In this work, an unprecedented single-layer pure polyoxometalate (POM) 2D material (2D-1) was prepared by ultrasonically exfoliating a one-dimensional (1D)-chain heterometallic crystalline germanotungstate Na4[Ho(H2O)6]2[Fe4(H2O)2(pic)6Ge2W20O72]·16H2O (1) (Hpic = picolinic acid). The 1D polymeric chain of 1 is assembled from particular {Ge2W20}-based [Fe4(H2O)2(pic)6Ge2W20O72]10- segments through bridging [Ho(H2O)6]3+ cations. 2D-1 is formed by π-π interaction driving force among adjacent 1D polymeric chains of 1. Also, the peroxidase-mimicking properties of 2D-1 toward detecting H2O2 were evaluated and good detection result was observed with a limit of detection (LOD) of 58 nM. Density functional theory (DFT) calculation further confirms that 2D-1 displays outstanding catalytic activity and active sites are located on Fe centers and Hpic ligands. Under the catalysis of uricase, uric acid can be transformed to allantoin and H2O2, and then, H2O2 oxidizes TMB to its blue ox-TMB in the presence of 2D-1 as a catalyst. Then, we utilized this cascade reaction to detect uric acid, which also exhibits prominent results. This research opens a door to prepare ultrathin pure POM 2D materials and broadens the scope of potential applications of POMs in biology and iatrology.
Collapse
Affiliation(s)
- Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lulu Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Carsten Streb
- Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
38
|
Yin D, Cao YD, Feng Y, Gao GG, Liu H, Fan LL, Kang ZH. The practically renewable and highly efficient electrocatalysts derived from a newly-designed Mo8Pt polyoxometalate compound. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
39
|
Niu Y, Ding Y, Sheng H, Sun S, Chen C, Du J, Zang HY, Yang P. Space-Confined Nucleation of Semimetal-Oxo Clusters within a [H 7P 8W 48O 184] 33- Macrocycle: Synthesis, Structure, and Enhanced Proton Conductivity. Inorg Chem 2022; 61:21024-21034. [PMID: 36520449 DOI: 10.1021/acs.inorgchem.2c03543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Spatially confined assembly of semimetallic oxyanions (AsO33- and SbO33-) within a [H7P8W48O184]33- (P8W48) macrocycle has afforded three nanoscale polyanions, [{AsIII5O4(OH)3}2(P8W48O184)]32- (As10), [(SbIIIOH)4(P8W48O184)]32- (Sb4), and [(SbIIIOH)8(P8W48O184)]24- (Sb8), which were crystallized as the hydrated mixed-cation salts (Me2NH2)13K7Na2Li10[{AsIII5O4(OH)3}2(P8W48O184)]·32H2O (DMA-KNaLi-As10), K20Li12[(SbIIIOH)4(P8W48O184)]·52H2O (KLi-Sb4), and (Me2NH2)8K6Na5Li5[(SbIIIOH)8(P8W48O184)]·65H2O (DMA-KNaLi-Sb8), respectively. A multitude of solid- and solution-state physicochemical techniques were employed to systematically characterize the structure and composition of the as-made compounds. The polyanion of As10 represents the first example of a semimetal-oxo cluster-substituted P8W48 and accommodates the largest AsIII-oxo cluster in polyoxometalates (POMs) reported to date. The number of incorporated SbO33- groups in Sb4 and Sb8 could be customized by a simple variation of SbIII-containing precursors. Encapsulation of semimetallic oxyanions inside P8W48 sets out a valid strategy not only for the development of host-guest assemblies in POM chemistry but also for their function expansion in emerging applications such as proton-conducting materials, for which DMA-KNaLi-As10 showcases an outstanding conductivity of 1.2 × 10-2 S cm-1 at 85 °C and 70% RH.
Collapse
Affiliation(s)
- Yilin Niu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | - Yue Ding
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | - Hongxin Sheng
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | - Sai Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, 130024 Changchun, P. R. China
| | - Chaoqin Chen
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| | - Jing Du
- Testing and Analysis Center, Hebei Normal University, 050024 Shijiazhuang, P. R. China
| | - Hong-Ying Zang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, 130024 Changchun, P. R. China
| | - Peng Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, 410082 Changsha, P. R. China
| |
Collapse
|
40
|
Ke DG, Huang SL, Yang GY. Lanthanide-Anderson Polyoxometalates Frameworks: Efficient Sulfide Photooxidation. Inorg Chem 2022; 61:20080-20086. [PMID: 36417706 DOI: 10.1021/acs.inorgchem.2c03504] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Three polyoxometalate-based metal-organic frameworks were synthesized by the thermal reaction of pyridyl-Anderson polyoxometalate linker and lanthanide ions. With the help of [Ru(bpy)3]2+ photosensitizer, these frameworks exhibited excellent photocatalytic sulfide oxidation performance with sulfoxide selectivity. The reactive oxygen species as well as the photooxidation mechanism were also explored.
Collapse
Affiliation(s)
- De-Gang Ke
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Sheng-Li Huang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
41
|
Zheng K, Yang D, Niu B, Ye Y, Ma P, Wang J, Niu J. dl-Alanine Covalently Bonded Giant Arsenotungstate with Rapid Photochromic and Decent Proton Conduction Properties. Inorg Chem 2022; 61:20222-20226. [DOI: 10.1021/acs.inorgchem.2c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Kangting Zheng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Dongsheng Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Bingxue Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Yajing Ye
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| |
Collapse
|
42
|
Zhang SM, Wang Y, Ma YY, Li ZB, Du J, Han ZG. Three-Dimensional Silver-Containing Polyoxotungstate Frameworks for Photocatalytic Aerobic Oxidation of Benzyl Alcohol. Inorg Chem 2022; 61:20596-20607. [DOI: 10.1021/acs.inorgchem.2c03472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Si-Meng Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China
| | - Yue Wang
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China
| | - Yuan-Yuan Ma
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China
| | - Zhao-Bin Li
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China
| | - Jing Du
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China
| | - Zhan-Gang Han
- Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, Hebei, P. R. China
| |
Collapse
|
43
|
Chen X, Zhang W, Qu Y, Chen X, Liu Y, Lu C. Solvent-free synthesis of honeycomb-like N-doped porous carbon derived from biomass pine sawdust as an efficient metal-free electrocatalyst for oxygen reduction reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Li S, Sun JY, Zhang Z, Yang L, Liu GC, Wang XL. A New [δ-PMoVMoVI11O40]-Based Hybrid as Multifunctional Fluorescent Sensor for Detecting Cations, Anions, and Antibiotics in Aqueous Solution. RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222120258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
45
|
Gong T, Jiang J, Yang S, Liu J, Chen L, Zhao J. Lanthanide-Incorporated Polyoxometalates Assembled from Mixed-Heteroatom-Oriented Three-Layered Cage Clusters. Inorg Chem 2022; 61:18147-18153. [DOI: 10.1021/acs.inorgchem.2c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tiantian Gong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Sen Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jiancai Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
46
|
Tang F, Li Y, Zeng B, Liu G, Zhao J, Chen L. Lamellar Nanocomposite Based on a 1D Crayfish-like Ce III-Substituted Phospho(III)tungstate Semiconductor and Polyaniline Used as a High-Performance Humidity Sensing Device. ACS APPLIED MATERIALS & INTERFACES 2022; 14:48876-48887. [PMID: 36256886 DOI: 10.1021/acsami.2c13998] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In order to meet people's demand for intelligent management of daily life and health, manufacturing and developing humidity monitoring equipment with convenience, high sensitivity, easy miniaturization, and low cost is particularly important in the era of rapid development of artificial intelligence and the Internet of Things. Polyaniline (PANI) is an attractive humidity sensing material due to its designable functional properties. However, PANI modified polyoxometalates (POMs) for humidity sensing are still rare. As a proof of concept, a novel moisture sensing composite material was obtained based on PANI and a novel 1D rare-earth-substituted phospho(III)tungstate [H2N(CH3)2]9Na3H6[Ce2(H2O)3W5O13(C2O4)][HPIIIW9O33]2[(HPIII)2W15O54]·42H2O (1). Notably, the anion structure of 1 contains trivacant Keggin-type [B-α-HPIIIW9O33]8- and Dawson-like [(HPIII)2W15O54]10- subunits linked by a heterometallic [Ce2(H2O)3W5O32(C2O4)]30- cluster. Furthermore, the 1/PANI composite shows a typical semiconductive characteristic with a "band-like" conductive mechanism. The fabricated 1/PANI-based humidity sensing device exhibits a broad sensing range (11∼97% relative humidity), fast response/recovery time (3.45 s/3.24 s), good repeatability, and long-term stability (over 3 months). Additionally, the possible sensing mechanism is proposed. This work offers an enormous possibility for the design of high-performance humidity sensing materials through POM material chemistry.
Collapse
Affiliation(s)
- Feng Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Yanzhou Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Baoxing Zeng
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Guoping Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, People's Republic of China
| |
Collapse
|
47
|
Ma X, Wei X, Wang M, Zhang N, Chen P, Hua J. A hexa-Cu cluster sandwiched silicotungstate with reactive oxygen species catalytic ability and anti-tumor activity in PC12 cells. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
48
|
Recent advances on high-nuclear polyoxometalate clusters. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Liu X, Li Y, Wang Z, Li Q, Zhao J. A tricarboxylic-ligand decorated neodymium-encapsulated polyoxotungstate with mixed heteroatom fragments. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Kapurwan S, Mondal A, Sahu PK, Konar S. Windmill-like Ln 4 Clusters [Ln = Tb(III) and Dy(III)] Bridged by [α-AsW 9O 33] 9– Unit Showing Zero-Field SMM Behavior: Experimental and Theoretical Investigation. Inorg Chem 2022; 61:17459-17468. [DOI: 10.1021/acs.inorgchem.2c02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandhya Kapurwan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462066Madhya Pradesh, India
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462066Madhya Pradesh, India
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462066Madhya Pradesh, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462066Madhya Pradesh, India
| |
Collapse
|