1
|
Cai B, Rong X, Sun Y, Liu L, Li Z. Engineered 3D DNA Crystals: A Molecular Design Perspective. SMALL METHODS 2025:e2401455. [PMID: 39777863 DOI: 10.1002/smtd.202401455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Recent advances in biomolecular self-assembly have transformed material science, enabling the creation of novel materials with unparalleled precision and functionality. Among these innovations, 3D DNA crystals have emerged as a distinctive class of macroscopic materials, engineered through the bottom-up approach by DNA self-assembly. These structures uniquely combine precise molecular ordering with high programmability, establishing their importance in advanced material design. This review delves into the molecular design of engineered 3D DNA crystals, classifying current crystal structures based on "crystal bond orientations" and examining key aspects of in-silico molecular design, self-assembly, and crystal modifications. The functionalization of 3D DNA crystals for applications in crystallization scaffolding, biocatalysis, biosensing, electrical and optical devices, as well as in the emerging fields of DNA computing and data storage are explored. Finally, the ongoing challenges are addressed and future directions to advance the field of engineered 3D DNA crystals are proposed.
Collapse
Affiliation(s)
- Baoshuo Cai
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao Rong
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yifan Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Longfei Liu
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06484, USA
- Nanobiology Institute, Yale University, West Haven, CT, 06484, USA
| | - Zhe Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Wang HB, Zhang L, Hu TY, Yuan XQ, Huang SW, Li JQ, Zhong ZT, Zhao YD. Excellent properties of NaF and NaBr induced DNA/gold nanoparticle conjugation system: Better stability, shorter modified time, and higher loading capacity. Biosens Bioelectron 2025; 267:116876. [PMID: 39467474 DOI: 10.1016/j.bios.2024.116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
The functionalization of gold nanoparticle (AuNP) is the key procedure for the biochemical and biomedical application. The conventional salt-aging method requires the stepwise additions of NaCl and excessive thiolated DNA, mainly due to the poor tolerance of the DNA/AuNP mixture toward NaCl. Herein, we found that NaF is capable of improving the stability for the modification of AuNP with different bases of DNA sequences (poly A/T/C/G), and allows for adding up with a high concentration of 200 mM at one time, which greatly reduces the total modification time to 0.5-1 h. Intriguingly, the introduction of NaBr effectively increases the DNA loading capacity. Besides the advantages of NaF and NaBr, the modification performance is improved via the introduction of the oligo A/T spacer for the G-rich DNA sequences. Furthermore, this method shows the superiority to another two methods (pH 3-based and salt-aging) in terms of the loading capacity or sequence components.
Collapse
Affiliation(s)
- Hai-Bo Wang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China.
| | - Liang Zhang
- College of Sports Medicine, Wuhan Sports University, Wuhan, 430079, Hubei, China
| | - Tian-Yu Hu
- School of Physics and Electronic-Information Engineering, Hubei Engineering University, Xiaogan, 432000, Hubei, China
| | - Xue-Qing Yuan
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Sheng-Wei Huang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Jin-Quan Li
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Chuzhou, 233100, Anhui, China
| | - Zi-Tao Zhong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China.
| | - Yuan-Di Zhao
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics─Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China; Key Laboratory of Biomedical Photonics (HUST), Ministry of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
| |
Collapse
|
3
|
Wang X, Yang Z, Li Z, Huang K, Cheng N, Liu J. Rapid Thermal Drying Synthesis of Nonthiolated Spherical Nucleic Acids with Stability Rivaling Thiolated DNA. Angew Chem Int Ed Engl 2024; 63:e202410353. [PMID: 39175023 DOI: 10.1002/anie.202410353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Attaching DNA oligonucleotides to gold nanoparticles (AuNPs) to prepare spherical nucleic acids (SNAs) has offered tremendous insights into surface chemistry with resulting bioconjugates serving as critical reagents in biosensors and nanotechnology. While thiolated DNA is generally required to achieve stable conjugates, we herein communicate that using a thermal drying method, a high DNA density and excellent SNA stability was achieved using nonthiolated DNA, rivaling the performance of thiolated DNA such as surviving 1 M NaCl, 2 month stability in 0.3 M NaCl and working in 50 % serum. A poly-adenine block with as few as two consecutive terminal adenine bases is sufficient for anchoring on AuNPs. By side-by-side comparison with the salt-aging method, the conjugation mechanism was attributed to competitive adenine adsorption at high temperature along with an extremely high DNA concentration upon drying. Bioanalytical applications of nonthiolated SNAs were validated in both solution and paper-based sensor platforms, facilitating cost-effective applications for SNAs.
Collapse
Affiliation(s)
- Xin Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, 100083, Beijing, China
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, Ontario, Canada
| | - Zhansen Yang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, 100083, Beijing, China
| | - Zihe Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, 100083, Beijing, China
| | - Kunlun Huang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, 100083, Beijing, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, 100083, Beijing, China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, N2L 3G1, Waterloo, Ontario, Canada
| |
Collapse
|
4
|
Chen C, Wang Q, Wang P, Dai M, Jiang X, Zhou J, Qi L. Supercrystal Engineering of Nanoarrows Enabled by Tailored Concavity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403970. [PMID: 38984738 DOI: 10.1002/smll.202403970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Self-assembly of nanoparticles into supercrystals represents a powerful approach to create unique and complex superstructures with fascinating properties and novel functions, but the complexity in spatial configuration, and the tunability in lattice structure are still quite limited compared to the crystals formed by atoms and molecules. Herein, shallowly concave gold nanoarrows with a unique concave-convex geometry are synthesized and employed as novel building blocks for shape-directed self-assembly of a wealth of complex 3D supercrystals with unprecedented configurations. The obtained diverse superstructures including six Interlocking-type supercrystals and three Packing-type supercrystals exhibit four types of Bravais lattices (i.e., tP, oI, tI, and oF) and six types of crystallographic space groups (i.e., Pmmm, I222, Pnnm, Ibam, I4/mmm, and Fmmm), which have not been documented in the mesoscale self-assembled systems. It has been revealed that the relative yield of different supercrystal structures is mainly determined by the packing density and deformability of the supercrystals, which are closely related to the tailored concavity of the nanoparticles and is affected by the particle concentration, thus allowing for programmable self-assembly into specific supercrystals through particle shape modulation. The concavity-enabled supercrystal engineering may open a new avenue toward unconventional nanoparticle superstructures with expanded complexity, tunability, and functionality.
Collapse
Affiliation(s)
- Cheng Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qian Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peijian Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mengqi Dai
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xin Jiang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Limin Qi
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Bassani CL, van Anders G, Banin U, Baranov D, Chen Q, Dijkstra M, Dimitriyev MS, Efrati E, Faraudo J, Gang O, Gaston N, Golestanian R, Guerrero-Garcia GI, Gruenwald M, Haji-Akbari A, Ibáñez M, Karg M, Kraus T, Lee B, Van Lehn RC, Macfarlane RJ, Mognetti BM, Nikoubashman A, Osat S, Prezhdo OV, Rotskoff GM, Saiz L, Shi AC, Skrabalak S, Smalyukh II, Tagliazucchi M, Talapin DV, Tkachenko AV, Tretiak S, Vaknin D, Widmer-Cooper A, Wong GCL, Ye X, Zhou S, Rabani E, Engel M, Travesset A. Nanocrystal Assemblies: Current Advances and Open Problems. ACS NANO 2024; 18:14791-14840. [PMID: 38814908 DOI: 10.1021/acsnano.3c10201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
We explore the potential of nanocrystals (a term used equivalently to nanoparticles) as building blocks for nanomaterials, and the current advances and open challenges for fundamental science developments and applications. Nanocrystal assemblies are inherently multiscale, and the generation of revolutionary material properties requires a precise understanding of the relationship between structure and function, the former being determined by classical effects and the latter often by quantum effects. With an emphasis on theory and computation, we discuss challenges that hamper current assembly strategies and to what extent nanocrystal assemblies represent thermodynamic equilibrium or kinetically trapped metastable states. We also examine dynamic effects and optimization of assembly protocols. Finally, we discuss promising material functions and examples of their realization with nanocrystal assemblies.
Collapse
Affiliation(s)
- Carlos L Bassani
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Greg van Anders
- Department of Physics, Engineering Physics, and Astronomy, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Uri Banin
- Institute of Chemistry and the Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Dmitry Baranov
- Division of Chemical Physics, Department of Chemistry, Lund University, SE-221 00 Lund, Sweden
| | - Qian Chen
- University of Illinois, Urbana, Illinois 61801, USA
| | - Marjolein Dijkstra
- Soft Condensed Matter & Biophysics, Debye Institute for Nanomaterials Science, Utrecht University, 3584 CC Utrecht, The Netherlands
| | - Michael S Dimitriyev
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843, USA
| | - Efi Efrati
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
- James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA
| | - Jordi Faraudo
- Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, E-08193 Bellaterra, Barcelona, Spain
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Nicola Gaston
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Physics, The University of Auckland, Auckland 1142, New Zealand
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - G Ivan Guerrero-Garcia
- Facultad de Ciencias de la Universidad Autónoma de San Luis Potosí, 78295 San Luis Potosí, México
| | - Michael Gruenwald
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, USA
| | - Maria Ibáñez
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Matthias Karg
- Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Tobias Kraus
- INM - Leibniz-Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123 Saarbrücken, Germany
| | - Byeongdu Lee
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53717, USA
| | - Robert J Macfarlane
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Bortolo M Mognetti
- Center for Nonlinear Phenomena and Complex Systems, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Arash Nikoubashman
- Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany
| | - Saeed Osat
- Max Planck Institute for Dynamics and Self-Organization (MPI-DS), 37077 Göttingen, Germany
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, USA
| | - Grant M Rotskoff
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Leonor Saiz
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - An-Chang Shi
- Department of Physics & Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - Sara Skrabalak
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Ivan I Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, Colorado 80309, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashi-Hiroshima City 739-0046, Japan
| | - Mario Tagliazucchi
- Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires 1428 Argentina
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Alexei V Tkachenko
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Sergei Tretiak
- Theoretical Division and Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - David Vaknin
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gerard C L Wong
- Department of Bioengineering, University of California, Los Angeles, California 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, USA
| | - Xingchen Ye
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, USA
| | - Eran Rabani
- Department of Chemistry, University of California and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michael Engel
- Institute for Multiscale Simulation, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alex Travesset
- Iowa State University and Ames Lab, Ames, Iowa 50011, USA
| |
Collapse
|
6
|
Xu X, Li H, Hu Z, Khan M, Chen W, Hu H, Wang Q, Lan X. Symmetry-Breaking of Nanoparticle Surface Function Via Conformal DNA Design. NANO LETTERS 2024; 24:6496-6505. [PMID: 38787288 DOI: 10.1021/acs.nanolett.4c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Asymmetric surface functionalization of complex nanoparticles to control their directional self-assembly remains a considerable challenge. Here, we demonstrated a conformal DNA design strategy for flexible remodeling of the surface of complex nanoparticles, taking Au nanobipyramids (AuNBPs) as a model. We sheathed one or both tips of AuNBPs into conformal DNA origami with an exceptionally accurate orientation control. Such asymmetrically and symmetrically distributed surface patches possess regioselective, sequence, and site-specific DNA binding capabilities. As a result, we realized a series of prototypical multicomponent "colloidal molecules" made of AuNBPs and Au nanospheres (AuNSs) with defined directionality and number of "bonding valence" as well as 1D and 3D hierarchical assemblies, e.g., inverse core-satellites of AuNBPs and AuNSs, side-by-side and tip-to-tip linear assemblies of AuNBPs, and 3D helical superstructures of AuNBPs with tunable twists. These findings inspire new opportunities for nanoparticle surface engineering and the high-order self-assembly of nanoarchitectures with higher complexity and broadened functionalities.
Collapse
Affiliation(s)
- Xin Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Huacheng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiwei Hu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Majid Khan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Wen Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Huatian Hu
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano, LE, Italy
| | - Qiangbin Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Key Laboratory of Functional Molecular Imaging Technology, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- College of Materials Sciences and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang Lan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Vo T. Theory and simulation of ligand functionalized nanoparticles - a pedagogical overview. SOFT MATTER 2024; 20:3554-3576. [PMID: 38646950 DOI: 10.1039/d4sm00177j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Synthesizing reconfigurable nanoscale synthons with predictive control over shape, size, and interparticle interactions is a holy grail of bottom-up self-assembly. Grand challenges in their rational design, however, lie in both the large space of experimental synthetic parameters and proper understanding of the molecular mechanisms governing their formation. As such, computational and theoretical tools for predicting and modeling building block interactions have grown to become integral in modern day self-assembly research. In this review, we provide an in-depth discussion of the current state-of-the-art strategies available for modeling ligand functionalized nanoparticles. We focus on the critical role of how ligand interactions and surface distributions impact the emergent, pre-programmed behaviors between neighboring particles. To help build insights into the underlying physics, we first define an "ideal" limit - the short ligand, "hard" sphere approximation - and discuss all experimental handles through the lens of perturbations about this reference point. Finally, we identify theories that are capable of bridging interparticle interactions to nanoscale self-assembly and conclude by discussing exciting new directions for this field.
Collapse
Affiliation(s)
- Thi Vo
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
8
|
Chen Z, Chen X, Zhao B, Zhang H, Zhang H. Efficient Poly-Adenine-Tailed DNA Functionalization of Gold Nanorods for Tailored Nanostructure Assembly. J Phys Chem Lett 2024; 15:4400-4407. [PMID: 38624102 DOI: 10.1021/acs.jpclett.4c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Gold nanorods (AuNRs) with unique optical properties play a pivotal role in applications in plasmonic imaging, small molecule detection, and photothermal therapy. However, challenges in DNA functionalization of AuNRs hinder their full potential due to the presence of a dense cetyltrimethylammonium bromide (CTAB) bilayer, impeding close DNA contact. In this study, we introduced a convenient approach for the rapid assembly of polyadenine (polyA) tailed DNA on AuNRs with control of DNA density, rigidity, and valence. We explored the impact of DNA with designed properties on the construction of core-satellite structures by employing AuNRs as cores and spherical gold nanoparticles (AuNSs) as satellites. Density, rigidity, and valence are identified as crucial factors for efficient construction. Specifically, polyA-tailed DNA modulated DNA density and reduced spatial hindrance and electrostatic repulsion, thereby facilitating the construction. Enhancing the rigidity of DNA and incorporating multiple binding sites can further improve the efficiency.
Collapse
Affiliation(s)
- Zeyu Chen
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Chen
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Zhao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, China
| | - Honglu Zhang
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Guo Y, Tong Z, Huang Y, Tang J, Xue X, Yang D, Yao C. Dynamic Assembly of DNA Nanostructures in Cancer Cells Enables the Coupling of Autophagy Activating and Real-Time Tracking. NANO LETTERS 2024; 24:3532-3540. [PMID: 38457281 DOI: 10.1021/acs.nanolett.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Developing dynamic nanostructures for in situ regulation of biological processes inside living cells is of great importance in biomedical research. Herein we report the cascaded assembly of Y-shaped branched DNA nanostructure (YDN) during intracellular autophagy. YDN contains one arm with semi-i-motif sequence and Cy3-BHQ2, and another arm with an apurinic/apyrimidinic (AP) site and Cy5-BHQ3. Upon uptake by cancer cells, intermolecular i-motif structures are formed in response to lysosomal H+, causing the formation of YDN-dimer and the recovery of Cy3 fluorescence; when escapes occur from the lysosome to the cytoplasm, the YDN-dimer responds to the overexpressed APE1, leading to the assembly of YDN into the DNA network and the fluorescence recovery of Cy5. Simultaneously, the cascaded assembly activates autophagy, and thus the process of assembly of YDN and autophagy flux can be spatiotemporally coupled. This work illustrates the potential of DNA nanostructures for the in situ regulation of intracellular dynamic events with spatiotemporal control.
Collapse
Affiliation(s)
- Yanfei Guo
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Zhaobin Tong
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Yan Huang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300353, P.R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
10
|
Huang Y, Wu C, Chen J, Tang J. Colloidal Self-Assembly: From Passive to Active Systems. Angew Chem Int Ed Engl 2024; 63:e202313885. [PMID: 38059754 DOI: 10.1002/anie.202313885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/08/2023]
Abstract
Self-assembly fundamentally implies the organization of small sub-units into large structures or patterns without the intervention of specific local interactions. This process is commonly observed in nature, occurring at various scales ranging from atomic/molecular assembly to the formation of complex biological structures. Colloidal particles may serve as micrometer-scale surrogates for studying assembly, particularly for the poorly understood kinetic and dynamic processes at the atomic scale. Recent advances in colloidal self-assembly have enabled the programmable creation of novel materials with tailored properties. We here provide an overview and comparison of both passive and active colloidal self-assembly, with a discussion on the energy landscape and interactions governing both types. In the realm of passive colloidal assembly, many impressive and important structures have been realized, including colloidal molecules, one-dimensional chains, two-dimensional lattices, and three-dimensional crystals. In contrast, active colloidal self-assembly, driven by optical, electric, chemical, or other fields, involves more intricate dynamic processes, offering more flexibility and potential new applications. A comparative analysis underscores the critical distinctions between passive and active colloidal assemblies, highlighting the unique collective behaviors emerging in active systems. These behaviors encompass collective motion, motility-induced phase segregation, and exotic properties arising from out-of-equilibrium thermodynamics. Through this comparison, we aim to identify the future opportunities in active assembly research, which may suggest new application domains.
Collapse
Affiliation(s)
- Yaxin Huang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Changjin Wu
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Jingyuan Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| | - Jinyao Tang
- Department of Chemistry, The University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
11
|
Cai Y, Qi X, Boese J, Zhao Y, Hellner B, Chun J, Mundy CJ, Baneyx F. Towards predictive control of reversible nanoparticle assembly with solid-binding proteins. SOFT MATTER 2024; 20:1935-1942. [PMID: 38323470 DOI: 10.1039/d4sm00094c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Although a broad range of ligand-functionalized nanoparticles and physico-chemical triggers have been exploited to create stimuli-responsive colloidal systems, little attention has been paid to the reversible assembly of unmodified nanoparticles with non-covalently bound proteins. Previously, we reported that a derivative of green fluorescent protein engineered with oppositely located silica-binding peptides mediates the repeated assembly and disassembly of 10-nm silica nanoparticles when pH is toggled between 7.5 and 8.5. We captured the subtle interplay between interparticle electrostatic repulsion and their protein-mediated short-range attraction with a multiscale model energetically benchmarked to collective system behavior captured by scattering experiments. Here, we show that both solution conditions (pH and ionic strength) and protein engineering (sequence and position of engineered silica-binding peptides) provide pathways for reversible control over growth and fragmentation, leading to clusters ranging in size from 25 nm protein-coated particles to micrometer-size aggregate. We further find that the higher electrolyte environment associated with successive cycles of base addition eventually eliminates reversibility. Our model accurately predicts these multiple length scales phenomena. The underpinning concepts provide design principles for the dynamic control of other protein- and particle-based nanocomposites.
Collapse
Affiliation(s)
- Yifeng Cai
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Xin Qi
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Julia Boese
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Yundi Zhao
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Brittney Hellner
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| | - Jaehun Chun
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
- Levich Institute and Department of Chemical Engineering, CUNY City College of New York, New York, New York 10031, USA
| | - Christopher J Mundy
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, USA
| | - François Baneyx
- Department of Chemical Engineering, University of Washington, Seattle, Washington 98195, USA.
| |
Collapse
|
12
|
Michelson A, Subramanian A, Kisslinger K, Tiwale N, Xiang S, Shen E, Kahn JS, Nykypanchuk D, Yan H, Nam CY, Gang O. Three-dimensional nanoscale metal, metal oxide, and semiconductor frameworks through DNA-programmable assembly and templating. SCIENCE ADVANCES 2024; 10:eadl0604. [PMID: 38198553 PMCID: PMC10780874 DOI: 10.1126/sciadv.adl0604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024]
Abstract
Controlling the three-dimensional (3D) nanoarchitecture of inorganic materials is imperative for enabling their novel mechanical, optical, and electronic properties. Here, by exploiting DNA-programmable assembly, we establish a general approach for realizing designed 3D ordered inorganic frameworks. Through inorganic templating of DNA frameworks by liquid- and vapor-phase infiltrations, we demonstrate successful nanofabrication of diverse classes of inorganic frameworks from metal, metal oxide and semiconductor materials, as well as their combinations, including zinc, aluminum, copper, molybdenum, tungsten, indium, tin, and platinum, and composites such as aluminum-doped zinc oxide, indium tin oxide, and platinum/aluminum-doped zinc oxide. The open 3D frameworks have features on the order of nanometers with architecture prescribed by the DNA frames and self-assembled lattice. Structural and spectroscopic studies reveal the composition and organization of diverse inorganic frameworks, as well as the optoelectronic properties of selected materials. The work paves the road toward establishing a 3D nanoscale lithography.
Collapse
Affiliation(s)
- Aaron Michelson
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Ashwanth Subramanian
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Nikhil Tiwale
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Shuting Xiang
- Department of Chemical Engineering, Columbia University, 817 SW Mudd, New York, NY 10027, USA
| | - Eric Shen
- Department of Chemical Engineering, Columbia University, 817 SW Mudd, New York, NY 10027, USA
| | - Jason S. Kahn
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Dmytro Nykypanchuk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hanfei Yan
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Chang-Yong Nam
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
- Department of Chemical Engineering, Columbia University, 817 SW Mudd, New York, NY 10027, USA
| |
Collapse
|
13
|
Chen X, Vo T, Clancy P. A multiscale approach to uncover the self-assembly of ligand-covered palladium nanocubes. SOFT MATTER 2023; 19:8625-8634. [PMID: 37916973 DOI: 10.1039/d3sm01140b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Ligand-mediated superlattice assemblies of metallic nanocrystals represent a new type of mesoscale materials whose structural ordering directly influence emergent collective properties. However, universal control over the spatial and orientational ordering of their constitutive components remains an open challenge. One major barrier contributing to the lack of programmability in these nanoscale building blocks revolves around a gap in fundamental understanding of how ligand-mediated interactions at the particle level propagate to macroscopic and mesoscale behaviors. Here, we employ a combination of scaling theory and coarse-grained simulations to develop a multiscale modeling framework capable of bridging across hierarchical assembly length scales for a model system of ligand-functionalized nanocubes (here, Pd). We first employ atomistic simulations to characterize how specific ligand-ligand interactions influence the local behaviors between neighboring Pd nanocubes. We then utilize a mean-field scaling theory to both rationalize the observed behaviors as well as compute a coarse-grained effective pairwise potential between nanocubes capable of reproducing atomistic behaviors at the mesoscale. Furthermore, our simulations reveal that a complex interplay between ligand-ligand interactions is directly responsible for a shift in macroscopic ordering between neighboring nanocubes. Our results, therefore, provides a critical step forward in establishing a multiscale understanding of ligand-functionalized nanocrystalline assemblies that can be subsequently leveraged to design targeted structures exhibiting novel, emergent collective properties.
Collapse
Affiliation(s)
- Xiangyu Chen
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Thi Vo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Paulette Clancy
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
14
|
Wang Y, Douglas T. Tuning Multistep Biocatalysis through Enzyme and Cofactor Colocalization in Charged Porous Protein Macromolecular Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43621-43632. [PMID: 37695852 DOI: 10.1021/acsami.3c10340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Spatial organization of biocatalytic activities is crucial to organisms to efficiently process complex metabolism. Inspired by this mechanism, artificial scaffold structures are designed to harbor functionally coupled biocatalysts, resulting in acellular materials that can complete multistep reactions at high efficiency and low cost. Substrate channeling is an approach for efficiency enhancement of multistep reactions, but fast diffusion of small molecule intermediates poses a major challenge to achieve channeling in vitro. Here, we explore how multistep biocatalysis is affected, and can be modulated, by cofactor-enzyme colocalization within a synthetic bioinspired material. In this material, a heterogeneous protein macromolecular framework (PMF) acts as a porous host matrix for colocalization of two coupled enzymes and their small molecule cofactor, nicotinamide adenine dinucleotide (NAD). After formation of the PMF from a higher order assembly of P22 virus-like particles (VLPs), the enzymes were partitioned into the PMF by covalent attachment and presentation on the VLP exterior. Using a collective property of the PMF (i.e., high density of negative charges in the PMF), NAD molecules were partitioned into the framework via electrostatic interactions after being conjugated to a polycationic species. This effectively controlled the localization and diffusion of NAD, resulting in substrate channeling between the enzymes. Changing ionic strength modulates the PMF-NAD interactions, tuning two properties that impact the multistep efficiency oppositely in response to ionic strength: cofactor partitioning (colocalization with the enzymes) and cofactor mobility (translocation between the enzymes). Within the range tested, we observed a maximum of 5-fold increase or 75% decrease in multistep efficiency as compared to free enzymes in solution, which suggest both the colocalization and the mobility are critical for the multistep efficiency. This work demonstrates utility of collective behaviors, exhibited by hierarchical bioassemblies, in the construction of functional materials for enzyme cascades, which possess properties such as tunable multistep biocatalysis.
Collapse
Affiliation(s)
- Yang Wang
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| | - Trevor Douglas
- Department of Chemistry, Indiana University, 800 E Kirkwood Avenue, Bloomington, Indiana 47405, United States
| |
Collapse
|
15
|
Adhikari S, Minevich B, Redeker D, Michelson AN, Emamy H, Shen E, Gang O, Kumar SK. Controlling the Self-Assembly of DNA Origami Octahedra via Manipulation of Inter-Vertex Interactions. J Am Chem Soc 2023; 145:19578-19587. [PMID: 37651692 DOI: 10.1021/jacs.3c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Recent studies have demonstrated novel strategies for the organization of nanomaterials into three-dimensional (3D) ordered arrays with prescribed lattice symmetries using DNA-based self-assembly strategies. In one approach, the nanomaterial is sequestered into DNA origami frames or "material voxels" and then coordinated into ordered arrays based on the voxel geometry and the corresponding directional interactions based on its valency. While the lattice symmetry is defined by the valency of the bonds, a larger-scale morphological development is affected by assembly processes and differences in energies of anisotropic bonds. To facilely model this assembly process, we investigate the self-assembly behavior of hard particles with six interacting vertices via theory and Monte Carlo simulations and exploration of corresponding experimental systems. We demonstrate that assemblies with different 3D crystalline morphologies but the same lattice symmetry can be formed depending on the relative strength of vertex-to-vertex interactions in orthogonal directions. We observed three distinct assembly morphologies for such systems: cube-like, sheet-like, and cylinder-like. A simple analytical theory inspired by well-established ideas in the areas of protein crystallization, based on calculating the second virial coefficient of patchy hard spheres, captures the simulation results and thus represents a straightforward means of modeling this self-assembly process. To complement the theory and simulations, experimental studies were performed to investigate the assembly of octahedral DNA origami frames with varying binding energies at their vertices. X-ray scattering confirms the robustness of the formed nanoscale lattices for different binding energies, while both optical and electron microscopy imaging validated the theoretical predictions on the dependence of the distinct morphologies of assembled state on the interaction strengths in the three orthogonal directions.
Collapse
Affiliation(s)
- Sabin Adhikari
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Brian Minevich
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Daniel Redeker
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Aaron Noam Michelson
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Hamed Emamy
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Eric Shen
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Oleg Gang
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Sanat K Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
16
|
Benjaminson E, Imamura T, Lorenz A, Bergbreiter S, Travers M, Taylor RE. Buoyant magnetic milliswimmers reveal design rules for optimizing microswimmer performance. NANOSCALE 2023; 15:14175-14188. [PMID: 37593931 DOI: 10.1039/d3nr02846a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Magnetically-actuated swimming microrobots are an emerging tool for navigating and manipulating materials in confined spaces. Recent work has demonstrated that it is possible to build such systems at the micro and nanoscales using polymer microspheres, magnetic particles and DNA nanotechnology. However, while these materials enable an unprecedented ability to build at small scales, such systems often demonstrate significant polydispersity resulting from both the material variations and the assembly process itself. This variability makes it difficult to predict, let alone optimize, the direction or magnitude of microswimmer velocity from design parameters such as link shape or aspect ratio. To isolate questions of a swimmer's design from variations in its physical dimensions, we present a novel experimental platform using two-photon polymerization to build a two-link, buoyant milliswimmer with a fully customizable shape and integrated flexible linker (the swimmer is underactuated, enabling asymmetric cyclic motion and net translation). Our approach enables us to control both swimming direction and repeatability of swimmer performance. These studies provide ground truth data revealing that neither the first order nor second order models currently capture the key features of milliswimmer performance. We therefore use our experimental platform to develop design guidelines for tuning the swimming speeds, and we identify the following three approaches for increasing speed: (1) tuning the actuation frequency for a fixed aspect ratio, (2) adjusting the aspect ratio given a desired range of operating frequencies, and (3) using the weaker value of linker stiffness from among the values that we tested, while still maintaining a robust connection between the links. We also find experimentally that spherical two-link swimmers with dissimilar link diameters achieve net velocities comparable to swimmers with cylindrical links, but that two-link spherical swimmers of equal diameter do not.
Collapse
Affiliation(s)
- Emma Benjaminson
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, USA.
| | - Taryn Imamura
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, USA.
| | - Aria Lorenz
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, USA.
| | - Sarah Bergbreiter
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, USA.
- Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, USA
- The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, USA
| | - Matthew Travers
- The Robotics Institute, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, USA
| | - Rebecca E Taylor
- Department of Mechanical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, USA.
- Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, USA
- Department of Biomedical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, USA
| |
Collapse
|
17
|
Ding L, Chen X, Ma W, Li J, Liu X, Fan C, Yao G. DNA-mediated regioselective encoding of colloids for programmable self-assembly. Chem Soc Rev 2023; 52:5684-5705. [PMID: 37522252 DOI: 10.1039/d2cs00845a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
How far we can push chemical self-assembly is one of the most important scientific questions of the century. Colloidal self-assembly is a bottom-up technique for the rational design of functional materials with desirable collective properties. Due to the programmability of DNA base pairing, surface modification of colloidal particles with DNA has become fundamental for programmable material self-assembly. However, there remains an ever-lasting demand for surface regioselective encoding to realize assemblies that require specific, directional, and orthogonal interactions. Recent advances in surface chemistry have enabled regioselective control over the formation of DNA bonds on the particle surface. In particular, the structural DNA nanotechnology provides a simple yet powerful design strategy with unique regioselective addressability, bringing the complexity of colloidal self-assembly to an unprecedented level. In this review, we summarize the state-of-art advances in DNA-mediated regioselective surface encoding of colloids, with a focus on how the regioselective encoding is introduced and how the regioselective DNA recognition plays a crucial role in the self-assembly of colloidal structures. This review highlights the advantages of DNA-based regioselective modification in improving the complexity of colloidal assembly, and outlines the challenges and opportunities for the construction of more complex architectures with tailored functionalities.
Collapse
Affiliation(s)
- Longjiang Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xiaoliang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenhe Ma
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
18
|
Kong H, Sun B, Yu F, Wang Q, Xia K, Jiang D. Exploring the Potential of Three-Dimensional DNA Crystals in Nanotechnology: Design, Optimization, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302021. [PMID: 37327311 PMCID: PMC10460852 DOI: 10.1002/advs.202302021] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Indexed: 06/18/2023]
Abstract
DNA has been used as a robust material for the building of a variety of nanoscale structures and devices owing to its unique properties. Structural DNA nanotechnology has reported a wide range of applications including computing, photonics, synthetic biology, biosensing, bioimaging, and therapeutic delivery, among others. Nevertheless, the foundational goal of structural DNA nanotechnology is exploiting DNA molecules to build three-dimensional crystals as periodic molecular scaffolds to precisely align, obtain, or collect desired guest molecules. Over the past 30 years, a series of 3D DNA crystals have been rationally designed and developed. This review aims to showcase various 3D DNA crystals, their design, optimization, applications, and the crystallization conditions utilized. Additionally, the history of nucleic acid crystallography and potential future directions for 3D DNA crystals in the era of nanotechnology are discussed.
Collapse
Affiliation(s)
- Huating Kong
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Bo Sun
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Feng Yu
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation FacilityShanghai Advanced Research InstituteChinese Academy of SciencesShanghai201204China
| | - Kai Xia
- Shanghai Frontier Innovation Research InstituteShanghai201108China
- Shanghai Stomatological HospitalFudan UniversityShanghai200031China
| | - Dawei Jiang
- Wuhan Union HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
- Hubei Key Laboratory of Molecular ImagingWuhan430022China
- Key Laboratory of Biological Targeted Therapythe Ministry of EducationWuhan430022China
| |
Collapse
|
19
|
Barbour A, Cai YQ, Fluerasu A, Freychet G, Fukuto M, Gang O, Gann E, Laasch R, Li R, Ocko BM, Tsai EHR, Wąsik P, Wiegart L, Yager KG, Yang L, Zhang H, Zhang Y. X-ray Scattering for Soft Matter Research at NSLS-II. SYNCHROTRON RADIATION NEWS 2023; 36:24-30. [PMID: 38046894 PMCID: PMC10688614 DOI: 10.1080/08940886.2023.2207449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Affiliation(s)
- Andi Barbour
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Yong Q Cai
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Andrei Fluerasu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | | | - Masafumi Fukuto
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
- Department of Chemical Engineering and Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York, USA
| | - Eliot Gann
- Materials Measurement Science Division, Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, USA
| | - Ricarda Laasch
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Ruipeng Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Benjamin M Ocko
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Esther H R Tsai
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Patryk Wąsik
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Lutz Wiegart
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Kevin G Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| | - Lin Yang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Honghu Zhang
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York, USA
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York, USA
| |
Collapse
|
20
|
Borah R, Ag KR, Minja AC, Verbruggen SW. A Review on Self-Assembly of Colloidal Nanoparticles into Clusters, Patterns, and Films: Emerging Synthesis Techniques and Applications. SMALL METHODS 2023; 7:e2201536. [PMID: 36856157 DOI: 10.1002/smtd.202201536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Indexed: 06/09/2023]
Abstract
The colloidal synthesis of functional nanoparticles has gained tremendous scientific attention in the last decades. In parallel to these advancements, another rapidly growing area is the self-assembly or self-organization of these colloidal nanoparticles. First, the organization of nanoparticles into ordered structures is important for obtaining functional interfaces that extend or even amplify the intrinsic properties of the constituting nanoparticles at a larger scale. The synthesis of large-scale interfaces using complex or intricately designed nanostructures as building blocks, requires highly controllable self-assembly techniques down to the nanoscale. In certain cases, for example, when dealing with plasmonic nanoparticles, the assembly of the nanoparticles further enhances their properties by coupling phenomena. In other cases, the process of self-assembly itself is useful in the final application such as in sensing and drug delivery, amongst others. In view of the growing importance of this field, this review provides a comprehensive overview of the recent developments in the field of nanoparticle self-assembly and their applications. For clarity, the self-assembled nanostructures are classified into two broad categories: finite clusters/patterns, and infinite films. Different state-of-the-art techniques to obtain these nanostructures are discussed in detail, before discussing the applications where the self-assembly significantly enhances the performance of the process.
Collapse
Affiliation(s)
- Rituraj Borah
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Karthick Raj Ag
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Antony Charles Minja
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| | - Sammy W Verbruggen
- Sustainable Energy, Air & Water Technology (DuEL), Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
- NANOlab Center of Excellence, University of Antwerp, Groenenborgerlaan 171, Antwerp, 2020, Belgium
| |
Collapse
|
21
|
Hou S, Bai L, Lu D, Duan H. Interfacial Colloidal Self-Assembly for Functional Materials. Acc Chem Res 2023; 56:740-751. [PMID: 36920352 DOI: 10.1021/acs.accounts.2c00705] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
ConspectusSelf-assembly bridges nanoscale and microscale colloidal particles into macroscale functional materials. In particular, self-assembly processes occurring at the liquid/liquid or solid/liquid/air interfaces hold great promise in constructing large-scale two- or three-dimensional (2D or 3D) architectures. Interaction of colloidal particles in the assemblies leads to emergent collective properties not found in individual building blocks, offering a much larger parameter space to tune the material properties. Interfacial self-assembly methods are rapid, cost-effective, scalable, and compatible with existing fabrication technologies, thus promoting widespread interest in a broad range of research fields.Surface chemistry of nanoparticles plays a predominant role in driving the self-assembly of nanoparticles at water/oil interfaces. Amphiphilic nanoparticles coated with mixed polymer brushes or mussel-inspired polydopamine were demonstrated to self-assemble into closely packed thin films, enabling diverse applications from electrochemical sensors and catalysis to surface-enhanced optical properties. Interfacial assemblies of amphiphilic gold nanoparticles were integrated with graphene paper to obtain flexible electrodes in a modular approach. The robust, biocompatible electrodes with exceptional electrocatalytic activities showed excellent sensitivity and reproducibility in biosensing. Recyclable catalysts were prepared by transferring monolayer assemblies of polydopamine-coated nanocatalysts to both hydrophilic and hydrophobic substrates. The immobilized catalysts were easily recovered and recycled without loss of catalytic activity. Plasmonic nanoparticles were self-assembled into a plasmonic substrate for surface-enhanced Raman scattering, metal-enhanced fluorescence, and modulated fluorescence resonance energy transfer (FRET). Strong Raman enhancement was accomplished by rationally directing the Raman probes to the electromagnetic hotspots. Optimal enhancement of fluorescence and FRET was realized by precisely controlling the spacing between the metal surface and the fluorophores and tuning the surface plasmon resonance wavelength of the self-assembled substrate to match the optical properties of the fluorescent dye.At liquid/solid interfaces, infiltration-assisted (IFAST) colloidal self-assembly introduces liquid infiltration in the substrate as a new factor to control the degree of order of the colloidal assemblies. The strong infiltration flow leads to the formation of amorphous colloidal arrays that display noniridescent structural colors. This method is compatible with a broad range of colloidal particle inks, and any solid substrate that is permeable to dispersing liquids but particle-excluding is suitable for IFAST colloidal assembly. Therefore, the IFAST technology offers rapid, scalable fabrication of structural color patterns of diverse colloidal particles with full-spectrum coverage and unprecedented flexibility. Metal-organic framework particles with either spherical or polyhedral morphology were used as ink particles in the Mayer rod coating on wettability patterned photopapers, leading to amorphous photonic structures with vapor-responsive colors. Anticounterfeiting labels have also been developed based on the complex optical features encoded in the photonic structures.Interfacial colloidal self-assembly at the water/oil interface and IFAST assembly at the solid/liquid/air interface have proven to be versatile fabrication platforms to produce functional materials with well-defined properties for diverse applications. These platform technologies are promising in the manufacturing of value-added functional materials.
Collapse
Affiliation(s)
- Shuai Hou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ling Bai
- School of Materials Science and Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 China
| | - Derong Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| | - Hongwei Duan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, 637457 Singapore
| |
Collapse
|
22
|
Xie C, Chen Z, Chen K, Hu Y, Pan L. Regulating the Polymerization of DNA Structures via Allosteric Control of Monomers. ACS NANO 2023; 17:1505-1510. [PMID: 36633930 DOI: 10.1021/acsnano.2c10456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Regulation of self-assembly is crucial in constructing structural biomaterials, such as tunable DNA nanostructures. Traditional tuning of self-assembled DNA nanostructures was mainly conducted by introducing external stimuli after the assembly process. Here, we explored the allosteric assembly of DNA structures via introducing external stimuli during the assembly process to produce structurally heterogeneous polymerization products. We demonstrated that ethidium bromide (EB), a DNA intercalator, could increase the left-handed out-of-plane chirality of curved DNA structures. Then, EB and double strands were introduced as competing stimuli to transform monomers into allosteric conformations, leading to three different polymerization products. The steric trap between different polymerization products promoted the polymerized structures to keep their geometric properties, like chirality, under varying intensity of external stimuli. Our strategy harnesses allosteric effects for assembly of DNA-based materials and is expected to expand the design space for advanced control in synthetic materials.
Collapse
Affiliation(s)
- Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang, 050043 Hebei, China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| |
Collapse
|
23
|
Marro N, Suo R, Naden AB, Kay ER. Constitutionally Selective Dynamic Covalent Nanoparticle Assembly. J Am Chem Soc 2022; 144:14310-14321. [PMID: 35901233 PMCID: PMC9376925 DOI: 10.1021/jacs.2c05446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The future of materials chemistry will be defined by
our ability
to precisely arrange components that have considerably larger dimensions
and more complex compositions than conventional molecular or macromolecular
building blocks. However, exerting structural and constitutional control
in the assembly of nanoscale entities presents a considerable challenge.
Dynamic covalent nanoparticles are emerging as an attractive category
of reaction-enabled solution-processable nanosized building block
through which the rational principles of molecular synthetic chemistry
can be extended into the nanoscale. From a mixture of two hydrazone-based
dynamic covalent nanoparticles with complementary reactivity, specific
molecular instructions trigger selective assembly of intimately mixed
heteromaterial (Au–Pd) aggregates or materials highly enriched
in either one of the two core materials. In much the same way as complementary
reactivity is exploited in synthetic molecular chemistry, chemospecific
nanoparticle-bound reactions dictate building block connectivity;
meanwhile, kinetic regioselectivity on the nanoscale regulates the
detailed composition of the materials produced. Selectivity, and hence
aggregate composition, is sensitive to several system parameters.
By characterizing the nanoparticle-bound reactions in isolation, kinetic
models of the multiscale assembly network can be constructed. Despite
ignoring heterogeneous physical processes such as aggregation and
precipitation, these simple kinetic models successfully link the underlying
molecular events with the nanoscale assembly outcome, guiding rational
optimization to maximize selectivity for each of the three assembly
pathways. With such predictive construction strategies, we can anticipate
that reaction-enabled nanoparticles can become fully incorporated
in the lexicon of synthetic chemistry, ultimately establishing a synthetic
science that manipulates molecular and nanoscale components with equal
proficiency.
Collapse
Affiliation(s)
- Nicolas Marro
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Rongtian Suo
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Aaron B Naden
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Euan R Kay
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| |
Collapse
|
24
|
Yao C, Ou J, Tang J, Yang D. DNA Supramolecular Assembly on Micro/Nanointerfaces for Bioanalysis. Acc Chem Res 2022; 55:2043-2054. [PMID: 35839123 DOI: 10.1021/acs.accounts.2c00170] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusFacing increasing demand for precision medicine, materials chemistry systems for bioanalysis with accurate molecular design, controllable structure, and adjustable biological activity are required. As a genetic biomacromolecule, deoxyribonucleic acid (DNA) is created via precise, efficient, and mild processes in life systems and can in turn precisely regulate life activities. From the perspective of materials chemistry, DNA possesses the characteristics of sequence programmability and can be endowed with customized functions by the rational design of sequences. In recent years, DNA has been considered to be a potential biomaterial for analysis and has been applied in the fields of bioseparation, biosensing, and detection imaging. To further improve the precision of bioanalysis, the supramolecular assembly of DNA on micro/nanointerfaces is an effective strategy to concentrate functional DNA modules, and thus the functions of DNA molecules for bioanalysis can be enriched and enhanced. Moreover, the new modes of DNA supramolecular assembly on micro/nanointerfaces enable the integration of DNA with the introduced components, breaking the restriction of limited functions of DNA materials and achieving more precise regulation and manipulation in bioanalysis. In this Account, we summarize our recent work on DNA supramolecular assembly on micro/nanointerfaces for bioanalysis from two main aspects. In the first part, we describe DNA supramolecular assembly on the interfaces of microscale living cells. The synthesis strategy of DNA is based on rolling-circle amplification (RCA), which generates ultralong DNA strands according to circular DNA templates. The templates can be designed with complementary sequences of functional modules such as aptamers, which allow DNA to specifically bind with cellular interfaces and achieve efficient cell separation. In the second part, we describe DNA supramolecular assembly on the interfaces of nanoscale particles. DNA sequences are designed with functional modules such as targeting, drug loading, and gene expression and then are assembled on interfaces of particles including upconversion nanoparticles (UCNPs), gold nanoparticles (AuNPs), and magnetic nanoparticle (MNPs). The integration of DNA with these functional particles achieves cell manipulation, targeted tumor imaging, and cellular regulation. The processes of interfacial assembly are well controlled, and the functions of the obtained bioanalytical materials can be flexibly regulated. We envision that the work on DNA supramolecular assembly on micro/nanointerfaces will be a typical paradigm for the construction of more bioanalytical materials, which we hope will facilitate the development of precision medicine.
Collapse
Affiliation(s)
- Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Junhan Ou
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
25
|
Dwivedi M, Singh SL, Bharadwaj AS, Kishore V, Singh AV. Self-Assembly of DNA-Grafted Colloids: A Review of Challenges. MICROMACHINES 2022; 13:mi13071102. [PMID: 35888919 PMCID: PMC9324607 DOI: 10.3390/mi13071102] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 02/04/2023]
Abstract
DNA-mediated self-assembly of colloids has emerged as a powerful tool to assemble the materials of prescribed structure and properties. The uniqueness of the approach lies in the sequence-specific, thermo-reversible hybridization of the DNA-strands based on Watson–Crick base pairing. Grafting particles with DNA strands, thus, results into building blocks that are fully programmable, and can, in principle, be assembled into any desired structure. There are, however, impediments that hinder the DNA-grafted particles from realizing their full potential, as building blocks, for programmable self-assembly. In this short review, we focus on these challenges and highlight the research around tackling these challenges.
Collapse
Affiliation(s)
- Manish Dwivedi
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India; (M.D.); (V.K.)
| | - Swarn Lata Singh
- Department of Physics, Mahila Mahavidyalaya (MMV), Banaras Hindu University, Varanasi 221005, UP, India
- Correspondence: (S.L.S.); (A.V.S.)
| | - Atul S. Bharadwaj
- Department of Physics, CMP Degree College, University of Allahabad, Prayagraj 211002, UP, India;
| | - Vimal Kishore
- Department of Physics, Banaras Hindu University, Varanasi 221005, UP, India; (M.D.); (V.K.)
| | - Ajay Vikram Singh
- Department of Chemical and Product Safety, German Federal Institute of Risk Assessment (BfR), Maxdohrnstrasse 8-10, 10589 Berlin, Germany
- Correspondence: (S.L.S.); (A.V.S.)
| |
Collapse
|
26
|
Zhou K, Mei Z, Lei Y, Guan Z, Mao C, Li Y. Boosted Productivity in Single-Tile-Based DNA Polyhedra Assembly by Simple Cation Replacement. Chembiochem 2022; 23:e202200138. [PMID: 35676202 DOI: 10.1002/cbic.202200138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Indexed: 11/11/2022]
Abstract
Cations such as divalent magnesium ion (Mg2+ ) play an essential role in DNA self-assembly. However, the strong electrostatic shielding effect of Mg2+ would be disadvantageous in some situations that require relatively weak interactions to allow a highly reversible error-correcting mechanism in the process of assembly. Herein, by substituting the conventional divalent Mg2+ with monovalent sodium ion (Na+ ), we have achieved one-pot high-yield assembly of tile-based DNA polyhedra at micromolar concentration of tiles, at least 10 times higher than the DNA concentrations reported previously. This strategy takes advantage of coexisting counterions and is expected to surmount the major obstacle to potential applications of such DNA nanostructures: large-scale production.
Collapse
Affiliation(s)
- Kaixuan Zhou
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhichao Mei
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Yunxiang Lei
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Zhen Guan
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| | - Chengde Mao
- Department of Chemistry, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Yulin Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui, 230009, P. R. China
| |
Collapse
|
27
|
Srivastava S, Chhabra A, Gang O. Effect of mono- and multi-valent ionic environments on the in-lattice nanoparticle-grafted single-stranded DNA. SOFT MATTER 2022; 18:526-534. [PMID: 34908083 DOI: 10.1039/d1sm01171e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyelectrolyte (PE) chains respond in a complex manner to multivalent salt environments, and this behavior depends on pH, temperature, and the presence of specific counter ions. Although much work has been done to understand the behaviour of free PE chains, it is important to reveal their behaviour on a nanoparticle's surface, where surface constraints, particle geometry, and multi-chain environment can affect their behaviour and contribute to particles' assembly states. Our work investigates, using in situ small-angle X-ray scattering (SAXS), the morphology of PE (single-stranded DNA) chains grafted onto the surface of spherical gold nanoparticles assembled in a lattice in the presence of monovalent, divalent and trivalent salts. For divalent salts, the DNA brush length was found to decrease at a faster rate with salt concentration than in the monovalent salt environment, while trivalent salts led to chain collapse. Using a power law analysis and the modified Daoud-Cotton model, we have obtained insight into the mechanism of a nanoparticle-grafted chain's response to ionic environments. Our analysis suggests that the decrease in brush length is due to the conventional electrostatic screening for monovalent systems, whereas for divalent systems both electrostatic screening and divalent ion bridging must be considered.
Collapse
Affiliation(s)
- Sunita Srivastava
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Anuj Chhabra
- Center for Nanoscience, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Oleg Gang
- Center for Functional Nanomaterials Brookhaven National Laboratory Upton, NY 11973, USA.
- Department of Chemical Engineering Columbia University New York, NY 10027, USA
- Department of Applied Physics and Applied Mathematics Columbia University New York, NY 10027, USA
| |
Collapse
|
28
|
Li D, Liu N, Zeng M, Ji J, Chen X, Yuan J. Customizable nano-sized colloidal tetrahedrons by polymerization-induced particle self-assembly (PIPA). Polym Chem 2022. [DOI: 10.1039/d2py00407k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Colloidal molecules (CMs) are colloidal clusters with molecule-like symmetry and architecture, generated from the self-assembly of nanoparticles with attractive patches. However, large-scale preparation of patchy nanoparticles remains challenging. Here, we...
Collapse
|