1
|
Li X, Chang Z, Duan S, Xie Z. Total Synthesis of Berkeleyone A and Preaustinoid A through Epoxypolyene Cyclization. Angew Chem Int Ed Engl 2024:e202416211. [PMID: 39445483 DOI: 10.1002/anie.202416211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/23/2024] [Indexed: 10/25/2024]
Abstract
A bioinspired Lewis acid-catalyzed epoxypolyene cyclization was developed to construct the tetracyclic framework containing a bicyclo[3.3.1]nonane core and seven chiral centers. The usage of this approach for assembling these natural products of 6/6/6/6 tetracyclic skeleton with bicyclo[3.3.1]nonane core is demonstrated by the total synthesis of highly oxidized berkeleyone A and preaustinoid A.
Collapse
Affiliation(s)
- Xingyi Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Zhifang Chang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | | | - Zhixiang Xie
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| |
Collapse
|
2
|
Bhattacharya A, Falk ID, Moss FR, Weiss TM, Tran KN, Burns NZ, Boxer SG. Structure-function relationships in pure archaeal bipolar tetraether lipids. Chem Sci 2024:d4sc03788j. [PMID: 39149219 PMCID: PMC11320390 DOI: 10.1039/d4sc03788j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Archaeal bipolar tetraether lipids (BTLs) are among the most unusual lipids occurring in nature because of their presumed ability to span the entire membrane to form a monolayer structure. It is believed that because of their unique structural organization and chemical stability, BTLs offer extraordinary adaptation to archaea to thrive in the most extreme milieus. BTLs have also received considerable attention for development of novel membrane-based materials. Despite their fundamental biological significance and biotechnological interests, prior studies on pure BTLs are limited because of the difficulty to extract them in pure form from natural sources or to synthesize them chemically. Here we have utilized chemical synthesis to enable in-depth biophysical investigations on a series of chemically pure glycerol dialkyl glycerol tetraether (GDGT) lipids. The lipids self-assemble to form membrane-bound vesicles encapsulating polar molecules in aqueous media, and reconstitute a functional integral membrane protein. Structural properties of the membranes were characterized via small-angle X-ray scattering (SAXS) and cryogenic electron microscopy (cryo-EM). SAXS studies on bulk aqueous dispersions of GDGT lipids over 10-90 °C revealed lamellar and non-lamellar phases and their transitions. Next we asked whether vesicles overwhelmingly composed of a single GDGT species can undergo fusion as it is difficult to conceptualize such behavior with the assumption that such membranes have a monolayer structure. Interestingly, we observed that GDGT vesicles undergo fusion with influenza virus with lipid mixing kinetics comparable to that with vesicles composed of monopolar phospholipids. Our results suggest that GDGT membranes may consist of regions with a bilayer structure or form bilayer structures transiently which facilitate fusion and thus offer insight into how archaea may perform important physiological functions that require dynamical membrane behavior.
Collapse
Affiliation(s)
- Ahanjit Bhattacharya
- Department of Chemistry, Stanford University Stanford CA 94305 USA
- Stanford Center for Innovation in Global Health, Stanford University Stanford CA 94305 USA
| | - Isaac D Falk
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Frank R Moss
- Linac Coherent Light Source, SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Thomas M Weiss
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Khoi N Tran
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Noah Z Burns
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| | - Steven G Boxer
- Department of Chemistry, Stanford University Stanford CA 94305 USA
| |
Collapse
|
3
|
Zheng J, Peters BBC, Jiang W, Suàrez LA, Ahlquist MSG, Singh T, Andersson PG. The Effect of Conformational Freedom vs Restriction on the Rate in Asymmetric Hydrogenation: Iridium-Catalyzed Regio- and Enantioselective Monohydrogenation of Dienones. Chemistry 2023:e202303406. [PMID: 38109038 DOI: 10.1002/chem.202303406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 12/19/2023]
Abstract
Transition metal-catalyzed asymmetric hydrogenation constitutes an efficient strategy for the preparation of chiral molecules. When dienes are subjected to hydrogenation, control over regioselectivity still presents a large challenge and the fully saturated alkane is often yielded. A few successful monohydrogenations of dienes have been reported, but hitherto these are only efficient for dienes comprised of two distinctly different olefins. Herein, the reactivity of a conjugated carbonyl compound as a function of their conformational freedom is studied, based on a combined experimental and theoretical approach. It was found that alkenes in the (s)-cis conformation experience a large rate acceleration while (s)-trans restrained alkenes undergo hydrogenation slowly. Ultimately, this reactivity aspect was exploited in a novel method for the monohydrogenation of dienes based on conformational restriction ((s)-cis vs (s)-trans). This mode of discrimination conceptually differs from existing monohydrogenations and dienones constructed of two olefins similar in nature could efficiently be hydrogenated to the chiral alkene (up to 99 % ee). The extent of regioselection is even powerful enough to overcome the conventional reactivity order of substituted olefins (di>tri>tetra). This high yielding and atom-economical protocol provides an interesting opportunity to instal a stereogenic center on a carbocycle, while leaving a synthetically useful alkene untouched.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Bram B C Peters
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Wei Jiang
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Lluís Artús Suàrez
- School of Biotechnology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Mårten S G Ahlquist
- School of Biotechnology, KTH Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Thishana Singh
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| | - Pher G Andersson
- Department of Organic Chemistry, Stockholm University, 10691, Stockholm, Sweden
- School of Chemistry and Physics, University of Kwazulu-Natal, Private Bag X54001, 4000, Durban, South Africa
| |
Collapse
|
4
|
Oka S, Watanabe M, Ito E, Takeyama A, Matsuoka T, Takahashi M, Izumi Y, Arichi N, Ohno H, Yamasaki S, Inuki S. Archaeal Glycerolipids Are Recognized by C-Type Lectin Receptor Mincle. J Am Chem Soc 2023; 145:18538-18548. [PMID: 37555666 DOI: 10.1021/jacs.3c05473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Recently, various metabolites derived from host microbes have been reported to modulate the immune system, with potential involvement in health or diseases. Archaea, prokaryotic organisms, are present in the human body, but their connection with the host is largely unknown when compared to other microorganisms such as bacteria. This study focused on unique glycerolipids from symbiotic methanogenic archaea and evaluated their activities toward an innate immune receptor. The results revealed that archaeal lipids were recognized by the C-type lectin receptor Mincle and induced immune responses. A concurrent structure-activity relationship study identified the key structural features of archaeal lipids required for recognition by Mincle. Subsequent gene expression profiling suggested qualitative differences between the symbiotic archaeal lipid and the pathogenic bacteria-derived lipid. These findings have broad implications for understanding the function of symbiotic archaea in host health and diseases.
Collapse
Affiliation(s)
- Shiori Oka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Miyuki Watanabe
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Emi Ito
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Ami Takeyama
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuro Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masatomo Takahashi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Yoshihiro Izumi
- Division of Metabolomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka 812-8582, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| |
Collapse
|
5
|
Řezanka T, Kyselová L, Murphy DJ. Archaeal lipids. Prog Lipid Res 2023; 91:101237. [PMID: 37236370 DOI: 10.1016/j.plipres.2023.101237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/25/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The major archaeal membrane glycerolipids are distinguished from those of bacteria and eukaryotes by the contrasting stereochemistry of their glycerol backbones, and by the use of ether-linked isoprenoid-based alkyl chains rather than ester-linked fatty acyl chains for their hydrophobic moieties. These fascinating compounds play important roles in the extremophile lifestyles of many species, but are also present in the growing numbers of recently discovered mesophilic archaea. The past decade has witnessed significant advances in our understanding of archaea in general and their lipids in particular. Much of the new information has come from the ability to screen large microbial populations via environmental metagenomics, which has revolutionised our understanding of the extent of archaeal biodiversity that is coupled with a strict conservation of their membrane lipid compositions. Significant additional progress has come from new culturing and analytical techniques that are gradually enabling archaeal physiology and biochemistry to be studied in real time. These studies are beginning to shed light on the much-discussed and still-controversial process of eukaryogenesis, which probably involved both bacterial and archaeal progenitors. Puzzlingly, although eukaryotes retain many attributes of their putative archaeal ancestors, their lipid compositions only reflect their bacterial progenitors. Finally, elucidation of archaeal lipids and their metabolic pathways have revealed potentially interesting applications that have opened up new frontiers for biotechnological exploitation of these organisms. This review is concerned with the analysis, structure, function, evolution and biotechnology of archaeal lipids and their associated metabolic pathways.
Collapse
Affiliation(s)
- Tomáš Řezanka
- Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czech Republic
| | - Lucie Kyselová
- Research Institute of Brewing and Malting, Lípová 511, 120 44 Prague, Czech Republic
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, United Kingdom.
| |
Collapse
|
6
|
Self-assembly and biophysical properties of archaeal lipids. Emerg Top Life Sci 2022; 6:571-582. [PMID: 36377774 DOI: 10.1042/etls20220062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022]
Abstract
Archaea constitute one of the three fundamental domains of life. Archaea possess unique lipids in their cell membranes which distinguish them from bacteria and eukaryotes. This difference in lipid composition is referred to as 'Lipid Divide' and its origins remain elusive. Chemical inertness and the highly branched nature of the archaeal lipids afford the membranes stability against extremes of temperature, pH, and salinity. Based on the molecular architecture, archaeal polar lipids are of two types - monopolar and bipolar. Both monopolar and bipolar lipids have been shown to form vesicles and other well-defined membrane architectures. Bipolar archaeal lipids are among the most unique lipids found in nature because of their membrane-spanning nature and mechanical stability. The majority of the self-assembly studies on archaeal lipids have been carried out using crude polar lipid extracts or molecular mimics. The complexity of the archaeal lipids makes them challenging to synthesize chemically, and as a result, studies on pure lipids are few. There is an ongoing effort to develop simplified routes to synthesize complex archaeal lipids to facilitate diverse biophysical studies and pharmaceutical applications. Investigation on archaeal lipids may help us understand how life survives in extreme conditions and therefore unlock some of the mysteries surrounding the origins of cellular life.
Collapse
|
7
|
Andringa RLH, de Kok NAW, Driessen AJM, Minnaard AJ. A Unified Approach for the Total Synthesis of cyclo-Archaeol, iso-Caldarchaeol, Caldarchaeol, and Mycoketide. Angew Chem Int Ed Engl 2021; 60:17497-17503. [PMID: 33929790 PMCID: PMC8362178 DOI: 10.1002/anie.202104759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 12/25/2022]
Abstract
Ir-catalyzed asymmetric alkene hydrogenation is presented as the strategy par excellence to prepare saturated isoprenoids and mycoketides. This highly stereoselective synthesis approach is combined with an established 13 C-NMR method to determine the enantioselectivity of each methyl-branched stereocenter. It is shown that this analysis is fit for purpose and the combination allows the synthesis of the title compounds with a significant increase in efficiency.
Collapse
Affiliation(s)
- Ruben L. H. Andringa
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Niels A. W. de Kok
- Department of Molecular MicrobiologyUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Arnold J. M. Driessen
- Department of Molecular MicrobiologyUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| | - Adriaan J. Minnaard
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 79747 AGGroningenThe Netherlands
| |
Collapse
|