1
|
Michibata J, Kawaguchi Y, Hirose H, Eguchi A, Deguchi S, Takayama K, Xu W, Niidome T, Sasaki Y, Akiyoshi K, Futaki S. Polysaccharide-Based Coacervate Microgel Bearing Cationic Peptides That Achieve Dynamic Cell-Membrane Structure Alteration and Facile Cytosolic Infusion of IgGs. Bioconjug Chem 2024; 35:1888-1899. [PMID: 39500569 DOI: 10.1021/acs.bioconjchem.4c00344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Conjugates of the biocompatible polysaccharide pullulan with a cell membrane permeabilizing peptide L17E (PL-L17Es) were prepared with the aim of producing complex coacervates with pronounced intracellular antibody (IgG) delivery activity and stable structures. Coacervates with diameters of a few μm were formed simply by mixing PL-L17Es with IgG labeled with negatively charged fluorescent moieties of Alexa Fluor 488 [IgG(AF488)]. The coacervate resulted in a pronounced cytosolic infusion of IgG(AF488) and IgG binding to the target proteins inside the cell. The droplet structures were maintained even under high salt conditions, and the fluorescence in the droplet was not recovered after photobleaching, suggesting the formation of complex coacervate microgels. Dynamic changes in cell membrane structure to entrap the coacervate microgels were captured by confocal and electron microscopy, resulting in cytosolic IgG infusion. The use of M-lycotoxin instead of L17E resulted in a coacervate microgel with marked IgG delivery activity even in the presence of serum. Successful IgG delivery to primary hepatocytes, undifferentiated induced pluripotent stem (iPS) cells, and iPS cell-derived intestinal epithelial cells was also achieved. The construction of complex coacervate microgels with design flexibility and the validity of intracellular IgG delivery with high salt stability were thus demonstrated.
Collapse
Affiliation(s)
- Junya Michibata
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Akiko Eguchi
- Biobank Center, Mie University Hospital and Department of Gastroenterology and Hepatology, School of Medicine, Mie University, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Wei Xu
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Immunology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Kyoto 606-8501, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
2
|
Shebanova A, Perrin QM, Zhu K, Gudlur S, Chen Z, Sun Y, Huang C, Lim ZW, Mondarte EA, Sun R, Lim S, Yu J, Miao Y, Parikh AN, Ludwig A, Miserez A. Cellular Uptake of Phase-Separating Peptide Coacervates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402652. [PMID: 39214144 PMCID: PMC11558145 DOI: 10.1002/advs.202402652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/07/2024] [Indexed: 09/04/2024]
Abstract
Peptide coacervates self-assembling via liquid-liquid phase separation are appealing intracellular delivery vehicles of macromolecular therapeutics (proteins, DNA, mRNA) owing to their non-cytotoxicity, high encapsulation capacity, and efficient cellular uptake. However, the mechanisms by which these viscoelastic droplets cross the cellular membranes remain unknown. Here, using multimodal imaging, data analytics, and biochemical inhibition assays, we identify the key steps by which droplets enter the cell. We find that the uptake follows a non-canonical pathway and instead integrates essential features of macropinocytosis and phagocytosis, namely active remodeling of the actin cytoskeleton and appearance of filopodia-like protrusions. Experiments using giant unilamellar vesicles show that the coacervates attach to the bounding membrane in a charge- and cholesterol-dependent manner but do not breach the lipid bilayer barrier. Cell uptake in the presence of small molecule inhibitors - interfering with actin and tubulin polymerization - confirm the active role of cytoskeleton remodeling, most prominently evident in electron microscopy imaging. These findings suggest a peculiar internalization mechanism for viscoelastic, glassy coacervate droplets combining features of non-specific uptake of fluids by macropinocytosis and particulate uptake of phagocytosis. The broad implications of this study will enable to enhance the efficacy and utility of coacervate-based strategies for intracellular delivery of macromolecular therapeutics.
Collapse
Affiliation(s)
- Anastasia Shebanova
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Quentin Moana Perrin
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Kexin Zhu
- School of Biological SciencesNTU60 Nanyang DriveSingapore637551Singapore
| | - Sushanth Gudlur
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Zilin Chen
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Yue Sun
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Congxi Huang
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Zhi Wei Lim
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Evan Angelo Mondarte
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
| | - Ruoxuan Sun
- School of Chemistry, Chemical Engineering and BiotechnologyNTU70 Nanyang DriveSingapore637457Singapore
| | - Sierin Lim
- School of Chemistry, Chemical Engineering and BiotechnologyNTU70 Nanyang DriveSingapore637457Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS)NTU59 Nanyang DriveSingapore636921Singapore
| | - Jing Yu
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS)NTU59 Nanyang DriveSingapore636921Singapore
| | - Yansong Miao
- School of Biological SciencesNTU60 Nanyang DriveSingapore637551Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS)NTU59 Nanyang DriveSingapore636921Singapore
| | - Atul N. Parikh
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
- Institute for Digital Molecular Analytics and Science (IDMxS)NTU59 Nanyang DriveSingapore636921Singapore
- Departments of Biomedical Engineering and Materials Science & EngineeringUniversity of CaliforniaDavisCA95616USA
| | - Alexander Ludwig
- School of Biological SciencesNTU60 Nanyang DriveSingapore637551Singapore
- NTU Institute of Structural BiologyNTU59 Nanyang DriveSingapore636921Singapore
| | - Ali Miserez
- Centre for Sustainable Materials, School of Materials Science and EngineeringNanyang Technological University (NTU)50 Nanyang AvenueSingapore637553Singapore
- School of Biological SciencesNTU60 Nanyang DriveSingapore637551Singapore
| |
Collapse
|
3
|
Hassan LF, Sen R, O'Shea TM. Trehalose-based coacervates for local bioactive protein delivery to the central nervous system. Biomaterials 2024; 309:122594. [PMID: 38701641 DOI: 10.1016/j.biomaterials.2024.122594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/30/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
Therapeutic outcomes of local biomolecule delivery to the central nervous system (CNS) using bulk biomaterials are limited by inadequate drug loading, neuropil disruption, and severe foreign body responses. Effective CNS delivery requires addressing these issues and developing well-tolerated, highly-loaded carriers that are dispersible within local neural parenchyma. Here, we synthesized biodegradable trehalose-based polyelectrolyte oligomers using facile A2:B3:AR thiol-ene Michael addition reactions that form complex coacervates upon mixing of oppositely charged oligomers. Coacervates permit high concentration loading and controlled release of bioactive growth factors, enzymes, and antibodies, with modular formulation parameters that confer tunable release kinetics. Coacervates are cytocompatible with cultured neural cells in vitro and can be formulated to either direct intracellular protein delivery or sequester media containing proteins and remain extracellular. Coacervates serve as effective vehicles for precisely delivering biomolecules, including bioactive neurotrophins, to the mouse striatum following intraparenchymal injection. These results support the use of trehalose-based coacervates as part of therapeutic protein delivery strategies for CNS disorders.
Collapse
Affiliation(s)
- Laboni F Hassan
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Riya Sen
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - Timothy M O'Shea
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA.
| |
Collapse
|
4
|
Mai LD, Wimberley SC, Champion JA. Intracellular delivery strategies using membrane-interacting peptides and proteins. NANOSCALE 2024; 16:15465-15480. [PMID: 39091235 PMCID: PMC11340348 DOI: 10.1039/d4nr02093f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
While the cellular cytosol and organelles contain attractive targets for disease treatments, it remains a challenge to deliver therapeutic biomacromolecules to these sites. This is due to the selective permeability of the plasma and endosomal membranes, especially for large and hydrophilic therapeutic cargos such as proteins and nucleic acids. In response, many different delivery systems and molecules have been devised to help therapeutics cross these barriers to reach cytosolic targets. Among them are peptide and protein-based systems, which have several advantages over other natural and synthetic materials including their ability to interact with cell membranes. In this review, we will describe recent advances and current challenges of peptide and protein strategies that leverage cell membrane association and modulation to enable cytosolic delivery of biomacromolecule cargo. The approaches covered here include peptides and proteins derived from or inspired by natural sequences as well as those designed de novo for delivery function.
Collapse
Affiliation(s)
- Linh D Mai
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, GA, 30332-2000, USA.
| | - Sydney C Wimberley
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, GA, 30332-2000, USA.
- BioEngineering Program, Georgia Institute of Technology, USA
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, GA, 30332-2000, USA.
- BioEngineering Program, Georgia Institute of Technology, USA
| |
Collapse
|
5
|
Kawaguchi Y, Futaki S. Finding ways into the cytosol: Peptide-mediated approaches for delivering proteins into cells. Curr Opin Chem Biol 2024; 81:102482. [PMID: 38905721 DOI: 10.1016/j.cbpa.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
The delivery of functional proteins, including antibodies, into cells opens up many opportunities to regulate cellular events, with significant implications for studies in chemical biology and therapeutics. The inside of cells is isolated from the outside by the cell membrane. The hydrophilic nature of proteins prevents direct permeation of proteins through the cell membrane by passive diffusion. Therefore, delivery routes using endocytic uptake followed by endosomal escape have been explored. Alternatively, delivery concepts using transient permeabilization of cell membranes or effective promotion of endocytic uptake and endosomal escape using modified membrane-lytic peptides have been reported in recent years. Non-canonical protein delivery concepts, such as the use of liquid droplets or coacervates, have also been proposed. This review highlights some of the topics in peptide-mediated intracellular protein delivery.
Collapse
Affiliation(s)
- Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
6
|
Hirai Y, Kawaguchi Y, Kasahara C, Hirose H, Futaki S. Liquid Droplet-Mediated Formulation of Lipid Nanoparticles Encapsulating Immunoglobulin G for Cytosolic Delivery. Mol Pharm 2024; 21:1653-1661. [PMID: 38290425 DOI: 10.1021/acs.molpharmaceut.3c00868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Antibodies are promising biopharmaceuticals that offer new therapeutic options for diseases. Since antibodies are membrane impermeable, approaches that allow immunoglobulin Gs (IgGs) to access intracellular therapeutic targets would open new horizons in antibody therapies. Lipid nanoparticles (LNPs) are among the classes of vectors that deliver biopharmaceuticals into cells. Using liquid droplets formed by IgG and polyglutamate, we report here a unique approach to forming LNPs containing IgG via liquid droplets formed in the presence of polyglutamic acid (polyE). The addition of polyE promoted the formation of smaller LNPs with cationic lipids than in its absence, and the formed LNPs were much more efficient in cytosolic IgG delivery and targeting of cellular proteins. This approach also allows for the encapsulation of intact IgG without the need for chemical or sequence modification. The intracellularly delivered IgG retained its target binding ability, as demonstrated by labeling of nuclear pore complex and HRas-GFP and inhibition of antiapoptotic cell death by phosphorylated Akt protein in live cells.
Collapse
Affiliation(s)
- Yusuke Hirai
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Chisato Kasahara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
7
|
Kawaguchi Y, Kawamura Y, Hirose H, Kiyokawa M, Hirate M, Hirata T, Higuchi Y, Futaki S. E3MPH16: An efficient endosomolytic peptide for intracellular protein delivery. J Control Release 2024; 367:877-891. [PMID: 38301930 DOI: 10.1016/j.jconrel.2024.01.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
To facilitate the introduction of proteins, such as antibodies, into cells, a variety of delivery peptides have been engineered. These peptides are typically highly cationic and somewhat hydrophobic, enabling cytosolic protein delivery at the cost of causing cell damage by rupturing membranes. This balance between delivery effectiveness and cytotoxicity presents obstacles for their real-world use. To tackle this problem, we designed a new endosome-disruptive cytosolic delivery peptide, E3MPH16, inspired by mastoparan X (MP). E3MPH16 was engineered to incorporate three Glu (E3) and 16 His (H16) residues at the N- and C-termini of MP, respectively. The negative charges of E3 substantially mitigate the cell-surface damage induced by MP. The H16 segment is known to enhance cell-surface adsorption and endocytic uptake of the associated molecules. With these modifications, E3MPH16 was successfully trapped within endosomes. The acidification of endosomes is expected to protonate the side chains of E3 and H16, enabling E3MPH16 to rupture endosomal membranes. As a result, nearly 100% of cells achieved cytosolic delivery of a model biomacromolecule, Alexa Fluor 488-labeled dextran (10 kDa), via endosomal escape by co-incubation with E3MPH16. The delivery process also suggested the involvement of macropinocytosis and caveolae-mediated endocytosis. With the assistance of E3MPH16, Cre recombinase and anti-Ras-IgG delivered into HEK293 cells and HT1080 cells enabled gene recombination and inhibited cell proliferation, respectively. The potential for in vivo application of this intracellular delivery method was further validated by topically injecting the green fluorescent protein fused with a nuclear localization signal (NLS-GFP) along with E3MPH16 into Colon-26 tumor xenografts in mice.
Collapse
Affiliation(s)
- Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | - Yuki Kawamura
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hisaaki Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Megumi Kiyokawa
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Momo Hirate
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Tsuyoshi Hirata
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuriko Higuchi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
8
|
Chan A, Tsourkas A. Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications. BME FRONTIERS 2024; 5:0035. [PMID: 38282957 PMCID: PMC10809898 DOI: 10.34133/bmef.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Protein biologics are powerful therapeutic agents with diverse inhibitory and enzymatic functions. However, their clinical use has been limited to extracellular applications due to their inability to cross plasma membranes. Overcoming this physiological barrier would unlock the potential of protein drugs for the treatment of many intractable diseases. In this review, we highlight progress made toward achieving cytosolic delivery of recombinant proteins. We start by first considering intracellular protein delivery as a drug modality compared to existing Food and Drug Administration-approved drug modalities. Then, we summarize strategies that have been reported to achieve protein internalization. These techniques can be broadly classified into 3 categories: physical methods, direct protein engineering, and nanocarrier-mediated delivery. Finally, we highlight existing challenges for cytosolic protein delivery and offer an outlook for future advances.
Collapse
Affiliation(s)
| | - Andrew Tsourkas
- Department of Bioengineering,
University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
9
|
Nobeyama T, Furuki T, Shiraki K. Phase-Diagram Observation of Liquid-Liquid Phase Separation in the Poly(l-lysine)/ATP System and a Proposal for Diagram-Based Application Strategy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17043-17049. [PMID: 37967197 DOI: 10.1021/acs.langmuir.3c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Liquid-liquid phase separation (LLPS) is essential to understanding the biomacromolecule compartmentalization in living cells and to developing soft-matter structures for chemical reactions and drug delivery systems. However, the importance of detailed experimental phase diagrams of modern LLPS systems tends to be overlooked in recent times. Even for the poly(l-lysine) (PLL)/ATP system, which is one of the most widely used LLPS models, any detailed phase diagram of LLPS has not been reported. Herein, we report the first phase diagram of the PLL/ATP system and demonstrate the feasibility of phase-diagram-based research design for understanding the physical properties of LLPS systems and realizing biophysical and medical applications. We established an experimentally handy model for the droplet formation-disappearance process by generating a concentration gradient in a chamber for extracting a suitable condition on the phase diagram, including the two-phase droplet region. As a proof of concept of pharmaceutical application, we added a human immunoglobulin G (IgG) solution to the PLL/ATP system. Using the knowledge from the phase diagram, we realized the formation of IgG/PLL droplets in a pharmaceutically required IgG concentration of ca. 10 mg/mL. Thus, this study provides guidance for using the phase diagram to analyze and utilize LLPS.
Collapse
Affiliation(s)
- Tomohiro Nobeyama
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Tomohiro Furuki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| |
Collapse
|
10
|
Nobeyama T, Tataka K, Mori M, Murakami T, Yamada Y, Shiraki K. Synthesis of Butterfly-Like Shaped Gold Nanomaterial: For the Regulation of Liquid-Liquid Phase-Separated Biomacromolecule Droplets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300362. [PMID: 37596729 DOI: 10.1002/smll.202300362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/31/2023] [Indexed: 08/20/2023]
Abstract
Nanotechnology is a critical tool to manipulate the sophisticated behavior of biological structures and has provided new research fields. Liquid-liquid phase-separated (LLPS) droplets gather attention as basic reaction fields in a living cell. Droplets play critical roles in regulating protein behavior, including enzyme compartmentalization, stress response, and disease pathogenesis. The dynamic manipulation of LLPS droplet formation/deformation has become a crucial target in nanobiotechnology. However, the development of nanodevices specifically designed for this purpose remains a challenge. Therefore, this study presents butterfly-shaped gold nanobutterflies (GNBs) as novel nanodevices for manipulating LLPS droplet dynamics. The growth process of the GNBs is analyzed via time-lapse electroscopic imaging, time-lapse spectroscopy, and additives assays. Interestingly, GNBs demonstrate the ability to induce LLPS droplet formation in systems such as adenosine triphosphate/poly-l-lysine and human immunoglobulin G, whereas spherical and rod-shaped gold nanoparticles exhibit no such capability. This indicates that the GNB concave surface interacts with the droplet precursors facilitating the LLPS droplet formation. Near-infrared-laser irradiation applied to GNBs enables on-demand deformation of the droplets through localized heat effects. GNB regulates the enzymatic reaction of lysozymes. The innovative design of GNBs presents a promising strategy for manipulating LLPS dynamics and offers exciting prospects for future research.
Collapse
Affiliation(s)
- Tomohiro Nobeyama
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Koji Tataka
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
- Human Life Technology Research, Toyama Industrial Technology Research and Development Center, 35-1 Iwatakeshin, Nanto, Toyama, 939-1503, Japan
| | - Megumi Mori
- Faculty of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Tatsuya Murakami
- Graduate School of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yoichi Yamada
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| | - Kentaro Shiraki
- Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan
| |
Collapse
|
11
|
Blades R, Ittner LM, Tietz O. Peptides for trans-blood-brain barrier delivery. J Labelled Comp Radiopharm 2023; 66:237-248. [PMID: 37002811 PMCID: PMC10952576 DOI: 10.1002/jlcr.4023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/02/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Trans-blood-brain barrier (BBB) delivery of therapeutic and diagnostic agents is a major challenge in the development of central nervous system (CNS) targeted radiopharmaceuticals. This review is an introduction to the use of peptides as delivery agents to transport cargos into the CNS. The most widely used BBB-penetrating peptides are reviewed here, with a particular emphasis on the broad range of cargos delivered into the CNS using these. Cell-penetrating peptides (CPPs) have been deployed as trans-BBB delivery agents for some time; new developments in the CPP field offer exciting opportunities for the design of next generation trans-BBB complexes. Many of the peptides highlighted here are ready to be combined with diagnostic and therapeutic radiopharmaceuticals to develop highly effective CNS-targeted agents.
Collapse
Affiliation(s)
- Reuben Blades
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Lars M. Ittner
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Ole Tietz
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
12
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
13
|
Zhang Y, Wang S, Yan Y, He X, Wang Z, Zhou S, Yang X, Wang K, Liu J. Phase-separated bienzyme compartmentalization as artificial intracellular membraneless organelles for cell repair. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
14
|
Saha A, Mandal S, Arafiles JVV, Gómez‐González J, Hackenberger CPR, Brik A. Structure-Uptake Relationship Study of DABCYL Derivatives Linked to Cyclic Cell-Penetrating Peptides for Live-Cell Delivery of Synthetic Proteins. Angew Chem Int Ed Engl 2022; 61:e202207551. [PMID: 36004945 PMCID: PMC9828537 DOI: 10.1002/anie.202207551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 01/12/2023]
Abstract
Modifying cyclic cell-penetrating deca-arginine (cR10) peptides with 4-(4-dimethylaminophenylazo)benzoic acid (DABCYL) improves the uptake efficiency of synthetic ubiquitin (Ub) cargoes into living cells. To probe the role of the DABCYL moiety, we performed time-lapse microscopy and fluorescence lifetime imaging microscopy (FLIM) of fluorescent DABCYL-R10 to evaluate the impact on cell entry by the formation of nucleation zones. Furthermore, we performed a structure-uptake relationship study with 13 DABCYL derivatives coupled to CPP to examine their effect on the cell-uptake efficiency when conjugated to mono-Ub through disulfide linkages. Our results show that through structure variations of the DABCYL moiety alone we could reach, at nanomolar concentration, an additional threefold increase in the cytosolic delivery of Ub, which will enable studies on various intracellular processes related to Ub signaling.
Collapse
Affiliation(s)
- Abhishek Saha
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Shaswati Mandal
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| | - Jan Vincent V. Arafiles
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 10Berlin13125Germany
| | - Jacobo Gómez‐González
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 10Berlin13125Germany
| | - Christian P. R. Hackenberger
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)Robert-Rössle-Strasse 10Berlin13125Germany
- Department of ChemistryHumboldt Universität zu BerlinBrook-Taylor-Str.2Berlin12489Germany
| | - Ashraf Brik
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
15
|
First direct evidence for direct cell-membrane penetrations of polycationic homopoly(amino acid)s produced by bacteria. Commun Biol 2022; 5:1132. [PMID: 36289442 PMCID: PMC9606270 DOI: 10.1038/s42003-022-04110-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/13/2022] [Indexed: 11/08/2022] Open
Abstract
Bacteria produce polycationic homopoly(amino acid)s, which are characterized by isopeptide backbones. Although the biological significance of polycationic homopoly(amino acid)s remains unclear, increasing attention has recently been focused on their potential use to achieve cellular internalization. Here, for the first time, we provide direct evidence that two representative bacterial polycationic isopeptides, ε-poly-L-α-lysine (ε-PαL) and ε-oligo-L-β-lysine (ε-OβL), were internalized into mammalian cells by direct cell-membrane penetration and then diffused throughout the cytosol. In this study, we used clickable ε-PαL and ε-OβL derivatives carrying a C-terminal azide group, which were enzymatically produced and then conjugated with a fluorescent dye to analyze subcellular localization. Interestingly, fluorescent proteins conjugated with the clickable ε-PαL or ε-OβL were also internalized into cells and diffused throughout the cytosol. Notably, a Cre recombinase conjugate with ε-PαL entered cells and mediated the Cre/loxP recombination, and ε-PαL was found to deliver a full-length IgG antibody to the cytosol and nucleus.
Collapse
|
16
|
Niu J, Qiu C, Abbott NL, Gellman SH. Formation of versus Recruitment to RNA-Rich Condensates: Controlling Effects Exerted by Peptide Side Chain Identity. J Am Chem Soc 2022; 144:10386-10395. [PMID: 35639776 PMCID: PMC9746169 DOI: 10.1021/jacs.2c02222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liquid-liquid phase separation (LLPS), the spontaneous formation of contiguous liquid phases with distinct compositions, has been long known in chemical systems and more recently recognized as a ubiquitous feature of cell biology. We describe a system involving biologically relevant components, synthetic peptides, and total yeast RNA, that has enabled us to explore factors that underlie phase separation. Coulombic complementarity between a cationic peptide and anionic RNA is necessary but not sufficient for formation of a condensed phase in our system. In addition to a net positive charge, the peptide must present the proper type of cationic moiety. Guanidinium groups, as found in the Arg side chain, support phase separation, but ammonium groups, as found in the Lys side chain, or dimethylguanidinium groups, as found in post-translationally modified Arg side chains, do not support phase separation in our system. However, the cationic groups that do not support phase separation via interaction with RNA can nevertheless enable recruitment to a condensed phase, which reveals that the network of forces governing condensed phase formation can differ from the network of forces governing recruitment to such a phase. We introduce a new method for measuring the concentrations of components in condensed phases based on fluorine-containing additives and 19F NMR.
Collapse
Affiliation(s)
- Jiani Niu
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Cindy Qiu
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, New York 14853, USA
| | - Nicholas L. Abbott
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, New York 14853, USA
| | - Samuel H. Gellman
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
17
|
Chen N, He Y, Zang M, Zhang Y, Lu H, Zhao Q, Wang S, Gao Y. Approaches and materials for endocytosis-independent intracellular delivery of proteins. Biomaterials 2022; 286:121567. [DOI: 10.1016/j.biomaterials.2022.121567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 12/12/2022]
|
18
|
Qin D, He Z, Li P, Zhang S. Liquid-Liquid Phase Separation in Nucleation Process of Biomineralization. Front Chem 2022; 10:834503. [PMID: 35186885 PMCID: PMC8854647 DOI: 10.3389/fchem.2022.834503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Biomineralization is a typical interdisciplinary subject attracting biologists, chemists, and geologists to figure out its potential mechanism. A mounting number of studies have revealed that the classical nucleation theory is not suitable for all nucleation process of biominerals, and phase-separated structures such as polymer-induced liquid precursors (PILPs) play essential roles in the non-classical nucleation processes. These structures are able to play diverse roles biologically or pathologically, and could also give inspiring clues to bionic applications. However, a lot of confusion and dispute occurred due to the intricacy and interdisciplinary nature of liquid precursors. Researchers in different fields may have different opinions because the terminology and current state of understanding is not common knowledge. As a result, our team reviewed the most recent articles focusing on the nucleation processes of various biominerals to clarify the state-of-the-art understanding of some essential concepts and guide the newcomers to enter this intricate but charming field.
Collapse
Affiliation(s)
| | | | - Peng Li
- *Correspondence: Peng Li, ; Shutian Zhang,
| | | |
Collapse
|