1
|
Zhang S, Fan S, He H, Zhu J, Murray L, Liang G, Ran S, Zhu YZ, Cryle MJ, He HY, Zhang Y. Cyclic natural product oligomers: diversity and (bio)synthesis of macrocycles. Chem Soc Rev 2024. [PMID: 39584260 DOI: 10.1039/d2cs00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cyclic compounds are generally preferred over linear compounds for functional studies due to their enhanced bioavailability, stability towards metabolic degradation, and selective receptor binding. This has led to a need for effective cyclization strategies for compound synthesis and hence increased interest in macrocyclization mediated by thioesterase (TE) domains, which naturally boost the chemical diversity and bioactivities of cyclic natural products. Many non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) derived natural products are assembled to form cyclodimeric compounds, with these molecules possessing diverse structures and biological activities. There is significant interest in identifying the biosynthetic pathways that produce such molecules given the challenge that cyclodimerization represents from a biosynthetic perspective. In the last decade, many groups have pursued the characterization of TE domains and have provided new insights into this biocatalytic machinery: however, the enzymes involved in formation of cyclodimeric compounds have proven far more elusive. In this review we focus on natural products that involve macrocyclization in their biosynthesis and chemical synthesis, with an emphasis on the function and biosynthetic investigation on the special family of TE domains responsible for forming cyclodimeric natural products. We also introduce additional macrocyclization catalysts, including butelase and the CT-mediated cyclization of peptides, alongside the formation of cyclodipeptides mediated by cyclodipeptide synthases (CDPS) and single-module NRPSs. Due to the interdisciplinary nature of biosynthetic research, we anticipate that this review will prove valuable to synthetic chemists, drug discovery groups, enzymologists, and the biosynthetic community in general, and inspire further efforts to identify and exploit these biocatalysts for the formation of novel bioactive molecules.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuai Fan
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haocheng He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lauren Murray
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Gong Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shi Ran
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Zhun Zhu
- School of Pharmacy & State Key Lab. for the Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Hai-Yan He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
2
|
Zang H, Cheng Y, Li M, Zhou L, Hong LL, Deng H, Lin HW, Zhou Y. Mutagenetic analysis of the biosynthetic pathway of tetramate bripiodionen bearing 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione skeleton. Microb Cell Fact 2024; 23:87. [PMID: 38515152 PMCID: PMC10956176 DOI: 10.1186/s12934-024-02364-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Natural tetramates are a family of hybrid polyketides bearing tetramic acid (pyrrolidine-2,4-dione) moiety exhibiting a broad range of bioactivities. Biosynthesis of tetramates in microorganisms is normally directed by hybrid polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) machineries, which form the tetramic acid ring by recruiting trans- or cis-acting thioesterase-like Dieckmann cyclase in bacteria. There are a group of tetramates with unique skeleton of 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione, which remain to be investigated for their biosynthetic logics. RESULTS Herein, the tetramate type compounds bripiodionen (BPD) and its new analog, featuring the rare skeleton of 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione, were discovered from the sponge symbiotic bacterial Streptomyces reniochalinae LHW50302. Gene deletion and mutant complementation revealed the production of BPDs being correlated with a PKS-NRPS biosynthetic gene cluster (BGC), in which a Dieckmann cyclase gene bpdE was identified by sit-directed mutations. According to bioinformatic analysis, the tetramic acid moiety of BPDs should be formed on an atypical NRPS module constituted by two discrete proteins, including the C (condensation)-A (adenylation)-T (thiolation) domains of BpdC and the A-T domains of BpdD. Further site-directed mutagenetic analysis confirmed the natural silence of the A domain in BpdC and the functional necessities of the two T domains, therefore suggesting that an unusual aminoacyl transthiolation should occur between the T domains of two NRPS subunits. Additionally, characterization of a LuxR type regulator gene led to seven- to eight-fold increasement of BPDs production. The study presents the first biosynthesis case of the natural molecule with 3-(2H-pyran-2-ylidene)pyrrolidine-2,4-dione skeleton. Genomic mining using BpdD as probe reveals that the aminoacyl transthiolation between separate NRPS subunits should occur in a certain population of NRPSs in nature.
Collapse
Affiliation(s)
- Haixia Zang
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yijia Cheng
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengjia Li
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lin Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li-Li Hong
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Hai Deng
- Department of Chemistry, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Hou-Wen Lin
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Yongjun Zhou
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| |
Collapse
|
3
|
Ehinger FJ, Niehs SP, Dose B, Dell M, Krabbe J, Pidot SJ, Stinear TP, Scherlach K, Ross C, Lackner G, Hertweck C. Analysis of Rhizonin Biosynthesis Reveals Origin of Pharmacophoric Furylalanine Moieties in Diverse Cyclopeptides. Angew Chem Int Ed Engl 2023; 62:e202308540. [PMID: 37650335 DOI: 10.1002/anie.202308540] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Rhizonin A and B are hepatotoxic cyclopeptides produced by bacterial endosymbionts (Mycetohabitans endofungorum) of the fungus Rhizopus microsporus. Their toxicity critically depends on the presence of 3-furylalanine (Fua) residues, which also occur in pharmaceutically relevant cyclopeptides of the endolide and bingchamide families. The biosynthesis and incorporation of Fua by non-ribosomal peptide synthetases (NRPS), however, has remained elusive. By genome sequencing and gene inactivation we elucidated the gene cluster responsible for rhizonin biosynthesis. A suite of isotope labeling experiments identified tyrosine and l-DOPA as Fua precursors and provided the first mechanistic insight. Bioinformatics, mutational analysis and heterologous reconstitution identified dioxygenase RhzB as necessary and sufficient for Fua formation. RhzB is a novel type of heme-dependent aromatic oxygenases (HDAO) that enabled the discovery of the bingchamide biosynthesis gene cluster through genome mining.
Collapse
Affiliation(s)
- Friedrich J Ehinger
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Sarah P Niehs
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Benjamin Dose
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Maria Dell
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Jana Krabbe
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Sacha J Pidot
- Department of Microbiology and Immunology, Doherty Institute, 792 Elizabeth Street, Melbourne, 3000, Australia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, Doherty Institute, 792 Elizabeth Street, Melbourne, 3000, Australia
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Claudia Ross
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Gerald Lackner
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
4
|
Patel KD, MacDonald MR, Ahmed SF, Singh J, Gulick AM. Structural advances toward understanding the catalytic activity and conformational dynamics of modular nonribosomal peptide synthetases. Nat Prod Rep 2023; 40:1550-1582. [PMID: 37114973 PMCID: PMC10510592 DOI: 10.1039/d3np00003f] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Indexed: 04/29/2023]
Abstract
Covering: up to fall 2022.Nonribosomal peptide synthetases (NRPSs) are a family of modular, multidomain enzymes that catalyze the biosynthesis of important peptide natural products, including antibiotics, siderophores, and molecules with other biological activity. The NRPS architecture involves an assembly line strategy that tethers amino acid building blocks and the growing peptides to integrated carrier protein domains that migrate between different catalytic domains for peptide bond formation and other chemical modifications. Examination of the structures of individual domains and larger multidomain proteins has identified conserved conformational states within a single module that are adopted by NRPS modules to carry out a coordinated biosynthetic strategy that is shared by diverse systems. In contrast, interactions between modules are much more dynamic and do not yet suggest conserved conformational states between modules. Here we describe the structures of NRPS protein domains and modules and discuss the implications for future natural product discovery.
Collapse
Affiliation(s)
- Ketan D Patel
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Monica R MacDonald
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Syed Fardin Ahmed
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Jitendra Singh
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| | - Andrew M Gulick
- University at Buffalo, Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, 55 Main St. Buffalo, NY 14203, USA.
| |
Collapse
|
5
|
Zhang K, Kries H. Biomimetic engineering of nonribosomal peptide synthesis. Biochem Soc Trans 2023; 51:1521-1532. [PMID: 37409512 DOI: 10.1042/bst20221264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Nonribosomal peptides (NRPs) have gained attention due to their diverse biological activities and potential applications in medicine and agriculture. The natural diversity of NRPs is a result of evolutionary processes that have occurred over millions of years. Recent studies have shed light on the mechanisms by which nonribosomal peptide synthetases (NRPSs) evolve, including gene duplication, recombination, and horizontal transfer. Mimicking natural evolution could be a useful strategy for engineering NRPSs to produce novel compounds with desired properties. Furthermore, the emergence of antibiotic-resistant bacteria has highlighted the urgent need for new drugs, and NRPs represent a promising avenue for drug discovery. This review discusses the engineering potential of NRPSs in light of their evolutionary history.
Collapse
Affiliation(s)
- Kexin Zhang
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
- Organic Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
6
|
Zhang S, Zhang L, Greule A, Tailhades J, Marschall E, Prasongpholchai P, Leng DJ, Zhang J, Zhu J, Kaczmarski JA, Schittenhelm RB, Einsle O, Jackson CJ, Alberti F, Bechthold A, Zhang Y, Tosin M, Si T, Cryle MJ. P450-mediated dehydrotyrosine formation during WS9326 biosynthesis proceeds via dehydrogenation of a specific acylated dipeptide substrate. Acta Pharm Sin B 2023; 13:3561-3574. [PMID: 37655329 PMCID: PMC10465960 DOI: 10.1016/j.apsb.2023.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
WS9326A is a peptide antibiotic containing a highly unusual N-methyl-E-2-3-dehydrotyrosine (NMet-Dht) residue that is incorporated during peptide assembly on a non-ribosomal peptide synthetase (NRPS). The cytochrome P450 encoded by sas16 (P450Sas) has been shown to be essential for the formation of the alkene moiety in NMet-Dht, but the timing and mechanism of the P450Sas-mediated α,β-dehydrogenation of Dht remained unclear. Here, we show that the substrate of P450Sas is the NRPS-associated peptidyl carrier protein (PCP)-bound dipeptide intermediate (Z)-2-pent-1'-enyl-cinnamoyl-Thr-N-Me-Tyr. We demonstrate that P450Sas-mediated incorporation of the double bond follows N-methylation of the Tyr by the N-methyl transferase domain found within the NRPS, and further that P450Sas appears to be specific for substrates containing the (Z)-2-pent-1'-enyl-cinnamoyl group. A crystal structure of P450Sas reveals differences between P450Sas and other P450s involved in the modification of NRPS-associated substrates, including the substitution of the canonical active site alcohol residue with a phenylalanine (F250), which in turn is critical to P450Sas activity and WS9326A biosynthesis. Together, our results suggest that P450Sas catalyses the direct dehydrogenation of the NRPS-bound dipeptide substrate, thus expanding the repertoire of P450 enzymes that can be used to produce biologically active peptides.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lin Zhang
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg 79104, Germany
| | - Anja Greule
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- EMBL Australia, Monash University, Clayton 3800, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
| | - Edward Marschall
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- EMBL Australia, Monash University, Clayton 3800, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
| | | | - Daniel J. Leng
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Jingfan Zhang
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Joe A. Kaczmarski
- Research School of Chemistry, the Australian National University, Acton 2601, ACT, Australia
| | - Ralf B. Schittenhelm
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton 3800, VIC, Australia
| | - Oliver Einsle
- Institut für Biochemie, Albert-Ludwigs-Universität Freiburg, Freiburg 79104, Germany
| | - Colin J. Jackson
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
- Research School of Chemistry, the Australian National University, Acton 2601, ACT, Australia
| | - Fabrizio Alberti
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, UK
| | - Andreas Bechthold
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg 79104, Germany
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Manuela Tosin
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Tong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Max J. Cryle
- Department of Biochemistry and Molecular Biology, the Monash Biomedicine Discovery Institute, Monash University, Clayton 3800, VIC, Australia
- EMBL Australia, Monash University, Clayton 3800, VIC, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Clayton 3800, VIC, Australia
| |
Collapse
|
7
|
Zhang S, Chen Y, Zhu J, Lu Q, Cryle MJ, Zhang Y, Yan F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat Prod Rep 2023; 40:557-594. [PMID: 36484454 DOI: 10.1039/d2np00044j] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2022Streptomyces are ubiquitous in terrestrial and marine environments, where they display a fascinating metabolic diversity. As a result, these bacteria are a prolific source of active natural products. One important class of these natural products is the nonribosomal lipopeptides, which have diverse biological activities and play important roles in the lifestyle of Streptomyces. The importance of this class is highlighted by the use of related antibiotics in the clinic, such as daptomycin (tradename Cubicin). By virtue of recent advances spanning chemistry and biology, significant progress has been made in biosynthetic studies on the lipopeptide antibiotics produced by Streptomyces. This review will serve as a comprehensive guide for researchers working in this multidisciplinary field, providing a summary of recent progress regarding the investigation of lipopeptides from Streptomyces. In particular, we highlight the structures, properties, biosynthetic mechanisms, chemical and chemoenzymatic synthesis, and biological functions of lipopeptides. In addition, the application of genome mining techniques to Streptomyces that have led to the discovery of many novel lipopeptides is discussed, further demonstrating the potential of lipopeptides from Streptomyces for future development in modern medicine.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunliang Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China.
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiujie Lu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800 Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
8
|
Oves-Costales D, Gren T, Sterndorff EB, Martín J, Ortiz-López FJ, Jørgensen TS, Jiang X, Román-Hurtado F, Reyes F, Genilloud O, Weber T. Identification and heterologous expression of the globomycin biosynthetic gene cluster. Synth Syst Biotechnol 2023; 8:206-212. [PMID: 36844473 PMCID: PMC9943842 DOI: 10.1016/j.synbio.2023.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Globomycin is a cyclic lipodepsipeptide originally isolated from several Streptomyces species which displays strong and selective antibacterial activity against Gram-negative pathogens. Its mode of action is based on the competitive inhibition of the lipoprotein signal peptidase II (LspA), which is absent in eukaryotes and considered an attractive target for the development of new antibiotics. Despite its interesting biological properties, the gene cluster encoding its biosynthesis has not yet been identified. In this study we employed a genome-mining approach in the globomycin-producing Streptomyces sp. CA-278952 to identify a candidate gene cluster responsible for its biosynthesis. A null mutant was constructed using CRISPR base editing where production was abolished, strongly suggesting its involvement in the biosynthesis. The putative gene cluster was then cloned and heterologously expressed in Streptomyces albus J1074 and Streptomyces coelicolor M1146, therefore unambiguously linking globomycin and its biosynthetic gene cluster. Our work paves the way for the biosynthesis of new globomycin derivatives with improved pharmacological properties.
Collapse
Affiliation(s)
- Daniel Oves-Costales
- Fundacion MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda del Conocimiento 34, 18016, Armilla, Granada, Spain,Corresponding author.
| | - Tetiana Gren
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Eva Baggesgaard Sterndorff
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Jesús Martín
- Fundacion MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Francisco Javier Ortiz-López
- Fundacion MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Tue S. Jørgensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Xinglin Jiang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark
| | - Fernando Román-Hurtado
- Fundacion MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Fernando Reyes
- Fundacion MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda del Conocimiento 34, 18016, Armilla, Granada, Spain
| | - Olga Genilloud
- Fundacion MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda del Conocimiento 34, 18016, Armilla, Granada, Spain,Corresponding author.
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, building 220, 2800 Kgs. Lyngby, Denmark,Corresponding author.
| |
Collapse
|
9
|
Wu C, Tang J, Limlingan Malit JJ, Wang R, Sung HHY, Williams ID, Qian PY. Bathiapeptides: Polythiazole-Containing Peptides from a Marine Biofilm-Derived Bacillus sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:1751-1762. [PMID: 35703501 DOI: 10.1021/acs.jnatprod.2c00290] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bacteria in marine biofilms are a rich reservoir of natural products. To facilitate novel secondary metabolite discovery, we investigated the metabolic profile of a marine biofilm-derived Bacillus sp. B19-2 by combining bioinformatics and LC-UV-MS analyses. After dereplication and purification of putatively unknown compounds, a new family of compounds 1-8 was uncovered and named bathiapeptides. Structural elucidation using NMR, HRESIMS, ozonolysis, advanced Marfey's analysis, and X-ray diffraction revealed that bathiapeptides are polypeptides that contain a rare polythiazole moiety. These compounds exhibited strong cytotoxicity against Hep G2, HeLa, MCF-7, and MGC-803 cell lines, and the lowest IC50 value was 0.5 μM. An iterative biosynthesis logic in bathiapeptides' biosynthesis was proposed based on the identified chemical structures and putative gene cluster analysis.
Collapse
Affiliation(s)
- Chuanhai Wu
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Jianwei Tang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Jessie James Limlingan Malit
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Ruojun Wang
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Herman H-Y Sung
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Ian D Williams
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| | - Pei-Yuan Qian
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong, 511458 People's Republic of China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, People's Republic of China
| |
Collapse
|
10
|
Kim MS, Bae M, Song MC, Hwang S, Oh DC, Yoon YJ. Cyclodimerization of Mohangamide A by Thioesterase Domain Is Directed by Substrates. Org Lett 2022; 24:4444-4448. [PMID: 35699427 DOI: 10.1021/acs.orglett.2c01670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mohangamide A is a pseudo-dimeric nonribosomal peptide biosynthesized along with its monomer, WS9326A, and is expected to be formed by the head-to-tail cyclodimerization of linear WS9326A and another identical peptide chain with a different acyl side chain. In vitro experiments with the N-acetylcysteamine thioesters of the corresponding monomeric intermediates and thioesterase domains of Streptomyces sp. SNM55 and S. calvus showed that this cyclodimerization reaction is directed by the substrate structures and occurs only with both linear intermediates.
Collapse
Affiliation(s)
- Myoun-Su Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Munhyung Bae
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea
| | - Myoung Chong Song
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
11
|
Han P, Chen Z, Liu Y, Ma A, Li S, Jia Y. Structural Organization of Brevilaterin Biosynthesis in Brevibacillus laterosporus S62-9: A Novel MbtH-Independent Cationic Antimicrobial Peptide Synthetase System. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7471-7478. [PMID: 35675382 DOI: 10.1021/acs.jafc.2c01143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cationic antimicrobial peptides, produced by nonribosomal peptide synthetases (NRPSs), have received great attention in different applications, including as biocontrol and antimicrobial agents against foodborne pathogenic bacteria. Also, Brevibacillus spp. is a competent microorganism to produce cationic antimicrobial peptides yet has received little attention. Herein, Brevibacillus laterosporus S62-9 genome mining revealed an integrated cationic antimicrobial peptide synthetase system that synthesized brevilaterin. Combining biochemical analysis with bioinformatics elucidated that the A domain from this system was the MbtH-independent enzyme and showed activity against the same amino acid in the structure of brevilaterin. Moreover, the creations of the first three and position 12 residues in the sequence were targeted to bre261, bre270, bre2691A, and bre2662, respectively. Further analysis of the specificity-conferring code of the A domain suggested that a tiny difference would make the activity of the A domain very diverse and the range of substrate selection would be enlarged or narrowed by changing some residues in the code. The dissection of this biosynthesis mechanism would contribute to the successful realization of reasonable artificial design and the modification of bioactive peptides, and this capable organism also would be more fully utilized.
Collapse
Affiliation(s)
- Panpan Han
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Zhou Chen
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yangliu Liu
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Aijin Ma
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Siting Li
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, No.33 Fucheng Road, Haidian District, Beijing 100048, China
| |
Collapse
|
12
|
An JS, Kim MS, Han J, Jang SC, Im JH, Cui J, Lee Y, Nam SJ, Shin J, Lee SK, Yoon YJ, Oh DC. Nyuzenamide C, an Antiangiogenic Epoxy Cinnamic Acid-Containing Bicyclic Peptide from a Riverine Streptomyces sp. JOURNAL OF NATURAL PRODUCTS 2022; 85:804-814. [PMID: 35294831 DOI: 10.1021/acs.jnatprod.1c00837] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A new nonribosomal peptide, nyuzenamide C (1), was discovered from riverine sediment-derived Streptomyces sp. DM14. Comprehensive analysis of the spectroscopic data of nyuzenamide C (1) revealed that 1 has a bicyclic backbone composed of six common amino acid residues (Asn, Leu, Pro, Gly, Val, and Thr) and four nonproteinogenic amino acid units, including hydroxyglycine, β-hydroxyphenylalanine, p-hydroxyphenylglycine, and 3,β-dihydroxytyrosine, along with 1,2-epoxypropyl cinnamic acid. The absolute configuration of 1 was proposed by J-based configuration analysis, the advanced Marfey's method, quantum mechanics-based DP4 calculations, and bioinformatic analysis of its nonribosomal peptide synthetase biosynthetic gene cluster. Nyuzenamide C (1) displayed antiangiogenic activity in human umbilical vein endothelial cells and induced quinone reductase in murine Hepa-1c1c7 cells.
Collapse
Affiliation(s)
- Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Myoun-Su Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaeho Han
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung Chul Jang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hyeon Im
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinsheng Cui
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeonjin Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Aminoacyl chain translocation catalysed by a type II thioesterase domain in an unusual non-ribosomal peptide synthetase. Nat Commun 2022; 13:62. [PMID: 35013184 PMCID: PMC8748450 DOI: 10.1038/s41467-021-27512-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/18/2021] [Indexed: 01/11/2023] Open
Abstract
Non-Ribosomal Peptide Synthetases (NRPSs) assemble a diverse range of natural products with important applications in both medicine and agriculture. They consist of several multienzyme subunits that must interact with each other in a highly controlled manner to facilitate efficient chain transfer, thus ensuring biosynthetic fidelity. Several mechanisms for chain transfer are known for NRPSs, promoting structural diversity. Herein, we report the first biochemically characterized example of a type II thioesterase (TEII) domain capable of catalysing aminoacyl chain transfer between thiolation (T) domains on two separate NRPS subunits responsible for installation of a dehydrobutyrine moiety. Biochemical dissection of this process reveals the central role of the TEII-catalysed chain translocation event and expands the enzymatic scope of TEII domains beyond canonical (amino)acyl chain hydrolysis. The apparent co-evolution of the TEII domain with the NRPS subunits highlights a unique feature of this enzymatic cassette, which will undoubtedly find utility in biosynthetic engineering efforts. Non-Ribosomal Peptide Synthetases (NRPSs) are responsible for the construction of many types of natural products. Here the authors characterize a key type II thioesterase domain that sheds light on the chain translocation processes of legonmycin NRPSs.
Collapse
|
14
|
Planckaert S, Deflandre B, de Vries AM, Ameye M, Martins JC, Audenaert K, Rigali S, Devreese B. Identification of Novel Rotihibin Analogues in Streptomyces scabies, Including Discovery of Its Biosynthetic Gene Cluster. Microbiol Spectr 2021; 9:e0057121. [PMID: 34346752 PMCID: PMC8552735 DOI: 10.1128/spectrum.00571-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 02/01/2023] Open
Abstract
Streptomyces scabies is a phytopathogen associated with common scab disease. This is mainly attributed to its ability to produce the phytotoxin thaxtomin A, the biosynthesis of which is triggered by cellobiose. During a survey of other metabolites released in the presence of cellobiose, we discovered additional compounds in the thaxtomin-containing extract from Streptomyces scabies. Structural analysis by mass spectrometry (MS) and nuclear magnetic resonance (NMR) revealed that these compounds are amino acid sequence variants of the TOR (target of rapamycin) kinase (TORK) pathway-inhibitory lipopeptide rotihibin A, and the main compounds were named rotihibins C and D. In contrast to thaxtomin, the production of rotihibins C and D was also elicited in the presence of glucose, indicating different regulation of their biosynthesis. Through a combination of shotgun and targeted proteomics, the putative rotihibin biosynthetic gene cluster rth was identified in the publicly available genome of S. scabies 87-22. This cluster spans 33 kbp and encodes 2 different nonribosomal peptide synthetases (NRPSs) and 12 additional enzymes. Homologous rth biosynthetic gene clusters were found in other publicly available and complete actinomycete genomes. Rotihibins C and D display herbicidal activity against Lemna minor and Arabidopsis thaliana at low concentrations, shown by monitoring the effects on growth and the maximal photochemistry efficiency of photosystem II. IMPORTANCE Rotihibins A and B are plant growth inhibitors acting on the TORK pathway. We report the isolation and characterization of new sequence analogues of rotihibin from Streptomyces scabies, a major cause of common scab in potato and other tuber and root vegetables. By combining proteomics data with genomic analysis, we found a cryptic biosynthetic gene cluster coding for enzyme machinery capable of rotihibin production. This work may lead to the biotechnological production of variants of this lipopeptide to investigate the exact mechanism by which it can target the plant TORK pathway in Arabidopsis thaliana. In addition, bioinformatics revealed the existence of other variants in plant-associated Streptomyces strains, both pathogenic and nonpathogenic species, raising new questions about the actual function of this lipopeptide. The discovery of a module in the nonribosomal peptide synthetase (NRPS) that incorporates the unusual citrulline residue may improve the prediction of peptides encoded by cryptic NRPS gene clusters.
Collapse
Affiliation(s)
- Sören Planckaert
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Benoit Deflandre
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | | | - Maarten Ameye
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - José C. Martins
- NMR and Structure Analysis Group, Ghent University, Ghent, Belgium
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Sébastien Rigali
- InBioS-Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, Liège, Belgium
| | - Bart Devreese
- Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Hill RA, Sutherland A. Hot off the press. Nat Prod Rep 2021. [DOI: 10.1039/d1np90037d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as chlorahupetone A from Chloranthus henryi var. hupehensis.
Collapse
Affiliation(s)
- Robert A. Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK
| | | |
Collapse
|