1
|
Xue HZ, Wen Z, Zhou XM, Ni HL, Chen L. In(III)-Catalyzed 1,2-Hydrophosphorylation of 3-Alkynyl-3-hydroxyisoindolinones to 3,3-Disubstituted Isoindolinones Featuring Both Phosphoryl and Alkynyl Groups at the C3-Position. J Org Chem 2025; 90:1740-1754. [PMID: 39848927 DOI: 10.1021/acs.joc.4c02035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
We report a highly regioselective 1,2-addition of P(O)-H compounds to the in situ generated β,γ-alkynyl-α-ketimine derived from 3-alkynyl-3-hydroxyisoindolinones, which provided a general protocol for the preparation of 3,3-disubstituted isoindolinones featuring both phosphoryl and alkynyl groups at a quaternary carbon center. The use of only 2-5 mol % of an inexpensive catalyst (In(ClO4)3·8H2O or Bi(OTf)3) allowed the smooth output of the desired products under mild conditions (25 °C, 0.5-24 h) with a broad substrate scope (35 examples) in up to >99% yield. The obtained products could be further elaborated based on the alkyne moiety. The initial asymmetric trial indicated that the use of BINOL-derived CPA could enable an enantioselective induction in up to a 46% yield with 77% ee.
Collapse
Affiliation(s)
- Huan-Zhu Xue
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China
| | - Zhong Wen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China
| | - Xue-Mei Zhou
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China
| | - Hai-Liang Ni
- College of Chemistry and Materials Science, Sichuan Normal University, 5 Jing An Road, Chengdu 610066, P. R. China
| | - Long Chen
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, 2025 Chengluo Avenue, Chengdu 610016, P. R. China
| |
Collapse
|
2
|
Tang MQ, Yang ZJ, Han AJ, He ZT. Diastereoselective and Enantioselective Hydrophosphinylations of Conjugated Enynes, Allenes and Dienes via Synergistic Pd/Co Catalysis. Angew Chem Int Ed Engl 2025; 64:e202413428. [PMID: 39254504 DOI: 10.1002/anie.202413428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
Different from the reported work focusing on the construction of single P- or C-stereocenter via hydrophosphinylation of unsaturated carbon bonds, the highly diastereo- and enantioselective hydrophosphinylation reaction of allenes, conjugated enynes and 1,3-dienes is achieved via a designed Pd/Co dual catalysis and newly modified masked phosphinylating reagent. A series of allyl motifs bearing both a tertiary C- and P-stereocenter are prepared in generally good yields, >20 : 1 dr, >20 : 1 rr and 99 % ee. The unprecedented diastereo- and enantioselective hydrophosphinylation of 1,3-enynes is established to generate skeletons containing both a P-stereocenter and a nonadjacent chiral axis. The first stereodivergent hydrophosphinylation reaction is also developed to achieve all four P-containing stereoisomers. The present protocol features the use of only 3-minutes reaction time and 0.1 % catalyst, and with the observation of up to 730 TON. A set of mechanistic studies reveal the necessity and roles of two metal catalysts and corroborate the designed synergistic process.
Collapse
Affiliation(s)
- Ming-Qiao Tang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zi-Jiang Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Ai-Jun Han
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
| | - Zhi-Tao He
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 200032, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
- Ningbo Zhongke Creation Center of New Materials, 315899, Ningbo, China
| |
Collapse
|
3
|
Tang S, Song H, Yu S. Enantioselective Propargylic C(sp 3)-H Acyloxylation Enabled by Photoexcited Copper Catalysis. Org Lett 2024. [PMID: 39515985 DOI: 10.1021/acs.orglett.4c03933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Direct C-H bond functionalization is an efficient method for modifying organic molecules. However, achieving high enantioselectivity and regioselectivity in asymmetric C-H functionalization, particularly of C(sp3)-H bonds, remains challenging. This study introduces an enantioselective propargylic C(sp3)-H acyloxylation using photoexcited copper catalysis. The reaction demonstrated tolerance for various alkynes and peroxides, producing chiral propargyl esters in high yields and enantiomeric excess. Furthermore, the method was successfully extended to a diverse array of carboxylic acids in the presence of di-tert-butyl peroxide (DTBP), significantly broadening its applicability.
Collapse
Affiliation(s)
- Sheng Tang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hengxin Song
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Shangdong Weifang Rainbow Chemical Co., LTD, Weifang 262737, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Nanjing 210023, China
| |
Collapse
|
4
|
Xu W, Xu T. Dual Nickel- and Photoredox-Catalyzed Asymmetric Reductive Cross-Couplings: Just a Change of the Reduction System? Acc Chem Res 2024; 57:1997-2011. [PMID: 38961540 DOI: 10.1021/acs.accounts.4c00309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
ConspectusIn recent years, nickel-catalyzed asymmetric coupling reactions have emerged as efficient methods for constructing chiral C(sp3) carbon centers. Numerous novel approaches have been reported to rapidly construct chiral carbon-carbon bonds through nickel-catalyzed asymmetric couplings between electrophiles and nucleophiles or asymmetric reductive cross-couplings of two different electrophiles. Building upon these advances, our group has been devoted to interrogating dual nickel- and photoredox-catalyzed asymmetric reductive cross-coupling reactions.In our endeavors over the past few years, we have successfully developed several dual Ni-/photoredox-catalyzed asymmetric reductive cross-coupling reactions involving organohalides. While some probably think that this system is just a change of the reduction system from traditional metal reductants to a photocatalysis system, a question that we also pondered at the beginning of our studies, both the achievable reaction types and mechanisms suggest a different conclusion: that this dual catalysis system has its own advantages in the chiral carbon-carbon bond formation. Even in certain asymmetric reactions where the photocatalysis regime functions only as a reducing system, the robust reducing capability of photocatalysts can effectively accelerate the regeneration of low-valent nickel species, thus expanding the selectable scope of chiral ligands. More importantly, in many transformations, besides reducing nickel catalysts, the photocatalysis system can also undertake the responsibility of alkyl radical formation, thereby establishing two coordinated, yet independent catalytic cycles. This catalytic mode has been proven to play a crucial role in achieving diverse asymmetric coupling reactions with great challenges.In this Account, we elucidate our understanding of this system based on our experience and findings. In the Introduction, we provide an overview of the main distinctions between this system and traditional Ni-catalyzed asymmetric reductive cross-couplings with metal reductants and the potential opportunities arising from these differences. Subsequently, we outline various chiral carbon-carbon bond-forming types obtained by this dual Ni/photoredox catalysis system and their mechanisms. In terms of chiral C(sp3)-C(sp2) bond formation, extensive discussion focuses on the asymmetric arylations of α-chloroboronates, α-trifluoromethyl alkyl bromides, α-bromophosphonates, and so on. In the realm of chiral C(sp3)-C(sp) bond formation, asymmetric alkynylations of α-bromophosphonates and α-trifluoromethyl alkyl bromides have been presented herein. Regarding C(sp3)-C(sp3) bond formation, we take the asymmetric alkylation of α-chloroboronates as a compelling example to illustrate the great efficiency of this dual catalysis system. This summary would enable a better grasp of the advantages of this dual catalysis system and clarify how the photocatalysis regime facilitates enantioselective transformations. We anticipate that this Account will offer valuable insights and contribute to the development of new methodologies in this field.
Collapse
Affiliation(s)
- Wenhao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Tao Xu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| |
Collapse
|
5
|
Lin TY, Li MD, Wang R, Wang X. Copper-Catalyzed Remote Asymmetric Yne-Allylic Substitution of Yne-Allylic Esters with Anthrones. Org Lett 2024; 26:5758-5763. [PMID: 38949506 DOI: 10.1021/acs.orglett.4c01916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Anthrones are key structural motifs in many natural products and pharmaceutical chemicals. However, due to its unique tricyclic aromatic structure, the synthetic space for the development of chiral anthrone derivatives is largely limited. By utilizing the potential of the copper-catalyzed remote asymmetric yne-allylic substitution reaction, we describe the first example of copper-catalyzed highly regio- and enantioselective remote yne-allylic substitution on various yne-allylic esters with anthrones under a mild reaction condition, which afforded a range of enantioenriched 1,3-enynes with exhibiting broad functional group tolerance across 51 examples.
Collapse
Affiliation(s)
- Tao-Yan Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Meng-Die Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Rui Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Xinru Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| |
Collapse
|
6
|
Zhang Z, Sun Y, Gong Y, Tang DL, Luo H, Zhao ZP, Zhou F, Wang X, Zhou J. Enantioselective propargylic amination and related tandem sequences to α-tertiary ethynylamines and azacycles. Nat Chem 2024; 16:521-532. [PMID: 38504025 DOI: 10.1038/s41557-024-01479-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Chiral α-tertiary amines and related azacycles are sought-after compounds for drug development. Despite progress in the catalytic asymmetric construction of aza-quaternary stereocentres, enantioselective synthesis of multifunctional α-tertiary amines remains underdeveloped. Enantioenriched α-disubstituted α-ethynylamines are attractive synthons for constructing chiral α-tertiary amines and azacycles, but methods for their catalytic enantioselective synthesis need to be expanded. Here we describe an enantioselective asymmetric Cu(I)-catalysed propargylic amination (ACPA) of simple ketone-derived propargylic carbonates to give both α-dialkylated and α-alkyl-α-aryl α-tertiary ethynylamines. Sterically confined pyridinebisoxazoline (PYBOX) ligands, with a C4 shielding group and relaying groups, play a key role in achieving excellent enantioselectivity. The syntheses of quaternary 2,5-dihydropyrroles, dihydroquinines, dihydrobenzoquinolines and dihydroquinolino[1,2-α]quinolines are reported, and the synthetic value is further demonstrated by the enantioselective catalytic total synthesis of a selective multi-target β-secretase inhibitor. Enantioselective Cu-catalysed propargylic substitutions with O- and C-centred nucleophiles are also realized, further demonstrating the potential of the PYBOX ligand.
Collapse
Affiliation(s)
- Zheng Zhang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Ying Sun
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Yi Gong
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Da-Liang Tang
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Hui Luo
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Zhi-Peng Zhao
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Feng Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Xin Wang
- College of Chemistry, Sichuan University, Chengdu, China.
| | - Jian Zhou
- State Key Laboratory of Petroleum Molecular & Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai, P. R. China.
| |
Collapse
|
7
|
Zhuang H, Wan P, Miao C, Yang Y, Liang S, Han F. Heteropolyacid-Catalyzed Phosphorylation of Secondary Aromatic Alcohols with H-Phosphine Oxides in DMC: A Simple Protocol for C-P Bond Formation. J Org Chem 2024; 89:2397-2407. [PMID: 38275252 DOI: 10.1021/acs.joc.3c02409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
We successfully achieved the phosphorylation of secondary aromatic alcohols with H-phosphine oxides (less developed system) using phosphotungstic acid as a catalyst in dimethyl carbonate. The system was simple and environmentally friendly and showed better activity than traditional Lewis or Brønsted acids such as FeCl3, p-TsOH·H2O, etc., generating up to a 97% isolated yield. Control experiments indicated that the reaction did not occur through the radical pathway, and ethers and carbocation were the key intermediates in the pathway.
Collapse
Affiliation(s)
- Hongfeng Zhuang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Peng Wan
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Chengxia Miao
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yang Yang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Shuyan Liang
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Feng Han
- Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| |
Collapse
|
8
|
Li MD, Wang ZH, Zhu H, Wang XR, Wang JR, Lin TY. Copper-Catalyzed Remote Enantioselective Sulfonylation of Yne-Allylic Esters with Sodium Sulfinates. Angew Chem Int Ed Engl 2023; 62:e202313911. [PMID: 37953441 DOI: 10.1002/anie.202313911] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Impressive progress has been made in the copper-catalyzed asymmetric propargylic substitution (APS) reaction, but its use in remote asymmetric yne-allylic substitution remains a challenging topic. Herein, we report the first remote enantioselective copper-catalyzed sulfonylation of yne-allylic esters with sodium sulfinates. The reaction is assumed to occur via a copper-vinylvinylidene species as the key reactive intermediate. The use of readily available starting materials, the mild reaction conditions, and the excellent regio-, enantio- and stereoselectivity, as well as broad substrate scope (>70 examples), show the practicality and attractiveness of this method.
Collapse
Affiliation(s)
- Meng-Die Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Zi-Han Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Hui Zhu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Xin-Ru Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Jia-Run Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| | - Tao-Yan Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui, 235000, P. R. China
| |
Collapse
|
9
|
Zhang D, Fan J, Shi Y, Huang Y, Fu C, Wu X, Ma S. Copper-catalyzed propargylic C-H functionalization for allene syntheses. Chem Sci 2023; 14:9191-9196. [PMID: 37655026 PMCID: PMC10466309 DOI: 10.1039/d3sc01501g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Allenenitriles bearing different synthetically versatile functional groups have been prepared smoothly from 5-alkynyl fluorosulfonamides in decent yields with an excellent chemo- and regio-selectivity under redox neutral conditions. The resulting allenenitriles can be readily converted to useful functionalized heterocycles. Based on mechanistic study, it is confirmed that this is the first example of radical-based non-activated propargylic C-H functionalization for allene syntheses.
Collapse
Affiliation(s)
- Dongjie Zhang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Junjie Fan
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Yaqi Shi
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Yankai Huang
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Chunling Fu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Xiaoyan Wu
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| | - Shengming Ma
- Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou Zhejiang 310027 P. R. China
| |
Collapse
|
10
|
Geng ZQ, Zhao C, Qian HD, Li SJ, Peng H, Xu H. Cu/Ag-Mediated One-Pot Enantioselective Synthesis of Fully Decorated 1,2,3-Triazolo[1,5- a]pyrazines. Org Lett 2023. [PMID: 37294825 DOI: 10.1021/acs.orglett.3c01524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The synthesis of chiral triazole-fused pyrazine scaffolds from readily available substrates in a step-economical asymmetric catalytic way is highly appealing. We herein report that an efficient Cu/Ag relay catalyzed protocol employing cascade asymmetric propargylic amination, hydroazidation, and [3 + 2] cycloaddition reaction with high efficiency to access the target enantioenriched 1,2,3-triazolo[1,5-a]pyrazine has been accomplished by applying a novel N,N,P-ligand. The one-pot reaction of three components exhibits high functional group tolerance, excellent enantioselectivities, and a broad substrate scope with readily available starting materials.
Collapse
Affiliation(s)
- Zi-Qi Geng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Chunhui Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Hao-Dong Qian
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Si-Jia Li
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Hao Peng
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Hao Xu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
11
|
Xu C, Zhang H, Lan S, Liu J, Yang S, Zhang Q, Fang X. Copper-Catalysed Rearrangement of Cyclic Ethynylethylene Carbonates: Synthetic Applications and Mechanistic Studies. Angew Chem Int Ed Engl 2023; 62:e202219064. [PMID: 36759324 DOI: 10.1002/anie.202219064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/11/2023]
Abstract
Transition-metal-catalysed reactions of cyclic ethynylethylene carbonates have been intensively studied because of their robustness in new bond formation and diversified molecule construction. Known reaction modes usually involve a substitution step occurring at either the propargylic or terminal alkyne positions. Here, we report an unprecedented reaction pattern in which cyclic ethynylethylene carbonates first undergo a rearrangement to release allenal intermediates, which subsequently react with diverse nucleophiles to furnish synthetically useful allylic and propargylic allenols, phosphorus ylides, and cyclopropylidene ketones through an addition process rather than a substitution pathway. The products enable various further transformations, and mechanistic studies and theoretical calculations reveal that the reaction does not proceed via a semipinacol type [1,2]-hydride shift, but through base-mediated deprotonation as the key step to induce the rearrangement.
Collapse
Affiliation(s)
- Chao Xu
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| | - Hao Zhang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| | - Shouang Lan
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| | - Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Shuang Yang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| | - Qi Zhang
- Institute of Industry & Equipment Technology, Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment, Hefei University of Technology, Hefei, 230009, China
| | - Xinqiang Fang
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, University of Chinese Academy of Sciences, Fuzhou, 350100, China
| |
Collapse
|
12
|
Garcia-Roca A, Pérez-Soto R, Stoica G, Benet-Buchholz J, Maseras F, Kleij AW. Comprehensive Mechanistic Scenario for the Cu-Mediated Asymmetric Propargylic Sulfonylation Forging Tertiary Carbon Stereocenters. J Am Chem Soc 2023; 145:6442-6452. [PMID: 36883980 DOI: 10.1021/jacs.3c00188] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Metal-catalyzed propargylic transformations represent a powerful tool in organic synthesis to achieve new carbon-carbon and carbon-heteroatom bonds. However, detailed knowledge about the mechanistic intricacies related to the asymmetric formation of propargylic products featuring challenging heteroatom-substituted tertiary stereocenters is scarce and therefore provides an inspiring challenge. Here, we present a meticulous mechanistic analysis of a propargylic sulfonylation reaction promoted by a chiral Cu catalyst through a combination of experimental techniques and computational studies. Surprisingly, the enantio-discriminating step is not the coupling between the nucleophile and the propargylic precursor but rather the following proto-demetalation step, a scenario further validated by computing enantio-induction levels under other previously reported experimental conditions. A full mechanistic scenario for this propargylic substitution reaction is provided, including a catalyst pre-activation stage, a productive catalytic cycle, and an unanticipated non-linear effect at the Cu(I) oxidation level.
Collapse
Affiliation(s)
- Aleria Garcia-Roca
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Raúl Pérez-Soto
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Georgiana Stoica
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluïs Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
13
|
Interplay of diruthenium catalyst in controlling enantioselective propargylic substitution reactions with visible light-generated alkyl radicals. Nat Commun 2023; 14:859. [PMID: 36823151 PMCID: PMC9950057 DOI: 10.1038/s41467-023-36453-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/26/2023] [Indexed: 02/25/2023] Open
Abstract
Transition metal-catalyzed enantioselective free radical substitution reactions have recently attracted attention as convenient and important building tools in synthetic chemistry, although construction of stereogenic carbon centers at the propargylic position of propargylic alcohols by reactions with free radicals remains unchallenged. Here we present a strategy to control enantioselective propargylic substitution reactions with alkyl radicals under photoredox conditions by applying dual photoredox and diruthenium catalytic system, where the photoredox catalyst generates alkyl radicals from 4-alkyl-1,4-dihydropyridines, and the diruthenium core with a chiral ligand traps propargylic alcohols and alkyl radicals to guide enantioselective alkylation at the propargylic position, leading to high yields of propargylic alkylated products containing a quaternary stereogenic carbon center at the propargylic position with a high enantioselectivity. The result described in this paper provides the successful example of transition metal-catalyzed enantioselective propargylic substitution reactions with free alkyl radicals.
Collapse
|
14
|
Zhang J, Chang X, Xu X, Wang H, Peng L, Guo C. Nickel-catalyzed switchable 1,3-dienylation and enantioselective allenylation of phosphine oxides. Nat Commun 2022; 13:7049. [PMID: 36396661 PMCID: PMC9671958 DOI: 10.1038/s41467-022-34764-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
The development of general catalytic methods for the regio- and stereoselective construction of phosphoryl derivatives from identical substrates remains a formidable challenge in organic synthesis. Enabled by the newly developed BDPP-type ligands, we disclosed a nickel-catalyzed allenylation of phosphine oxides rationally and predictably, allowing the construction of versatile chiral allenylphosphoryl derivatives with high enantiopurity (up to 94% e.e.). Alternatively, using an achiral phosphine ligand dcypbz under acidic conditions, we achieved a regiochemical switch of the 1,3-dienylation to afford functionalized phosphinoyl 1,3-butadienes (up to 93% yield). The salient features of this method include switchable reactivity, broad substrate scope, readily available feedstock, single-step preparation, and high asymmetric induction.
Collapse
Affiliation(s)
- Jiayin Zhang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Xihao Chang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Xianghong Xu
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Hongyi Wang
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Lingzi Peng
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| | - Chang Guo
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026 China
| |
Collapse
|
15
|
Kong HH, Zhu C, Deng S, Xu G, Zhao R, Yao C, Xiang HM, Zhao C, Qi X, Xu H. Remote Enantioselective [4 + 1] Annulation with Copper-Vinylvinylidene Intermediates. J Am Chem Soc 2022; 144:21347-21355. [DOI: 10.1021/jacs.2c09572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Han-Han Kong
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Cuiju Zhu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Shuang Deng
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Guang Xu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Ruinan Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Chaochao Yao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Hua-Ming Xiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Chunhui Zhao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds and Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Hao Xu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
| |
Collapse
|
16
|
Sakata K, Uehara Y, Kohara S, Yoshikawa T, Nishibayashi Y. Effect of Propargylic Substituents on Enantioselectivity and Reactivity in Ruthenium-Catalyzed Propargylic Substitution Reactions: A DFT Study. ACS OMEGA 2022; 7:36634-36642. [PMID: 36278073 PMCID: PMC9583086 DOI: 10.1021/acsomega.2c04645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
We recently proposed a transition-state model for asymmetric propargylic substitution reactions of propargylic alcohols catalyzed by optically active thiolate-bridged diruthenium complexes [Chem. - Asian J.2021, 16, 3760-3766]. In the present study, we further examined the effects of propargylic substituents on both enantioselectivity and reactivity in the propargylic substitution reactions via ωB97X-D-level density functional theory (DFT) calculations. When the propargylic alcohol bears a methyl group at the propargylic position, we obtained results that contrast with the result of our previous study on propargylic alcohols without methyl groups. This result indicates that methyl group substitution at the propargylic position reverses the stereoselectivity. Substitution of a trifluoromethyl group for a methyl group was suggested to result in higher enantioselectivity. The obtained results are consistent with the experimental study on enantioselective propargylic phosphinylation reactions reported by our group.
Collapse
Affiliation(s)
- Ken Sakata
- Faculty
of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Yuuri Uehara
- Faculty
of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Shiona Kohara
- Faculty
of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Takeshi Yoshikawa
- Faculty
of Pharmaceutical Sciences, Toho University, Funabashi, Chiba 274-8510, Japan
| | - Yoshiaki Nishibayashi
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
17
|
Wang H, Qian H, Zhang J, Ma S. Catalytic Asymmetric Axially Chiral Allenyl C-P Bond Formation. J Am Chem Soc 2022; 144:12619-12626. [PMID: 35802534 DOI: 10.1021/jacs.2c04931] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chiral organophosphorous compounds are very important in catalysis, organic syntheses, and medicinal chemistry. However, catalytic enantioselective protocols for the axially chiral allenyl phosphorus compounds have never been reported. Herein, a palladium-catalyzed enantioselective carbon-phosphorus bond formation reaction affording axially chiral allenyl phosphonates has been developed. The reaction enjoys high yields and ees accommodating a wide range of functional groups. Mechanistic studies have unveiled an overwhelming kinetic resolution process.
Collapse
Affiliation(s)
- Huanan Wang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Hui Qian
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Junliang Zhang
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China
| | - Shengming Ma
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai 200433, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, P. R. China
| |
Collapse
|
18
|
Li B, Liu M, Rehman SU, Li C. Rh-Catalyzed Regio- and Enantioselective Allylic Phosphinylation. J Am Chem Soc 2022; 144:2893-2898. [PMID: 35157432 DOI: 10.1021/jacs.2c00239] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transition-metal-catalyzed branched and enantioselective allylic substitution of monosubstituted precursors with carbon, nitrogen, oxygen, sulfur, and fluoride nucleophiles has been well-established. However, such a selective carbon-phosphorus bond formation has not been realized probably due to the catalyst deactivation by the strong coordinating nature of phosphinylating reagents. Herein, we report a Rh-catalyzed highly regio- and enantioselective synthesis of allylic phosphine oxides in the presence of a chiral bisoxazoline-phosphine ligand. The application of α-hydroxylalkylphosphine oxides to keep the low concentration of the secondary phosphine oxides is essential for the high yields. The addition of diphenyl phosphoric acid was found to not only activate allylic alcohols but also accelerate the carbon-phosphorus bond formation.
Collapse
Affiliation(s)
- Bing Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Min Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Sajid Ur Rehman
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Changkun Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
19
|
Liu X, Tian X, Huang J, Qian Y, Xu X, Kang Z, Hu W. Enantioselective Propargylation of Oxonium Ylide with α-Propargylic-3-Indolymethanol: Access to Chiral Propargylic Indoles. Org Lett 2022; 24:1027-1032. [PMID: 35060734 DOI: 10.1021/acs.orglett.1c04217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An enantioselective three-component reaction of α-propargylic-3-indolymethanol with diazoindolinone and alcohol under cocatalysis of Rh(II) and chiral phosphoric acid (CPA) has been reported. It proceeds through the regio- and enantiospecific addition of the in situ formed oxonium ylide to the α-propargylic indole iminium ion that is generated from 3-indolyl propargylic alcohol with CPA. This work features an asymmetric counteranion-directed propargylation of oxonium ylide, and provides an efficient access to chiral propargylic indole derivatives with high yields and enantioselectivities.
Collapse
Affiliation(s)
- Xiangrong Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xue Tian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiawu Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu Qian
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhenghui Kang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
20
|
Zhu WR, Su Q, Deng XY, Liu JS, Zhong T, Meng SS, Yi JT, Weng J, Lu G. Organocatalytic enantioselective S N1-type dehydrative nucleophilic substitution: access to bis(indolyl)methanes bearing quaternary carbon stereocenters. Chem Sci 2021; 13:170-177. [PMID: 35733509 PMCID: PMC9158264 DOI: 10.1039/d1sc05174a] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
A highly general and straightforward approach to access chiral bis(indolyl)methanes (BIMs) bearing quaternary stereocenters has been realized via enantioconvergent dehydrative nucleophilic substitution. A broad range of 3,3'-, 3,2'- and 3,1'-BIMs were obtained under mild conditions with excellent efficiency and enantioselectivity (80 examples, up to 98% yield and >99 : 1 er). By utilizing racemic 3-indolyl tertiary alcohols as precursors of alkyl electrophiles and indoles as C-H nucleophiles, this organocatalytic strategy avoids pre-activation of substrates and produces water as the only by-product. Mechanistic studies suggest a formal SN1-type pathway enabled by chiral phosphoric acid catalysis. The practicability of the obtained enantioenriched BIMs was further demonstrated by versatile transformation and high antimicrobial activities (3al, MIC: 1 μg mL-1).
Collapse
Affiliation(s)
- Wen-Run Zhu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Qiong Su
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiao-Yi Deng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jia-Sheng Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Tao Zhong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Shan-Shui Meng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ji-Tao Yi
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Jiang Weng
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Gui Lu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
21
|
Yang Z, Wang J(J. Enantioselective Palladium‐Catalyzed Hydrophosphinylation of Allenes with Phosphine Oxides: Access to Chiral Allylic Phosphine Oxides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhiping Yang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Jun (Joelle) Wang
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
- Department of Chemistry Hong Kong Baptist University Kowloon, Hong Kong China
| |
Collapse
|
22
|
Primary Phosphines and Phosphine Oxides with a Stereogenic Carbon Center Adjacent to the Phosphorus Atom: Synthesis and Anti-Markovnikov Radical Addition to Alkenes. ORGANICS 2021. [DOI: 10.3390/org2040023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Organophosphorus compounds with stereogenic phosphorus and carbon atoms have received increasing attention. In this regards, primary phosphines with a stereogenic carbon atom adjacent to the phosphorus atom were synthesized by the reduction in phosphonates and phosphonoselenoates with a binaphthyl group. Their oxidized products, i.e., phosphine oxides with a stereogenic tetrasubstituted carbon atom, were found to undergo BEt3-mediated radical addition to cyclohexene to give P-stereogenic secondary phosphine oxides with a diastereoselectivity of 91:9. The products were characterized by ordinary analytical methods, such as Fourier transform infrared spectroscopy; 1H, 13C, and 31P NMR spectroscopies; and mass spectroscopy. Computational studies on the phosphorus-centered radical species and the obtained product implied that the thermodynamically stable radical and the adduct may be formed as a major diastereomer. The radical addition to a range of alkenes took place in an anti-Markovnikov fashion to give P-stereogenic secondary phosphine oxides. A variety of functional groups in the alkenes were tolerated under the reaction conditions to afford secondary phosphine oxides in moderate yields. Primary phosphines with an alkenyl group, which were generated in situ, underwent intramolecular cyclization to give five- and six-membered cyclic phosphines in high yields after protection by BH3.
Collapse
|
23
|
Sakata K, Goto Y, Yoshikawa T, Nishibayashi Y. Enantioselectivity in Ruthenium-Catalyzed Propargylic Substitution Reactions of Propargylic Alcohols with Acetone: A DFT Study. Chem Asian J 2021; 16:3760-3766. [PMID: 34549529 DOI: 10.1002/asia.202100984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/09/2021] [Indexed: 11/07/2022]
Abstract
The enantioselectivity in the propargylic substitution reactions of propargylic alcohols with acetone catalyzed by optically active thiolate-bridged diruthenium complexes was examined via ωB97X-D level DFT calculations. Some structures with intramolecular dispersion interactions between ligands were found for the ruthenium-allenylidene complex, which is the key intermediate in the catalytic reaction, and it was determined that the structure corresponding to the X-ray crystal structure, which had provided the transition state model for the enantioselectivity in previous studies, was not the most stable among the obtained structures. Then, a variety of transition-state structures for the nucleophilic attack of prop-1-ene-2-ol, which is the enol isomer of acetone, on the γ-carbon of the ruthenium-allenylidene complex were explored. Among the transition-state structures with lower energies, the number of structures leading to the major (R) product was found to be larger than that of structures leading to the minor (S) product, providing enantioselectivity in terms of probability distributions. The introduction of a phenyl group in the thiolate ligand was suggested to increase the selectivity. Thus, we propose the novel transition state model for the asymmetric catalytic reaction system.
Collapse
Affiliation(s)
- Ken Sakata
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yui Goto
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
24
|
Liu S, Tanabe Y, Kuriyama S, Sakata K, Nishibayashi Y. Ruthenium- and Copper-Catalyzed Propargylic Substitution Reactions of Propargylic Alcohol Derivatives with Hydrazones. Chemistry 2021; 27:15650-15659. [PMID: 34606139 DOI: 10.1002/chem.202103287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 11/12/2022]
Abstract
Ruthenium- and copper-catalyzed propargylic substitution reactions of propargylic alcohol derivatives with N-monosubstituted hydrazones as ambident nucleophiles are achieved in which N-monosubstituted hydrazones exhibit impressive different reactivities depending on different catalytic systems, behaving as carbon-centered nucleophiles to give the corresponding propargylic alkylated products in ruthenium catalysis, or as nitrogen-centered nucleophiles to afford the corresponding propargylic aminated products in copper catalysis. DFT calculations were carried out to investigate the detailed reaction pathways of these two systems. Further transformation of propargylic substituted products affords the corresponding multisubstituted pyrazoles as cyclization products in good to high yields.
Collapse
Affiliation(s)
- Shiyao Liu
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoshiaki Tanabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shogo Kuriyama
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, Japan
| | - Ken Sakata
- Faculty of Pharmaceutical Sciences, Toho University Miyama, Funabashi, Chiba, Japan
| | - Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
25
|
Yang Z, Wang JJ. Enantioselective Palladium-Catalyzed Hydrophosphinylation of Allenes with Phosphine Oxides: Access to Chiral Allylic Phosphine Oxides. Angew Chem Int Ed Engl 2021; 60:27288-27292. [PMID: 34581469 DOI: 10.1002/anie.202112285] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/23/2021] [Indexed: 12/15/2022]
Abstract
A Pd-catalyzed hydrophosphinylation of alkyl and aryl-oxyallenes with phosphine oxides has been developed for the efficient and rapid construction of a family of chiral allylic phosphine oxides with a diverse range of functional groups. This methodology was further applied in the facile construction of chiral 2H-chromene and later stage functionalization of cholesterol.
Collapse
Affiliation(s)
- Zhiping Yang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jun Joelle Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong, China
| |
Collapse
|
26
|
Xia JT, Li L, Hu XP. Copper-Catalyzed Decarboxylative Propargylic Alkylation of Enol Carbonates: Stereoselective Synthesis of Quaternary α-Amino Acids. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jin-Tao Xia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
27
|
Nishibayashi Y. Development of Asymmetric Propargylic Substitution Reactions Using Transition Metal Catalysts. CHEM LETT 2021. [DOI: 10.1246/cl.210126] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yoshiaki Nishibayashi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656
| |
Collapse
|