1
|
Meng Y, Chen C, Lin R, Zheng L, Fan Y, Zhang M, Zhang Z, Shi H, Zheng X, Chen J, Chen D, Teng T, Chen B. Mitochondria-Targeting Virus-Like Gold Nanoparticles Enhance Chemophototherapeutic Efficacy Against Pancreatic Cancer in a Xenograft Mouse Model. Int J Nanomedicine 2024; 19:14059-14074. [PMID: 39748900 PMCID: PMC11693971 DOI: 10.2147/ijn.s497346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025] Open
Abstract
Background The dense and fibrotic nature of the pancreatic tumor microenvironment significantly contributes to tumor invasion and metastasis. This challenging environment acts as a formidable barrier, hindering effective drug penetration and delivery, which ultimately limits the efficacy of conventional cancer treatments. Gold nanoparticles (AuNPs) have emerged as promising nanocarriers to overcome the extracellular matrix barrier; however, their limited targeting precision, poor delivery efficiency, and insufficient photothermal conversion present challenges. Methods We developed triphenyl phosphonium-functionalized high-branch gold nanoparticles, denoted as Dox@TPAu, to enhance drug delivery and targeting capabilities. The targeted penetration, biopharmaceutical and pharmacokinetic properties of Dox@TPAu were characterized, and the synergistic therapeutic effect was evaluated by the BxPC-3 xenograft tumor mouse model. Results Dox@TPAu exhibits superior photothermal conversion efficiency (91.0%) alongside a high drug loading efficiency (26%) and effective photo-triggered drug-release potential. This Dox@TPAu drug delivery system adeptly accumulates at tumor sites due to its unique properties, enabling targeted localization within cancer cells and the mitochondria of stromal fibroblasts. This localization disrupts mitochondrial function and transfer-processes crucial for energy production, metabolism, and cell signaling within the tumor microenvironment. Pharmacokinetic analyses revealed an optimal spatiotemporal distribution of Dox@TPAu at the tumor site. This strategic accumulation enables precise disruption of both the physical barrier and cancer cells, enhancing treatment efficacy through near-infrared light-triggered local chemo-photothermal synergistic therapy. Conclusion Our findings demonstrate that this innovative strategy effectively leverages the unique properties of mitochondria-targeting, virus-like AuNPs for precise and efficient stromal depletion, presenting a promising approach to enhance the efficacy of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Youshuai Meng
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Chuan Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Innovation Center for Enzyme Catalysis and Drug Synthesis, School of Pharmacy, Xiamen Medical College, Xiamen, 361023, People’s Republic of China
| | - Ronggui Lin
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Department of General Surgery/ Department of Obstetrics & Gynecology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Linlin Zheng
- Department of Oncology, Affiliated Hospital of Putian University, Putian, 351199, People’s Republic of China
| | - Yanying Fan
- Fuzhou Children’s Hospital of Fujian Province, Fuzhou, 350005, People’s Republic of China
| | - Mengdi Zhang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Ziqi Zhang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Han Shi
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Department of General Surgery/ Department of Obstetrics & Gynecology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Xiaohan Zheng
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Department of General Surgery/ Department of Obstetrics & Gynecology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Junyu Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| | - Dezhao Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Department of General Surgery/ Department of Obstetrics & Gynecology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Tianhong Teng
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
- Department of General Surgery/ Department of Obstetrics & Gynecology, Fujian Medical University Union Hospital, Fuzhou, 350001, People’s Republic of China
| | - Bing Chen
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, People’s Republic of China
| |
Collapse
|
2
|
Chen J, Feng J, Xu P, Yin Y. Magnetoplasmonic Triblock Nanorods for Collective Linear Dichroism. J Am Chem Soc 2024; 146:31205-31212. [PMID: 39470990 DOI: 10.1021/jacs.4c11377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Polarized light detection is crucial for advancements in optical imaging, positioning, and obstacle avoidance systems. While optical nanomaterials sensitive to polarization are well-established, the ability to align these materials remains a significant challenge. Here, we introduce Au-Fe3O4-Au triblock nanorods as a novel solution. Synthesized via a space-confined seeded growth method, these magnetoplasmonic nanocomposites uniquely combine the strong polarization capabilities of Au nanorods with the magnetic alignment properties of Fe3O4 nanorods. This architecture results in exceptional collective linear dichroism, achieving a polarization ratio of approximately 14 at the device level. Our nanorods exhibit high detection sensitivity and laser damage resistance, positioning them as a promising platform for developing advanced optical devices.
Collapse
Affiliation(s)
- Jinxing Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ji Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Panpan Xu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Ye Z, Chen C, Cao L, Cai Z, Xu C, Kim HI, Giraldo JP, Kanaras AG, Yin Y. Reversible Modulation of Plasmonic Coupling of Gold Nanoparticles Confined within Swellable Polymer Colloidal Spheres. Angew Chem Int Ed Engl 2024; 63:e202408020. [PMID: 38845451 DOI: 10.1002/anie.202408020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Indexed: 07/21/2024]
Abstract
Dynamic optical modulation in response to stimuli provides exciting opportunities for designing novel sensing, actuating, and authentication devices. Here, we demonstrate that the reversible swelling and deswelling of crosslinked polymer colloidal spheres in response to pH and temperature changes can be utilized to drive the assembly and disassembly of the embedded gold nanoparticles (AuNPs), inducing their plasmonic coupling and decoupling and, correspondingly, color changes. The multi-responsive colloids are created by depositing a monolayer of AuNPs on the surface of resorcinol-formaldehyde (RF) nanospheres, then overcoating them with an additional RF layer, followed by a seeded growth process to enlarge the AuNPs and reduce their interparticle separation to induce significant plasmonic coupling. This configuration facilitates dynamic modulation of plasmonic coupling through the reversible swelling/deswelling of the polymer spheres in response to pH and temperature changes. The rapid and repeatable transitions between coupled and decoupled plasmonic states of AuNPs enable reversible color switching when the polymer spheres are in colloidal form or embedded in hydrogel substrates. Furthermore, leveraging the photothermal effect and stimuli-responsive plasmonic coupling of the embedded AuNPs enables the construction of hybrid hydrogel films featuring switchable anticounterfeiting patterns, showcasing the versatility and potential of this multi-stimuli-responsive plasmonic system.
Collapse
Affiliation(s)
- Zuyang Ye
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Chen Chen
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Licheng Cao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Zepeng Cai
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Christina Xu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Hye-In Kim
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO171BJ, UK
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Tang Y, Liu X, Qi P, Xu W, Wu Y, Cai Y, Gu W, Sun H, Wang C, Zhu C. Artificial-Cofactor-Mediated Hydrogen and Electron Transfer Endows AuFe/Polydopamine Superparticles with Enhanced Glucose Oxidase-Like Activity. NANO LETTERS 2024; 24:9974-9982. [PMID: 39083237 DOI: 10.1021/acs.nanolett.4c02594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Various applications related to glucose catalysis have led to the development of functional nanozymes with glucose oxidase (GOX)-like activity. However, the unsatisfactory catalytic activity of nanozymes is a major challenge for their practical applications due to their inefficient hydrogen and electron transfer. Herein, we present the synthesis of AuFe/polydopamine (PDA) superparticles that exhibit photothermal-enhanced GOX-like activity. Experimental investigations and theoretical calculations reveal that the glucose oxidation process catalyzed by AuFe/PDA follows an artificial-cofactor-mediated hydrogen atom transfer mechanism, which facilitates the generation of carbon-centered radical intermediates. Rather than depending on charged Au surfaces for thermodynamically unstable hydride transfer, Fe(III)-coordinated PDA with abundant amino and phenolic hydroxyl groups serves as cofactor mimics, facilitating both hydrogen atom and electron transfer in the catalytic process. Finally, leveraging the photothermal-enhanced GOX-like and catalase-like activities of AuFe/PDA, we establish a highly sensitive and accurate point-of-care testing blood glucose determination with exceptional anti-jamming capabilities.
Collapse
Affiliation(s)
- Yinjun Tang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Xupeng Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Pengcheng Qi
- Institute of Nano-Science and Technology, College of Physical Science and Technology, Central China Normal University, Wuhan 430079, P. R. China
| | - Weiqing Xu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yu Wu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Yujia Cai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hongcheng Sun
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Canglong Wang
- Institute of Modern Physics, Chinese Academy of Science, Lanzhou 730000, P.R. China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
5
|
Wang Y, Xu X, Fang Y, Yang S, Wang Q, Liu W, Zhang J, Liang D, Zhai W, Qian K. Self-Assembled Hyperbranched Gold Nanoarrays Decode Serum United Urine Metabolic Fingerprints for Kidney Tumor Diagnosis. ACS NANO 2024; 18:2409-2420. [PMID: 38190455 DOI: 10.1021/acsnano.3c10717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Serum united urine metabolic analysis comprehensively reveals the disease status for kidney diseases in particular. Thus, the precise and convenient acquisition of metabolic molecular information from united biofluids is vitally important for clinical disease diagnosis and biomarker discovery. Laser desorption/ionization mass spectrometry (LDI-MS) presents various advantages in metabolic analysis; however, there remain challenges in ionization efficiency and MS signal reproducibility. Herein, we constructed a self-assembled hyperbranched black gold nanoarray (HyBrAuNA) assisted LDI-MS platform to profile serum united urine metabolic fingerprints (S-UMFs) for diagnosis of early stage renal cell carcinoma (RCC). The closely packed HyBrAuNA afforded strong electromagnetic field enhancement and high photothermal conversion efficacy, enabling effective ionization of low abundant metabolites for S-UMF collection. With a uniform nanoarray, the platform presented excellent reproducibility to ensure the accuracy of S-UMFs obtained in seconds. When it was combined with automated machine learning analysis of S-UMFs, early stage RCC patients were discriminated from the healthy controls with an area under the curve (AUC) > 0.99. Furthermore, we screened out a panel of 9 metabolites (4 from serum and 5 from urine) and related pathways toward early stage kidney tumor. In view of its high-throughput, fast analytical speed, and low sample consumption, our platform possesses potential in metabolic profiling of united biofluids for disease diagnosis and pathogenic mechanism exploration.
Collapse
Affiliation(s)
- Yuning Wang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Xiaoyu Xu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Yuzheng Fang
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, People's Republic of China
| | - Shouzhi Yang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Qirui Wang
- Health Management Center, Renji Hospital of Medical School of Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Wanshan Liu
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Juxiang Zhang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Dingyitai Liang
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, 160 Pujian Road, Shanghai 200127, People's Republic of China
| | - Kun Qian
- State Key Laboratory of Systems Medicine for Cancer, School of Biomedical Engineering and Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| |
Collapse
|
6
|
Shu Y, Liu Q, Shi M, Zhang Z, Xie C, Bi S, Zhang P. Surfactant-Free Synthesis of Crystalline Mesoporous Metal Oxides by a Seeds/ NaCl-Mediated Growth Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304533. [PMID: 37939286 PMCID: PMC10767421 DOI: 10.1002/advs.202304533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Indexed: 11/10/2023]
Abstract
Transitional metal oxides (TMOs) with ultra-high specific surface areas (SSAs), large pore volume, and tailored exposed facets appeal to significant interests in heterogeneous catalysis. Nevertheless, synthesizing the metal oxides with all the above features is challenging. Herein, the so-called seeds/NaCl-mediated growth method is successfully developed based on a bottom-up route. First, the (Brunauer-Emmett-Teller) BET SSAs of TMOs prepared with this method are significantly higher, where the BET SSAs of CeO2 , SnO2 , Nb2 O5 , Fe3 O4 , Mn3 O4 , Mg(OH)2 , and ZrO2 reached 187, 275, 518, 212, 147, 186, and 332 m2 g-1 , respectively. Second, these TMOs exhibit unique mesoporous structures, generated mainly by the aggregation of rod-like or other aspherical primary nanoparticles. More importantly, no environmental-unfriendly organic surfactants or expensive metal alkoxides are involved in this method. Therefore, the entire synthesis protocol fully fitted the "green synthesis" definition, and the corresponding TMOs prepares displayed excellent catalytic performance.
Collapse
Affiliation(s)
- Yuan Shu
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical EngineeringCollege of Chemistry and Chemical EngineeringNingxia UniversityYinchuan750021China
| | - Qian Liu
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical EngineeringCollege of Chemistry and Chemical EngineeringNingxia UniversityYinchuan750021China
| | - Meiyu Shi
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical EngineeringCollege of Chemistry and Chemical EngineeringNingxia UniversityYinchuan750021China
| | - Zequn Zhang
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical EngineeringCollege of Chemistry and Chemical EngineeringNingxia UniversityYinchuan750021China
| | - Chengmin Xie
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | - Shuxian Bi
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical EngineeringCollege of Chemistry and Chemical EngineeringNingxia UniversityYinchuan750021China
| | - Pengfei Zhang
- State Key Laboratory of High‐efficiency Utilization of Coal and Green Chemical EngineeringCollege of Chemistry and Chemical EngineeringNingxia UniversityYinchuan750021China
- School of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| |
Collapse
|
7
|
He MQ, Ai Y, Hu W, Guan L, Ding M, Liang Q. Recent Advances of Seed-Mediated Growth of Metal Nanoparticles: from Growth to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211915. [PMID: 36920232 DOI: 10.1002/adma.202211915] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
Unprecedented advances in metal nanoparticle synthesis have paved the way for broad applications in sensing, imaging, catalysis, diagnosis, and therapy by tuning the optical properties, enhancing catalytic performance, and improving chemical and biological properties of metal nanoparticles. The central guiding concept for regulating the size and morphology of metal nanoparticles is identified as the precise manipulation of nucleation and subsequent growth, often known as seed-mediated growth methods. However, since the growth process is sensitive not only to the metal seeds but also to capping agents, metal precursors, growth solution, growth/incubation time, reductants, and other influencing factors, the precise control of metal nanoparticle morphology is multifactorial. Further, multiple reaction parameters are entangled with each other, so it is necessary to clarify the mechanism by which each factor precisely regulates the morphology of metal nanoparticles. In this review, to exploit the generality and extendibility of metal nanoparticle synthesis, the mechanisms of growth influencing factors in seed-mediated growth methods are systematically summarized. Second, a variety of critical properties and applications enabled by grown metal nanoparticles are focused upon. Finally, the current progress and offer insights on the challenges, opportunities, and future directions for the growth and applications of grown metal nanoparticles are reviewed.
Collapse
Affiliation(s)
- Meng-Qi He
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Yongjian Ai
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Liandi Guan
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Mingyu Ding
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Laboratory of Flexible Electronics Technology, Center for Synthetic and Systems Biology, Tsinghua University-Peking University Joint Centre for Life Sciences, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Quan MX, Wu Y, Liu QY, Bu ZQ, Lu JY, Huang WT. Multimorphological Remoldable Silver Nanomaterials from Multimode and Multianalyte Colorimetric Sensing to Molecular Information Technology. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38693-38706. [PMID: 37542464 DOI: 10.1021/acsami.3c06735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2023]
Abstract
Inspired by life's interaction networks, ongoing efforts are to increase complexity and responsiveness of multicomponent interactions in the system for sensing, programmable control, or information processing. Although exquisite preparation of single uniform-morphology nanomaterials has been extremely explored, the potential value of facile and one-pot preparation of multimorphology nanomaterials has been seriously ignored. Here, multimorphological silver nanomaterials (M-AgN) prepared by one pot can form interaction networks with various analytes, which can be successfully realized from multimode and multianalyte colorimetric sensing to molecular information technology (logic computing and security). The interaction of M-AgN with multianalytes not only induces multisignal responses (including color, absorbance, and wavelength shift) for sensing metal ions (Cr3+, Hg2+, and Ni2+) but also can controllably reshape its four morphologies (nanodots, nanoparticles, nanorods, and nanotriangles). By abstracting binary relationships between analytes and response signals, multicoding parallel logic operations (including simple logic gates and cascaded circuits) can be performed. In addition, taking advantage of natural concealment and molecular response characteristics of M-AgN nanosystems can also realize molecular information encoding, encryption, and hiding. This research not only promotes the construction and application of multinano interaction systems based on multimorphology and multicomponent nanoset but also provides a new imagination for the integration of sensing, logic, and informatization.
Collapse
Affiliation(s)
- Min Xia Quan
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Ying Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Qing Yu Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Zhen Qi Bu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| | - Jiao Yang Lu
- Hunan Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Academician Workstation, Changsha Medical University, Changsha 410219, PR China
| | - Wei Tao Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Microbial Molecular Biology, College of Life Science, Hunan Normal University, Changsha 410081, P. R. China
| |
Collapse
|
9
|
Fan H, Le Boeuf W, Maheshwari V. Au-Pt-Ni nanochains as dopamine catalysts: role of elements and their spatial distribution. NANOSCALE ADVANCES 2023; 5:2244-2250. [PMID: 37056628 PMCID: PMC10089120 DOI: 10.1039/d2na00932c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Multi-element materials can improve biosensing ability as each element can catalyze different steps in a reaction pathway. By combining Pt and Ni on self-assembled 1D gold nanochains and controlling their spatial distribution, a detailed understanding of each element's role in dopamine oxidation is developed. In addition, the developed synthesis process provides a simple way to fabricate multi-element composites for electrocatalytic applications based on electrical double-layer formation on the surface of charged nanoparticles. The performance parameters of the catalyst, such as its sensitivity, limit of detection, and range of operation for dopamine sensing, are optimized by changing the relative ratios of Pt : Ni and the morphology of the Pt and Ni domains, using the developed understanding. The morphology of the domains also affects the oxidation state of Ni, which is crucial to the performance of the electrocatalyst.
Collapse
Affiliation(s)
- Hua Fan
- Department of Chemistry, Waterloo Institute for Nanotechnology 200 University Ave. West Waterloo N2L 3G1 ON Canada
| | - William Le Boeuf
- Department of Chemistry, Waterloo Institute for Nanotechnology 200 University Ave. West Waterloo N2L 3G1 ON Canada
| | - Vivek Maheshwari
- Department of Chemistry, Waterloo Institute for Nanotechnology 200 University Ave. West Waterloo N2L 3G1 ON Canada
| |
Collapse
|
10
|
Tao Y, Sun L, Liu C, Yang G, Sun X, Zhang Q. Site-Selective Chiral Growth of Anisotropic Au Triangular Nanoplates for Tuning the Optical Chirality. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301218. [PMID: 37029697 DOI: 10.1002/smll.202301218] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Site-selective chiral growth of anisotropic nanoparticles is of great importance to realize the plasmonic nanostructures with delicate geometry and desired optical chirality; however, it remains largely unexplored. This work demonstrates a controlled site-selective chiral growth system based on the seed-mediated growth of anisotropic Au triangular nanoplates. The site-selective chiral growth involves two distinct underlying pathways, faceted growth and island growth, which are interswitchable upon maneuvering the interplay of chiral molecules, surfactants, and reducing agents. The pathway switch governs the geometric and chirality evolution of Au triangular nanoplates, giving rise to tailorable circular dichroism spectra. The ability to tune the optical chirality in a controlled manner by manipulating the site-selective chiral growth pathway opens up a promising strategy for exploiting chiral metamaterials with increasing architectural complexity in chiroptical applications.
Collapse
Affiliation(s)
- Yunlong Tao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Lichao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chuang Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Guizeng Yang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Xuehao Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Qingfeng Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
11
|
Zhong S, Hang L, Wen L, Zhang T, Cao A, Zeng P, Zhang H, Liu D, Cai W, Li Y. Rapid controllable synthesis of branched Au superparticles: formation mechanism of toggling the growth mode and their applications in optical broadband absorption. NANOSCALE ADVANCES 2023; 5:1776-1783. [PMID: 36926572 PMCID: PMC10012854 DOI: 10.1039/d3na00008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
We develop a tunable, ultrafast (5 seconds), and mass-producible seed-mediated synthesis method to prepare branched Au superparticles consisting of multiple small Au island-like nanoparticles by a wet chemical route. We reveal and confirm the toggling formation mechanism of Au superparticles between the Frank-van der Merwe (FM) growth mode and the Volmer-Weber (VW) growth mode. The key factor of this special structure is the frequent toggling between the FM (layer by layer) growth mode and the VW (island) growth mode induced by 3-aminophenol, which is continuously absorbed on the surface of newborn Au nanoparticles, leading to a relatively high surface energy during the overall synthesis process, thus achieving an island on island growth. Such Au superparticles demonstrate broadband absorption from visible to near-infrared regions due to their multiple plasmonic coupling and hence they have important applications in sensors, photothermal conversion and therapy, etc. We also exhibit the excellent properties of Au superparticles with different morphologies, such as NIR-II photothermal conversion and therapy and SERS detection. The photothermal conversion efficiency under 1064 nm laser irradiation was calculated to be as high as 62.6% and they exhibit robust photothermal therapy efficiency. This work provides insight into the growth mechanism of plasmonic superparticles and develops a broadband absorption material for highly efficient optical applications.
Collapse
Affiliation(s)
- Shichuan Zhong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital Guangzhou 518037 P. R. China
| | - Lulu Wen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Tao Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
- School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - An Cao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Pan Zeng
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Hanlin Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Dilong Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| |
Collapse
|
12
|
Kim J, Lee S, Son J, Kim J, Hilal H, Park M, Jung I, Nam JM, Park S. Plasmonic Cyclic Au Nanosphere Hexamers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205956. [PMID: 36464657 DOI: 10.1002/smll.202205956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Rational design of plasmonic colloidal assemblies via bottom-up synthesis is challenging but would show unprecedented optical properties that strongly relate to the assembly's shape and spatial arrangement. Herein, the synthesis of plasmonic cyclic Au nanosphere hexamers (PCHs) is reported, wherein six Au nanospheres (Au NSs) are connected via thin metal ligaments. By tuning Au reduction, six dangling Au NSs are interconnected with a core hexagon nanoplate (NPL). Then, Pt atoms are selectively deposited on the edges of the spheres. After etching of the core, necklace-like nanostructures of Pt framework are obtained. Deposition of Au is followed, leading to PCHs in high yield (≈90%). Notably, PCHs exhibit the combinatorial plasmonic characteristics of individual Au NSs and the in-plane coupling of the six linked Au NSs. They yield highly uniform, reproducible, and polarization-independent single-particle surface-enhanced Raman scattering signals, which are attributed to the 2-dimensional isotropic alignment of the Au NSs. Those are applied to a SERS-based immunoassay as quantitative and qualitative single particle SERS nanoprobes. This assay shows a low limit-of-detection, down to 100 pm, which is orders of magnitude lower than those based on Au NSs, and one order of magnitude lower than an assay using analogous particles of smooth Au nanorings.
Collapse
Affiliation(s)
- Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sungwoo Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jiwoong Son
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jieun Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Hajir Hilal
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Minsun Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
13
|
Niu G, Gao F, Wang Y, Zhang J, Zhao L, Jiang Y. Bimetallic Nanomaterials: A Promising Nanoplatform for Multimodal Cancer Therapy. Molecules 2022; 27:8712. [PMID: 36557846 PMCID: PMC9783205 DOI: 10.3390/molecules27248712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/25/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Bimetallic nanomaterials (BMNs) composed of two different metal elements have certain mixing patterns and geometric structures, and they often have superior properties than monometallic nanomaterials. Bimetallic-based nanomaterials have been widely investigated and extensively used in many biomedical fields especially cancer therapy because of their unique morphology and structure, special physicochemical properties, excellent biocompatibility, and synergistic effect. However, most reviews focused on the application of BMNs in cancer diagnoses (sensing, and imaging) and rarely mentioned the application of the treatment of cancer. The purpose of this review is to provide a comprehensive perspective on the recent progress of BNMs as therapeutic agents. We first introduce and discuss the synthesis methods, intrinsic properties (size, morphology, and structure), and optical and catalytic properties relevant to cancer therapy. Then, we highlight the application of BMNs in cancer therapy (e.g., drug/gene delivery, radiotherapy, photothermal therapy, photodynamic therapy, enzyme-mediated tumor therapy, and multifunctional synergistic therapy). Finally, we put forward insights for the forthcoming in order to make more comprehensive use of BMNs and improve the medical system of cancer treatment.
Collapse
Affiliation(s)
| | | | | | - Jie Zhang
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Li Zhao
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| | - Yanyan Jiang
- Key Laboratory for Liquid−Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
| |
Collapse
|
14
|
Core-satellite nanostructures and their biomedical applications. Mikrochim Acta 2022; 189:470. [DOI: 10.1007/s00604-022-05559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
15
|
Chen N, Wang Y, Song X, Li Y, Deng Z. Steering DNA Condensation on Engineered Nanointerfaces. NANO LETTERS 2022; 22:8550-8558. [PMID: 36315179 DOI: 10.1021/acs.nanolett.2c03051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
DNA has received increasing attention in nanotechnology due to its ability to fold into prescribed structures. Different from the commonly adopted base-pairing strategy, an emerging class of amorphous DNA materials are formed by DNA's abiological interactions. Despite the great successes, a lack of nanoscale nucleation/growth control disables more advanced considerations. This work aims at harnessing the heterogeneous nucleation of metal-ion-glued DNA condensates on nanointerfaces. Upon unveiling key orthogonal factors including solution pH, ionic cross-linkers, and surface functionalities, chemically programmable DNA condensation on nanoparticle seeds is achieved, resembling a famous Stöber process for silica coating. The nucleation rules discovered on individual nanoseeds can be passed on to their dimeric assemblies, where broken spherical symmetry and the existence of interparticle gaps help a regiospecific DNA gelation. The steerable DNA condensation, and the multifunctions from DNA, metal ions, and nanocores, hold a great promise in noncanonical DNA nanotechnology toward novel applications.
Collapse
Affiliation(s)
- Nuo Chen
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueliang Wang
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaojun Song
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanjuan Li
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhaoxiang Deng
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Zeng P, Hang L, Zhang G, Wang Y, Chen Z, Yu J, Zhang T, Cai W, Li Y. Atom Absorption Energy Directed Symmetry-Breaking Synthesis of Au-Ag Hierarchical Nanostructures and Their Efficient Photothermal Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204748. [PMID: 36180406 DOI: 10.1002/smll.202204748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Asymmetric plasmonic hierarchical nanostructures (HNs) are of great significance in optics, catalysis, and sensors, but the complex growth kinetics and lack of fine structure design limit their practical applications. Herein, a new atom absorption energy strategy is developed to achieve a series of Au-Ag HNs with the continuously tuned contact area in Janus and Ag island number/size on Au seeds. Different from the traditional passive growth mode, this strategy endows seed with a hand to capture the hetero atoms in a proactive manner, which is beyond the size, shape, and assembles of Au seed. Density functional theory reveals ththe adsorption of PDDA on Au surface leads to lower formation energy of Au-Ag bonds (-3.96 eV) than FSDNA modified Au surface (-2.44 eV). The competitive adsorption of two ligands on Au seed is the decisive factor for the formation of diverse Au-Ag HNs. In particular, the Au-Ag2 HNs exhibit outstanding photothermal conversion capability in the near-infrared window, and in vivo experiments verify them as superior photothermal therapy agents. This work highlights the importance of the atom absorption energy strategy in unlocking the diversity of HNs and may push the synthesis and application of superstructures to a higher level.
Collapse
Affiliation(s)
- Pan Zeng
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, 518037, P. R. China
| | - Guofeng Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yifan Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhiming Chen
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Yu
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Tao Zhang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Weiping Cai
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
| | - Yue Li
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
17
|
Zhang Y, Dong W, Wang Y, Wu Q, Yi C, Yang Y, Xu Y, Nie Z. Synthesis of Patchy Nanoparticles with Symmetry Resembling Polar Small Molecules. SMALL METHODS 2022; 6:e2200545. [PMID: 35869619 DOI: 10.1002/smtd.202200545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Patchy nanoparticles (NPs) show many important applications, especially for constructing structurally complex colloidal materials, but existing synthetic strategies generate patchy NPs with limited types of symmetry. This article describes a versatile copolymer ligand-based strategy for the scalable synthesis of uniform Au-(SiO2 )x patchy NPs (x is the patch number and 1 ≤ x ≤ 5) with unusual symmetry at high yield. The hydrolysis and condensation of tetraethyl orthosilicate on block-random copolymer ligands induces the segregation of copolymers on gold NPs (AuNPs) and hence governs the structure and distribution of silica patches formed on the AuNPs. The resulting patchy NPs possess unique configurations where the silica patches are symmetrically arranged at one side of the core NP, resembling the geometry of polar small molecules. The number, size, and morphology of silica patches, as well as the spacing between the patches and the AuNP can be precisely tuned by tailoring copolymer architectures, grafting density of copolymers, and the size of AuNPs. Furthermore, it is demonstrated that the Au-(SiO2 )x patchy NPs can assemble into more complex superstructures through directional interaction between the exposed Au surfaces. This work offers new opportunities of designing next-generation complex patchy NPs for applications in such as biomedicines, self-assembly, and catalysis.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Wenhao Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Yazi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Qi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Yiqun Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Yifei Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu City, Zhejiang, 322000, P. R. China
| |
Collapse
|
18
|
Zhao N, Wu S, Wang Y, Liu F, Ma Y, Zhang H, Liu M, Zheng Y. Fabrication of Gold-Based "Sphere-on-Plate" Hybrid Nanostructures with Dual Plasmonic Absorptions Covering Visible and Near-Infrared II Windows via the Volmer-Weber Growth Mode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9669-9677. [PMID: 35880311 DOI: 10.1021/acs.langmuir.2c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report a synthetic strategy to create gold(Au)-based "sphere-on-plate" hybrid nanostructures (SPHNSs). The surface doping of plate-like Au seeds with Pt/Ag atoms is found to be crucial to increase the lattice spacing, inducing island-like deposition of Au atoms via the Volmer-Weber growth mode. The resulting products are featured with the morphology that quasi-spherical nanoparticles are scattered over the nanoplates. Due to the presence of two distinctly dimensioned particles in one entity, the current Au-based SPHNSs exhibit unique dual plasmonic absorptions, where the visible absorbance centered at 546 nm is related to the size of the anchored particles. Arising from such a plasmonic advantage, the Au-based SPHNSs exhibit enhancement in photothermal conversion under laser irradiations at the wavelengths of both 808 and 1064 nm. The current work offers a feasible route to fabricate noble metal hybrid nanostructures involving zero-dimensional (0D) and two-dimensional (2D) structures, which could work as promising materials for photothermal conversion.
Collapse
Affiliation(s)
- Na Zhao
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu 273155, Shandong, China
| | - Shiyue Wu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yi Wang
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Feng Liu
- International Research Center for Renewable Energy, National Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yanyun Ma
- Institute of Functional Nano&Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Haifeng Zhang
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu 273155, Shandong, China
| | - Maochang Liu
- International Research Center for Renewable Energy, National Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Yiqun Zheng
- School of Chemistry, Chemical Engineering, and Materials, Jining University, Qufu 273155, Shandong, China
| |
Collapse
|
19
|
Kim J, Hilal H, Haddadnezhad M, Lee J, Park W, Park W, Lee JW, Jung I, Park S. Plasmonic All-Frame-Faceted Octahedral Nanoframes with Eight Engraved Y-Shaped Hot Zones. ACS NANO 2022; 16:9214-9221. [PMID: 35446559 DOI: 10.1021/acsnano.2c01543] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report the synthesis of all-frame-faceted octahedral nanoframes containing eight Y-shaped hot zones in a single entity where electromagnetic near-field focusing can be maximized. To realize such state-of-the-art complex nanoframes, a series of multiple stepwise bottom-up processes were executed by exploiting Au octahedral nanoparticles as the initial template. By rationally controlling the chemical reactivity of different surface facets (i.e., vertexes, edges, and terraces), the Au octahedral nanoparticles went through controlled shape transformations, leading to Au-engraved nanoparticles wherein 24 edges wrap the octahedral Au nanoparticle core. Those edges were then selectively decorated with Pt, leading to the formation of eight Pt tripods in a single entity. After etching the central Au, 3D Pt tripod frame-faceted octahedral nanoframes were achieved with high integrity. By harnessing the obtained Pt nanoframes as a scaffold, AuAg alloy-based plasmonic all-frame-faceted nanoframes were obtained after the co-reduction of Ag and Au, which generated multiple hot zones within multiple surface intra-nanogaps, creating a single-particle, surface-enhanced Raman spectroscopy enhancer platform.
Collapse
Affiliation(s)
- Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hajir Hilal
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Jaewon Lee
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Woocheol Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| | - Woongkyu Park
- Medical & Bio Photonics Research Center, Korea Photonics Technology Institute (KOPTI), Gwangju 61007, South Korea
| | - Joong-Wook Lee
- Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University. Gwangju 61186, South Korea
| | - Insub Jung
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
- Institute of Basic Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
20
|
Twinned-Au-tip-induced growth of plasmonic Au-Cu Janus nanojellyfish in upconversion luminescence enhancement. J Colloid Interface Sci 2022; 624:196-203. [PMID: 35660888 DOI: 10.1016/j.jcis.2022.05.143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/15/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
Abstract
The metallic Janus nanoparticle is an emerging plasmonic nanostructure that has attracted attention in the fields of materials science and nanophotonics. The instability of the Cu nanostructure leads to very complex nucleation and growth kinetics, and synthesis of Cu Janus nanoparticle has challenges. Here, we report a new method for synthesis of Au-Cu Janus nanojellyfish (JNF) by using twinned tips of Au nanoflower (NF) as seeds. The twinned nanotip of the Au NF and the large lattice mismatch between Au and Cu can induce formation of twin defects during the growth process, resulting in asymmetric deposition of Cu atoms. The symmetry-breaking using different sizes of Au NF and Cu nanodomains within the Au-Cu JNF can controllably change the localized surface plasmon resonance (LSPR) modes. The asymmetric Au-Cu JNF can induce plasmon coupling between dipolar and multipolar modes, which leads to clear electric-field enhancement in the near-infrared region. An Au-Cu JNF with multiple LSPR modes was chosen to simultaneously match the excitation and emission bands of the lanthanide-doped upconversion nanoparticles (UCNPs). A 5000-fold enhancement of the upconversion luminescence was achieved by using single plasmonic Au-Cu JNF. The Au-Cu JNF can also provide a guide for new metallic Janus nanoparticles in the fields of plasmonic, photothermal conversion, and nanomotors.
Collapse
|
21
|
Duan H, Malesky T, Wang J, Liu CH, Tan H, Nieh MP, Lin Y, He J. Patchy metal nanoparticles with polymers: controllable growth and two-way self-assembly. NANOSCALE 2022; 14:7364-7371. [PMID: 35535972 DOI: 10.1039/d2nr01221a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a new design of polymer-patched gold nanoparticles (AuNPs) with controllable interparticle interactions in terms of their direction and strength. Patchy AuNPs (pAuNPs) are prepared through hydrophobicity-driven surface dewetting under deficient ligand exchange conditions. Using the exposed surface on pAuNPs as seeds, a highly controllable growth of AuNPs is carried out via seed-mediated growth while retaining the size of polymer domains. As guided by ligands, these pAuNPs can self-assemble directionally in two ways along the exposed surface (head-to-head) or the polymer-patched surface of pAuNPs (tail-to-tail). Control of the surface asymmetry/coverage on pAuNPs provides an important tool in balancing interparticle interactions (attraction vs. repulsion) that further tunes assembled nanostructures as clusters and nanochains. The self-assembly pathway plays a key role in determining the interparticle distance and therefore plasmon coupling of pAuNPs. Our results demonstrate a new paradigm in the directional self-assembly of anisotropic building blocks for hierarchical nanomaterials with interesting optical properties.
Collapse
Affiliation(s)
- Hanyi Duan
- Polymer Program, University of Connecticut, Storrs, CT 06269, USA.
| | - Tessa Malesky
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Janet Wang
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Chung-Hao Liu
- Polymer Program, University of Connecticut, Storrs, CT 06269, USA.
| | - Haiyan Tan
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Mu-Ping Nieh
- Polymer Program, University of Connecticut, Storrs, CT 06269, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yao Lin
- Polymer Program, University of Connecticut, Storrs, CT 06269, USA.
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Jie He
- Polymer Program, University of Connecticut, Storrs, CT 06269, USA.
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
22
|
Zhong Q, Feng J, Jiang B, Fan Y, Zhang Q, Chen J, Yin Y. Strain-Modulated Seeded Growth of Highly Branched Black Au Superparticles for Efficient Photothermal Conversion. J Am Chem Soc 2021; 143:20513-20523. [PMID: 34812625 DOI: 10.1021/jacs.1c11242] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Creating highly branched plasmonic superparticles can effectively induce broadband light absorption and convert light to heat regardless of the light wavelength, angle, and polarization. However, their direct synthesis in a controllable manner remains a significant challenge. In this work, we propose a strain modulation strategy to produce branched Au nanostructures that promotes the growth of Au on Au seeds in the Volmer-Weber (island) mode instead of the typical Frank-van der Merwe (layer-by-layer) mode. The key to this strategy is to continuously deposit polydopamine formed in situ on the growing surface of the seeds to increase the chemical potential of the subsequent deposition of Au, thus achieving continuous heterogeneous nucleation and growth. The branched Au superparticles exhibit a photothermal conversion efficiency of 91.0% thanks to their small scattering cross-section and direction-independent absorption. Even at a low light power of 0.5 W/cm2 and a low dosage of 25 ppm, these particles show an excellent efficacy in photothermal cancer therapy. This work provides the fundamental basis for designing branched plasmonic nanostructures and expands the application scope of the plasmonic photothermal effect.
Collapse
Affiliation(s)
- Qixuan Zhong
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P.R. China.,Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P.R. China.,Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Ji Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Bo Jiang
- Department of Chemistry, University of California, Riverside, California 92521, United States.,CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, P.R. China
| | - Yulong Fan
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, P.R. China
| | - Qiao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P.R. China.,Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P.R. China.,Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P.R. China.,Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P.R. China.,Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|