1
|
Franz R, Bartek M, Bruhn C, Kelemen Z, Pietschnig R. P + addition and transfer involving a tetraphosphenium ion. Chem Sci 2024; 16:139-146. [PMID: 39620077 PMCID: PMC11605702 DOI: 10.1039/d4sc06823h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Triphospha[3]ferrocenophane Fe(C5H4-PTip)2PCl (Tip = 2,4,6-tri(isopropyl)phenyl) has been prepared and its suitability to generate the corresponding bisphosphanylphosphenium ion has been explored. By formal addition of P+ to the latter, an unprecedented tetraphosphenium ion forms which likewise is capable of P+ transfer and qualifies as Lewis superacid based on its computed fluoride ion affinity. As a solid, this species is stable and conveniently storable, featuring a remarkably long P-P bond (2.335(5) Å). From this tetraphosphenium ion, known and unprecedented triphosphenium ions have been generated via P+ transfer in solution, including a triphosphenium ion with P-H functionalities. Moreover, the latter has been obtained by tautomeric rearrangement from the corresponding hydrophosphane precursor. The bonding situation and details of the P+ transfer have been investigated by DFT calculations and experimental methods like multinuclear NMR spectroscopy and SC-XRD.
Collapse
Affiliation(s)
- Roman Franz
- Institute for Chemistry, CINSaT, University of Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany https://www.uni-kassel.de/go/hybrid
| | - Máté Bartek
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics Műegyetem Rkp 3 1111 Budapest Hungary
| | - Clemens Bruhn
- Institute for Chemistry, CINSaT, University of Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany https://www.uni-kassel.de/go/hybrid
| | - Zsolt Kelemen
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics Műegyetem Rkp 3 1111 Budapest Hungary
| | - Rudolf Pietschnig
- Institute for Chemistry, CINSaT, University of Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany https://www.uni-kassel.de/go/hybrid
| |
Collapse
|
2
|
Bhunia M, Mohar JS, Sandoval-Pauker C, Fehn D, Yang ES, Gau M, Goicoechea J, Ozarowski A, Krzystek J, Telser J, Meyer K, Mindiola DJ. Softer Is Better for Titanium: Molecular Titanium Arsenido Anions Featuring Ti≡As Bonding and a Terminal Parent Arsinidene. J Am Chem Soc 2024; 146:3609-3614. [PMID: 38290427 DOI: 10.1021/jacs.3c12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
We introduce the arsenido ligand onto the TiIV ion, yielding a remarkably covalent Ti≡As bond and the parent arsinidene Ti═AsH moiety. An anionic arsenido ligand is assembled via reductive decarbonylation involving the discrete TiII salt [K(cryptand)][(PN)2TiCl] (1) (cryptand = 222-Kryptofix) and Na(OCAs)(dioxane)1.5 in thf/toluene to produce the mixed alkali ate-complex [(PN)2Ti(As)]2(μ2-KNa(thf)2) (2) and the discrete salt [K(cryptand)][(PN)2Ti≡As] (3) featuring a terminal Ti≡As ligand. Protonation of 2 or 3 with various weak acids cleanly forms the parent arsinidene [(PN)2Ti═AsH] (4), which upon deprotonation with KCH2Ph in thf generates the more symmetric anionic arsenido [(PN)2Ti(As){μ2-K(thf)2}]2 (5). Experimental and computational studies suggest the pKa of 4 to be ∼23, and the bond orders in 2, 3, and 5 are all in the range of a Ti≡As triple bond, with decreasing bond order in 4.
Collapse
Affiliation(s)
- Mrinal Bhunia
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| | - Jacob S Mohar
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| | - Christian Sandoval-Pauker
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Dominik Fehn
- Departments of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058 Erlangen, Germany
| | - Eric S Yang
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Michael Gau
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| | - Jose Goicoechea
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Karsten Meyer
- Departments of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058 Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
3
|
Senthil S, Kwon S, Fehn D, Im H, Gau MR, Carroll PJ, Baik MH, Meyer K, Mindiola DJ. Metal-Ligand Cooperativity to Assemble a Neutral and Terminal Niobium Phosphorus Triple Bond (Nb≡P). Angew Chem Int Ed Engl 2022; 61:e202212488. [PMID: 36195827 DOI: 10.1002/anie.202212488] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 11/06/2022]
Abstract
Decarbonylation along with P-atom transfer from the phosphaethynolate anion, PCO- , to the NbIV complex [(PNP)NbCl2 (Nt BuAr)] (1) (PNP=N[2-Pi Pr2 -4-methylphenyl]2 - ; Ar=3,5-Me2 C6 H3 ) results in its coupling with one of the phosphine arms of the pincer ligand to produce a phosphanylidene phosphorane complex [(PNPP)NbCl(Nt BuAr)] (2). Reduction of 2 with CoCp*2 cleaves the P-P bond to form the first neutral and terminal phosphido complex of a group 5 transition metal, namely, [(PNP)Nb≡P(Nt BuAr)] (3). Theoretical studies have been used to understand both the coupling of the P-atom and the reductive cleavage of the P-P bond. Reaction of 3 with a two-electron oxidant such as ethylene sulfide results in a diamagnetic sulfido complex having a P-P coupled ligand, namely [(PNPP)Nb=S(Nt BuAr)] (4).
Collapse
Affiliation(s)
- Shuruthi Senthil
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Seongyeon Kwon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Dominik Fehn
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Hoyoung Im
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Karsten Meyer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
G Jafari M, Fehn D, Reinholdt A, Hernández-Prieto C, Patel P, Gau MR, Carroll PJ, Krzystek J, Liu C, Ozarowski A, Telser J, Delferro M, Meyer K, Mindiola DJ. Tale of Three Molecular Nitrides: Mononuclear Vanadium (V) and (IV) Nitrides As Well As a Mixed-Valence Trivanadium Nitride Having a V 3N 4 Double-Diamond Core. J Am Chem Soc 2022; 144:10201-10219. [PMID: 35652694 DOI: 10.1021/jacs.2c00276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transmetallation of [VCl3(THF)3] and [TlTptBu,Me] afforded [(TptBu,Me)VCl2] (1, TptBu,Me = hydro-tris(3-tert-butyl-5-methylpyrazol-1-yl)borate), which was reduced with KC8 to form a C3v symmetric VII complex, [(TptBu,Me)VCl] (2). Complex 1 has a high-spin (S = 1) ground state and displays rhombic high-frequency and -field electron paramagnetic resonance (HFEPR) spectra, while complex 2 has an S = 3/2 4A2 ground state observable by conventional EPR spectroscopy. Complex 1 reacts with NaN3 to form the VV nitride-azide complex [(TptBu,Me)V≡N(N3)] (3). A likely VIII azide intermediate en route to 3, [(TptBu,Me)VCl(N3)] (4), was isolated by reacting 1 with N3SiMe3. Complex 4 is thermally stable but reacts with NaN3 to form 3, implying a bis-azide intermediate, [(TptBu,Me)V(N3)2] (A), leading to 3. Reduction of 3 with KC8 furnishes a trinuclear and mixed-valent nitride, [{(TptBu,Me)V}2(μ4-VN4)] (5), conforming to a Robin-Day class I description. Complex 5 features a central vanadium ion supported only by bridging nitride ligands. Contrary to 1, complex 2 reacts with NaN3 to produce an azide-bridged dimer, [{(TptBu,Me)V}2(1,3-μ2-N3)2] (6), with two antiferromagnetically coupled high-spin VII ions. Complex 5 could be independently produced along with [(κ2-TptBu,Me)2V] upon photolysis of 6 in arene solvents. The putative {VIV≡N} intermediate, [(TptBu,Me)V≡N] (B), was intercepted by photolyzing 6 in a coordinating solvent, such as tetrahydrofuran (THF), yielding [(TptBu,Me)V≡N(THF)] (B-THF). In arene solvents, B-THF expels THF to afford 5 and [(κ2-TptBu,Me)2V]. A more stable adduct (B-OPPh3) was prepared by reacting B-THF with OPPh3. These adducts of B are the first neutral and mononuclear VIV nitride complexes to be isolated.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Dominik Fehn
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Cristina Hernández-Prieto
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Prajay Patel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - J Krzystek
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Cong Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Andrew Ozarowski
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, United States
| | - Joshua Telser
- Department of Biological, Physical and Health Sciences, Roosevelt University, Chicago, Illinois 60605, United States
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Karsten Meyer
- Inorganic Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Basappa S, Bhawar R, Nagaraju DH, Bose SK. Recent advances in the chemistry of the phosphaethynolate and arsaethynolate anions. Dalton Trans 2022; 51:3778-3806. [PMID: 35108724 DOI: 10.1039/d1dt03994f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the past decade, the reactivity of 2-phosphaethynolate (OCP-), a heavier analogue of the cyanate anion, has been the subject of momentous interest in the field of modern organometallic chemistry. It is used as a precursor to novel phosphorus-containing heterocycles and as a ligand in decarbonylative processes, serving as a synthetic equivalent of a phosphinidene derivative. This perspective aims to describe advances in the reactivities of phosphaethynolate and arsaethynolate anions (OCE-; E = P, As) with main-group element, transition metal, and f-block metal scaffolds. Further, the unique structures and bonding properties are discussed based on spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Suma Basappa
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - D H Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore 560064, India.
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| |
Collapse
|
6
|
Grützmacher H, Le Corre G. Simple conversion of trisodium phosphide, Na3P, into silyl- and cyanophosphides and structure of a terminal silver phosphide. Dalton Trans 2022; 51:3497-3501. [DOI: 10.1039/d1dt04223h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of trisodium phosphide (Na3P) with chlorosilanes allows for simple derivatization into silyl- and cyano-substituted phosphanide species which were compared to each other. The recently discovered cyano(triphenylsilyl)phosphanide shows unique coordination...
Collapse
|
7
|
Reinholdt A, Kwon S, Jafari MG, Gau MR, Caroll PJ, Lawrence C, Gu J, Baik MH, Mindiola DJ. An Isolable Azide Adduct of Titanium(II) Follows Bifurcated Deazotation Pathways to an Imide. J Am Chem Soc 2021; 144:527-537. [PMID: 34963052 DOI: 10.1021/jacs.1c11215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
AdN3 (Ad = 1-adamantyl) reacts with the tetrahedral TiII complex [(TptBu,Me)TiCl] (TptBu,Me = hydrotris(3-tert-butyl-5-methylpyrazol-1-yl)borate) to generate a mixture of an imide complex, [(TptBu,Me)TiCl(NAd)] (4), and an unusual and kinetically stable azide adduct of the group 4 metal, namely, [(TptBu,Me)TiCl(γ-N3Ad)] (3). In these conversions, the product distribution is determined by the relative concentration of reactants. In contrast, the azide adduct 3 forms selectively when a masked TiII complex (N2 or AdNC adduct) reacts with AdN3. Upon heating, 3 extrudes dinitrogen in a unimolecular process proceeding through a titanatriazete intermediate to form the imide complex 4, but the observed thermal stability of the azide adduct (t1/2 = 61 days at 25 °C) is at odds with the large fraction of imide complex formed directly in reactions between AdN3 and [(TptBu,Me)TiCl] at room temperature (∼50% imide with a 1:1 stoichiometry). A combination of theoretical and experimental studies identified an additional deazotation pathway, proceeding through a bimetallic complex bridged by a single azide ligand. The electronic origin of this deazotation mechanism lies in the ability of azide adduct 3 to serve as a π-backbonding metallaligand toward free [(TptBu,Me)TiCl]. These findings unveil a new class of azide-to-imide conversions for transition metals, highlighting that the mechanisms underlying this common synthetic methodology may be more complex than conventionally assumed, given the concentration dependence in the conversion of an azide into an imide complex. Lastly, we show how significantly different AdN3 reacts when treated with [(TptBu,Me)VCl].
Collapse
Affiliation(s)
- Anders Reinholdt
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Seongyeon Kwon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael R Gau
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Patrick J Caroll
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Chad Lawrence
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Jun Gu
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
8
|
Le Corre G, Gamboa‐Carballo JJ, Li Z, Grützmacher H. Cyano(triphenylsilyl)phosphanide as a Building Block for P,C,N Conjugated Molecules. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Grégoire Le Corre
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| | - Juan José Gamboa‐Carballo
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
- Higher Institute of Technologies and Applied Sciences (InSTEC) University of Havana Ave. S Allende 1110 10600 Havana Cuba
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM) School of Chemistry Sun Yat-Sen University Guangzhou 510275 China
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied Biosciences ETH Zürich Vladimir-Prelog Weg 1 Hönggerberg 8093 Zürich Switzerland
| |
Collapse
|
9
|
Le Corre G, Gamboa‐Carballo JJ, Li Z, Grützmacher H. Cyano(triphenylsilyl)phosphanide as a Building Block for P,C,N Conjugated Molecules. Angew Chem Int Ed Engl 2021; 60:24817-24822. [PMID: 34463413 PMCID: PMC9297940 DOI: 10.1002/anie.202108295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/16/2021] [Indexed: 11/29/2022]
Abstract
The cyano(triphenylsilyl)phosphanide anion was prepared as a sodium salt from 2-phosphaethynolate. The electronic structure of this new cyano(silyl)phosphanide was studied via computational methods and its reactivity investigated using various electrophiles and Lewis acids, demonstrating its P- and N-nucleophilicity. The ambident reactivity is in agreement with computations. The silyl group also shows lability and therefore the cyano(silyl)phosphanide can be considered as a phosphacyanamide synthon, [PCN]2- , and serves as building block for the transfer of a PCN moiety.
Collapse
Affiliation(s)
- Grégoire Le Corre
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog Weg 1Hönggerberg8093 ZürichSwitzerland
| | - Juan José Gamboa‐Carballo
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog Weg 1Hönggerberg8093 ZürichSwitzerland
- Higher Institute of Technologies and Applied Sciences (InSTEC)University of HavanaAve. S Allende 111010600HavanaCuba
| | - Zhongshu Li
- Lehn Institute of Functional Materials (LIFM)School of ChemistrySun Yat-Sen UniversityGuangzhou510275China
| | - Hansjörg Grützmacher
- Department of Chemistry and Applied BiosciencesETH ZürichVladimir-Prelog Weg 1Hönggerberg8093 ZürichSwitzerland
| |
Collapse
|
10
|
Jafari MG, Park Y, Pudasaini B, Kurogi T, Carroll PJ, Kaphan DM, Kropf J, Delferro M, Baik M, Mindiola DJ. Phosphorus‐Atom Transfer from Phosphaethynolate to an Alkylidyne. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Yerin Park
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Takashi Kurogi
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - Patrick J. Carroll
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| | - David M. Kaphan
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Jeremy Kropf
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division Argonne National Laboratory Lemont IL 60439 USA
| | - Mu‐Hyun Baik
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Daniel J. Mindiola
- Department of Chemistry University of Pennsylvania Philadelphia PA 19104 USA
| |
Collapse
|
11
|
Jafari MG, Park Y, Pudasaini B, Kurogi T, Carroll PJ, Kaphan DM, Kropf J, Delferro M, Baik MH, Mindiola DJ. Phosphorus-Atom Transfer from Phosphaethynolate to an Alkylidyne. Angew Chem Int Ed Engl 2021; 60:24411-24417. [PMID: 34435422 PMCID: PMC8559866 DOI: 10.1002/anie.202107475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/11/2022]
Abstract
A low-spin and mononuclear vanadium complex, (Me nacnac)V(CO)(η2 -P≡Ct Bu) (2) (Me nacnac- =[ArNC(CH3 )]2 CH, Ar=2,6-i Pr2 C6 H3 ), was prepared upon treatment of the vanadium neopentylidyne complex (Me nacnac)V≡Ct Bu(OTf) (1) with Na(OCP)(diox)2.5 (diox=1,4-dioxane), while the isoelectronic ate-complex [Na(15-crown-5)]{([ArNC(CH2 )]CH[C(CH3 )NAr])V(CO)(η2 -P≡Ct Bu)} (4), was obtained via the reaction of Na(OCP)(diox)2.5 and ([ArNC(CH2 )]CH[C(CH3 )NAr])V≡Ct Bu(OEt2 ) (3) in the presence of crown-ether. Computational studies suggest that the P-atom transfer proceeds by [2+2]-cycloaddition of the P≡C bond across the V≡Ct Bu moiety, followed by a reductive decarbonylation to form the V-C≡O linkage. The nature of the electronic ground state in diamagnetic complexes, 2 and 4, was further investigated both theoretically and experimentally, using a combination of density functional theory (DFT) calculations, UV/Vis and NMR spectroscopies, cyclic voltammetry, X-ray absorption spectroscopy (XAS) measurements, and comparison of salient bond metrics derived from X-ray single-crystal structural characterization. In combination, these data are consistent with a low-valent vanadium ion in complexes 2 and 4. This study represents the first example of a metathesis reaction between the P-atom of [PCO]- and an alkylidyne ligand.
Collapse
Affiliation(s)
- Mehrafshan G Jafari
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yerin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Takashi Kurogi
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David M Kaphan
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Jeremy Kropf
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Massimiliano Delferro
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|