1
|
Kingsbury CJ, Senge MO. Molecular Symmetry and Art: Visualizing the Near-Symmetry of Molecules in Piet Mondrian's De Stijl. Angew Chem Int Ed Engl 2024; 63:e202403754. [PMID: 38619527 DOI: 10.1002/anie.202403754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Symmetry and shape are essential aspects of molecular structure and how we interpret molecules and their properties. We, as chemists, are comfortable with pictorial representations of structure, in which some nuance is lost-investigating molecular shape numerically by looking at how closely it fits a reference, such as a plane, or a set of vectors or coordinates, is informative, though far from engaging. Often relationships between chemical structure and derived values are obscured. Taking our inspiration from Piet Mondrian's Compositions, we have depicted the symmetry information encoded within 3D data as blocks of color, to show clearly how chemical arguments and resultant molecular distortion may contribute to symmetry. Great art gives us a new perspective on the world; as a pastiche, this art may allow us to look at familiar molecules, such as porphyrins, in a new light, understanding how their shape and properties are intertwined.
Collapse
Affiliation(s)
- Christopher J Kingsbury
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin, D02R590, Ireland
| | - Mathias O Senge
- School of Chemistry, Chair of Organic Chemistry, Trinity College Dublin, The University of Dublin, Trinity Biomedical Sciences Institute, 152-160 Pearse Street, Dublin, D02R590, Ireland
- Institute for Advanced Study (TUM-IAS), Focus Group-Molecular and Interfacial Engineering of Organic Nanosystems, Technical University of Munich, Lichtenberg-Str. 2a, 85748, Garching, Germany
| |
Collapse
|
2
|
Ren J, Das M, Osthues H, Nyenhuis M, Schulze Lammers B, Kolodzeiski E, Mönig H, Amirjalayer S, Fuchs H, Doltsinis NL, Glorius F. The Electron-Rich and Nucleophilic N-Heterocyclic Imines on Metal Surfaces: Binding Modes and Interfacial Charge Transfer. J Am Chem Soc 2024; 146:7288-7294. [PMID: 38456796 DOI: 10.1021/jacs.3c11738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The strongly electron-donating N-heterocyclic imines (NHIs) have been employed as excellent surface anchors for the thermodynamic stabilization of electron-deficient species due to their enhanced nucleophilicity. However, the binding mode and interfacial property of these new ligands are still unclear, representing a bottleneck for advanced applications in surface functionalization and catalysis. Here, NHIs with different side groups have been rationally designed, synthesized, and analyzed on various metal surfaces (Cu, Ag). Our results reveal different binding modes depending on the molecular structure and metal surface. The molecular design enables us to achieve a flat-lying or upright configuration and even a transition between these two binding modes depending on the coverage and time. Importantly, the two binding modes exhibit different degrees of interfacial charge transfer between the molecule and the surface. This study provides essential microscopic insight into the NHI adsorption geometry and interfacial charge transfer for the optimization of heterogeneous catalysts in coordination chemistry.
Collapse
Affiliation(s)
- Jindong Ren
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Mowpriya Das
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Helena Osthues
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Marvin Nyenhuis
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Bertram Schulze Lammers
- Physikalisches Institut, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Elena Kolodzeiski
- Physikalisches Institut, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Harry Mönig
- Physikalisches Institut, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
| | - Nikos L Doltsinis
- Institute for Solid State Theory and Center for Multiscale Theory and Computation, Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
3
|
Jakub Z, Shahsavar A, Planer J, Hrůza D, Herich O, Procházka P, Čechal J. How the Support Defines Properties of 2D Metal-Organic Frameworks: Fe-TCNQ on Graphene versus Au(111). J Am Chem Soc 2024; 146:3471-3482. [PMID: 38253402 PMCID: PMC10859937 DOI: 10.1021/jacs.3c13212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
The functionality of 2D metal-organic frameworks (MOFs) is crucially dependent on the local environment of the embedded metal atoms. These atomic-scale details are best ascertained on MOFs supported on well-defined surfaces, but the interaction with the support often changes the MOF properties. We elucidate the extent of this effect by comparing the Fe-TCNQ 2D MOF on two weakly interacting supports: graphene and Au(111). We show that the Fe-TCNQ on graphene is nonplanar with iron in quasi-tetrahedral sites, but on Au(111) it is planarized by stronger van der Waals interaction. The differences in physical and electronic structures result in distinct properties of the supported 2D MOFs. The dz2 center position is shifted by 1.4 eV between Fe sites on the two supports, and dramatic differences in chemical reactivity are experimentally identified using a TCNQ probe molecule. These results outline the limitations of common on-surface approaches using metal supports and show that the intrinsic MOF properties can be partially retained on graphene.
Collapse
Affiliation(s)
- Zdeněk Jakub
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Azin Shahsavar
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Jakub Planer
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Dominik Hrůza
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Ondrej Herich
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Pavel Procházka
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
| | - Jan Čechal
- CEITEC−Central
European Institute of Technology, Brno University
of Technology, Purkyňova 123, Brno 61200, Czech Republic
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, Brno 61200,Czech Republic
| |
Collapse
|
4
|
Carlotto S, Verdini A, Zamborlini G, Cojocariu I, Feyer V, Floreano L, Casarin M. A local point of view of the Cu(100) → NiTPP charge transfer at the NiTPP/Cu(100) interface. Phys Chem Chem Phys 2023; 25:26779-26786. [PMID: 37781890 DOI: 10.1039/d3cp04021f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
A precise understanding, at the molecular level, of the massive substrate → adsorbate charge transfer at the NiTPP/Cu(100) interface has been gained through the application of elementary symmetry arguments to the structural determination of the NiTPP adsorption site by photoelectron diffraction (PED) measurements and Amsterdam density functional calculations of the free D4h NiTPP electronic structure. In particular, the PED analysis precisely determines that, among the diverse NiTPP chemisorption sites herein considered (fourfold hollow, atop, and bridge), the fourfold hollow one is the most favorable, with the Ni atom located at 1.93 Å from the surface and at an internuclear distance of 2.66 Å from the nearest-neighbors of the substrate. The use of elementary symmetry considerations enabled us to provide a convincing modeling of the NiTPP-Cu(100) anchoring configuration and an atomistic view of the previously revealed interfacial charge transfer through the unambiguous identification of the adsorbate π* and σ* low-lying virtual orbitals, of the substrate surface atoms, and of the linear combinations of the Cu 4s atomic orbitals involved in the substrate → adsorbate charge transfer. In addition, the same considerations revealed that the experimentally reported Ni(II) → Ni(I) reduction at the interface corresponds to the fingerprint of the chemisorption site of the NiTPP on Cu(100).
Collapse
Affiliation(s)
- Silvia Carlotto
- University of Padova, Department of Chemical Sciences, via F. Marzolo 1, 35131, Padova, Italy.
- ICMATE - CNR c/o University of Padova, Department of Chemical Sciences, via F. Marzolo 1, via F. Marzolo 1, 35131, Padova, Italy
| | - Alberto Verdini
- IOM - CNR c/o University of Perugia, Department of Physics and Geology, via A. Pascoli, 06123, Perugia, Italy
| | - Giovanni Zamborlini
- TU Dortmund University, Department of Physics, Otto-Hahn-Straβe 4, 44227 Dortmund, Germany
| | - Iulia Cojocariu
- University of Trieste, Department of Physics, Via A. Valerio 2, 34127 Trieste, Italy
- Elettra-Sincrotrone, S.C.p.A., S.S. 14 - km 163.5, 34149 Trieste, Italy
| | - Vitaliy Feyer
- Forschungszentrum Jülich GmbH, Peter Grünberg Institute (PGI-6), Leo-Brandt-Straβe, 52428 Jülich, Germany
- Duisburg-Essen University, Department of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), 47048 Duisburg, Germany
| | - Luca Floreano
- CNR - IOM, Lab. TASC, Basovizza S.S. 14, km 163.5, 34149 Trieste, Italy
| | - Maurizio Casarin
- University of Padova, Department of Chemical Sciences, via F. Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
5
|
Knecht P, Meier D, Reichert J, Duncan DA, Schwarz M, Küchle JT, Lee T, Deimel PS, Feulner P, Allegretti F, Auwärter W, Médard G, Seitsonen AP, Barth JV, Papageorgiou AC. N-Heterocyclic Carbenes: Molecular Porters of Surface Mounted Ru-Porphyrins. Angew Chem Int Ed Engl 2022; 61:e202211877. [PMID: 36200438 PMCID: PMC10092334 DOI: 10.1002/anie.202211877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 11/30/2022]
Abstract
Ru-porphyrins act as convenient pedestals for the assembly of N-heterocyclic carbenes (NHCs) on solid surfaces. Upon deposition of a simple NHC ligand on a close packed Ru-porphyrin monolayer, an extraordinary phenomenon can be observed: Ru-porphyrin molecules are transferred from the silver surface to the next molecular layer. We have investigated the structural features and dynamics of this portering process and analysed the associated binding strengths and work function changes. A rearrangement of the molecular layer is induced by the NHC uptake: the NHC selective binding to the Ru causes the ejection of whole porphyrin molecules from the molecular layer on silver to the layer on top. This reorganisation can be reversed by thermally induced desorption of the NHC ligand. We anticipate that the understanding of such mass transport processes will have crucial implications for the functionalisation of surfaces with carbenes.
Collapse
Affiliation(s)
- Peter Knecht
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Dennis Meier
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Joachim Reichert
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - David A. Duncan
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
| | - Martin Schwarz
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Johannes T. Küchle
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Tien‐Lin Lee
- Diamond Light SourceHarwell Science and Innovation CampusDidcotOX11 0QXUK
| | - Peter S. Deimel
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter Feulner
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Francesco Allegretti
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Willi Auwärter
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Guillaume Médard
- Chair of Proteomics and BioanalyticsTechnical University of MunichEmil Erlenmeyer Forum 585354FreisingGermany
| | - Ari Paavo Seitsonen
- Département de ChimieÉcole Normale Supérieure24 rue Lhomond75005ParisFrance
- Université de recherche Paris-Sciences-et-LettresSorbonne UniversitéCentre National de la Recherche Scientifique75005ParisFrance
| | - Johannes V. Barth
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Anthoula C. Papageorgiou
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
- Department of ChemistryLaboratory of Physical ChemistryNational and Kapodistrian University of AthensPanepistimiopolis157 71AthensGreece
| |
Collapse
|
6
|
Johnson KN, Chilukurib B, Fisherb ZE, Hippsa KW, Mazura U. Role of the Supporting Surface in the Thermodynamics and Cooperativity of Axial Ligand Binding to Metalloporphyrins at Interfaces. CURR ORG CHEM 2022. [DOI: 10.2174/1385272826666220209122508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract:
: Metalloporphyrins have been shown to bind axial ligands in a variety of environments including the vacuum/solid and solution/solid interfaces. Understanding the dynamics of such interactions is a desideratum for the design and implementation of next generation molecular devices which draw inspiration from biological systems to accomplish diverse tasks such as molecular sensing, electron transport, and catalysis to name a few. In this article, we review the current literature of axial ligand coordination to surface-supported porphyrin receptors. We will focus on the coordination process as monitored by scanning tunneling microscopy (STM) that can yield qualitative and quantitative information on the dynamics and binding affinity at the single molecule level. In particular, we will address the role of the substrate and intermolecular interactions in influencing cooperative effects (positive or negative) in the binding affinity of adjacent molecules based on experimental evidence and theoretical calculations.
Collapse
Affiliation(s)
- Kristen N. Johnson
- Department of Chemistry and Material Science and Engineering Program, Washington State University, Pullman, 99164-4630, WA, USA
| | - Bhaskar Chilukurib
- Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA
| | - Zachary E. Fisherb
- Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA
| | - K. W. Hippsa
- Department of Chemistry and Material Science and Engineering Program, Washington State University, Pullman, 99164-4630, WA, USA
| | - Ursula Mazura
- Department of Chemistry and Material Science and Engineering Program, Washington State University, Pullman, 99164-4630, WA, USA
| |
Collapse
|
7
|
Knecht P, Reichert J, Deimel PS, Feulner P, Haag F, Allegretti F, Garnica M, Schwarz M, Auwärter W, Ryan PTP, Lee T, Duncan DA, Seitsonen AP, Barth JV, Papageorgiou AC. Conformational Control of Chemical Reactivity for Surface-Confined Ru-Porphyrins. Angew Chem Int Ed Engl 2021; 60:16561-16567. [PMID: 33938629 PMCID: PMC8362151 DOI: 10.1002/anie.202104075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Indexed: 11/24/2022]
Abstract
We assess the crucial role of tetrapyrrole flexibility in the CO ligation to distinct Ru-porphyrins supported on an atomistically well-defined Ag(111) substrate. Our systematic real-space visualisation and manipulation experiments with scanning tunnelling microscopy directly probe the ligation, while bond-resolving atomic force microscopy and X-ray standing-wave measurements characterise the geometry, X-ray and ultraviolet photoelectron spectroscopy the electronic structure, and temperature-programmed desorption the binding strength. Density-functional-theory calculations provide additional insight into the functional interface. We unambiguously demonstrate that the substituents regulate the interfacial conformational adaptability, either promoting or obstructing the uptake of axial CO adducts.
Collapse
Affiliation(s)
- Peter Knecht
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Joachim Reichert
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter S. Deimel
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Peter Feulner
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Felix Haag
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Francesco Allegretti
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Manuela Garnica
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
- Current address: Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco28049MadridSpain
| | - Martin Schwarz
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Willi Auwärter
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | - Paul T. P. Ryan
- Diamond Light SourceDidcotOX11 0DEUK
- Department of MaterialsImperial College LondonExhibition RoadSW7 2AZLondonUK
- Current address: Institute of Applied PhysicsTechnische Universität WienWiedner Hauptstraße 8-10/1341040ViennaAustria
| | | | | | - Ari Paavo Seitsonen
- Département de ChimieEcole Normale Supérieure24 rue Lhomond75005ParisFrance
- Université de recherche Paris-Sciences-et-LettresSorbonne UniversitéCentre National de la Recherche Scientifique75005ParisFrance
| | - Johannes V. Barth
- Physics Department E20Technical University of MunichJames Franck Straße 185748GarchingGermany
| | | |
Collapse
|