1
|
Qiang Q, Luo Q, Wang H, Tian S, Su W, He H, Yang H, Li C, Zhang T. One-Pot Production of Cinnamonitriles from Lignin β-O-4 Segments Induced by Selective Oxidation of the γ-OH Group. J Org Chem 2024; 89:18424-18435. [PMID: 39655613 DOI: 10.1021/acs.joc.4c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The construction of N-containing aromatic compounds from lignin is of great importance to expanding the boundary of the biorefinery and meeting the demand for value-added biorefinery. However, it remains a huge challenge due to the complex lignin structure and the incompatible catalysis for C-O/C-C bond cleavage and C-N formation. Herein, sustainable synthesis of cinnamonitrile derivatives from lignin β-O-4 model compounds in the presence of 2,2,6,6-tetramethylpiperidine oxide (TEMPO), (diacetoxyiodo)benzene (BAIB), and a strong base has been achieved in a one-pot, two-step fashion under transition-metal-free conditions. Mechanistic studies suggest that this transformation starts from selective oxidation of Cγ-OH of the β-O-4 model compound, followed by retro-aldol condensation, resulting in the cleavage of the Cα-Cβ bond to afford veratraldehyde. Whereafter, the aldol condensation reaction allows coupling of veratraldehyde with nitriles to provide cinnamonitriles. With this protocol, 3,4-dimethoxycinnamonitrile and 3,4-dimethoxyphenyl-2-phenylacrylonitrile were synthesized from lignin β-O-4 model compounds and showed good antibacterial or antifungal activity, showcasing the application potential of lignin in pharmaceutical synthesis.
Collapse
Affiliation(s)
- Qian Qiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shenglong Tian
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wentao Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan He
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huamei Yang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Huang H, Liu S, Guo X, Jiang H, Cai Y, Tan Z, Zhou G, Cai X, Zhuang M, Xie S. Sustainable ammonia and amines from chitin. BIORESOURCE TECHNOLOGY 2024; 414:131582. [PMID: 39384048 DOI: 10.1016/j.biortech.2024.131582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/05/2024] [Accepted: 10/06/2024] [Indexed: 10/11/2024]
Abstract
Efforts are underway to explore alternative methods to the Haber-Bosch process for sustainable ammonia production, while the potential for ammonia extraction from natural nitrogenous biomass is under-exploited. Here, a synergistic catalytic strategy involving acid and modified Ru-based catalysts is communicated for the direct production of amines and ammonia from chitin. Phosphoric acid promotes the cleavage of ether bonds in biomass polymers and also serves to protect amino groups from being removed. Selective hydrogenation, deoxygenation, and amination can be achieved by controllably adjusting the ratio of Ru0/Run+. The utilization of nitrogen atoms in chitin can reach up to 95 % (21 % amines, 74 % ammonium), and the catalytic process is applicable to waste shrimp shells. This study demonstrates the possibility of efficient production of nitrogen-containing compounds from abundant biopolymers.
Collapse
Affiliation(s)
- Hao Huang
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shengyao Liu
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xucong Guo
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Huoyan Jiang
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Yihong Cai
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Zixuan Tan
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Guangping Zhou
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Xiaolan Cai
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Min Zhuang
- Analysis and Test Center, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Shaoqu Xie
- School of Light Industry and Chemical Engineering, Guangdong University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, PR China.
| |
Collapse
|
3
|
Li Y, Li J, Ren B, Cheng H. Conversion of Lignin to Nitrogenous Chemicals and Functional Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5110. [PMID: 39459814 PMCID: PMC11509642 DOI: 10.3390/ma17205110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Lignin has long been regarded as waste, readily separated and discarded from the pulp and paper industry. However, as the most abundant aromatic renewable biopolymer in nature, lignin can replace petroleum resources to prepare chemicals containing benzene rings. Therefore, the high-value transformation of lignin has attracted the interest of both academia and industry. Nitrogen-containing compounds and functionalized materials are a class of compounds that have wide applications in chemistry, materials science, energy storage, and other fields. Converting lignin into nitrogenous chemicals and materials is a high-value utilization pathway. Currently, there is a large amount of literature exploring the conversion of lignin. However, a comprehensive review of the transformation of lignin to nitrogenous compounds is lacking. The research progress of lignin conversion to nitrogenous chemicals and functional materials is reviewed in this article. This article provides an overview of the chemical structure and types of industrial lignin, methods of lignin modification, as well as nitrogen-containing chemicals and functional materials prepared from various types of lignin, including their applications in wastewater treatment, slow-release fertilizer, adhesive, coating, and biomedical fields. In addition, the challenges and limitations of nitrogenous lignin-based materials encountered during the development of applications are also discussed. It is believed that this review will act as a key reference and inspiration for researchers in the biomass and material field.
Collapse
Affiliation(s)
- Yan Li
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China; (Y.L.); (B.R.)
| | - Jingrong Li
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| | - Bo Ren
- Jilin Provincial Key Laboratory of Straw-Based Functional Materials, Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun 130052, China; (Y.L.); (B.R.)
| | - Haiyang Cheng
- Jilin Province Key Laboratory of Green Chemistry and Process, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China;
| |
Collapse
|
4
|
Luan S, Wu W, Zheng B, Wu Y, Dong M, Shen X, Wang T, Deng Z, Zhang B, Chen B, Xing X, Wu H, Liu H, Han B. Atomically dispersed cobalt catalysts for tandem synthesis of primary benzylamines from oxidized β-O-4 segments. Chem Sci 2024; 15:10954-10962. [PMID: 39027282 PMCID: PMC11253118 DOI: 10.1039/d4sc01813c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/27/2024] [Indexed: 07/20/2024] Open
Abstract
This work presents an innovative approach focusing on fine-tuning the coordination environment of atomically dispersed cobalt catalysts for tandem synthesis of primary benzylamines from oxidized lignin model compounds. By meticulously regulating the Co-N coordination environment, the activity of these catalysts in the hydrogenolysis and reductive amination reactions was effectively controlled. Notably, our study demonstrates that, in contrast to cobalt nanoparticle catalysts, atomically dispersed cobalt catalysts exhibit precise control of the sequence of hydrogenolysis and reductive amination reactions. Particularly, the CoN3 catalyst with a triple Co-N coordination number achieved a remarkable 94% yield in the synthesis of primary benzylamine. To our knowledge, there is no previous documentation of the synthesis of primary benzylamines from lignin dimer model compounds. Our study highlights a promising one-pot route for sustainable production of nitrogen-containing aromatic chemicals from lignin.
Collapse
Affiliation(s)
- Sen Luan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Bingxiao Zheng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Functional Polymer Materials R&D and Engineering Application Technology Innovation Center of Hebei, XingTai University Xingtai Hebei 050041 China
| | - Yuxuan Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Minghua Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiaojun Shen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University Beijing 100083 China
| | - Tianjiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Zijie Deng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
| | - Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Xueqing Xing
- Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences Beijing 100049 China
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid and Interface and Thermodynamics, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
5
|
Ji X, Zhao Y, Lui MY, Mika LT, Chen X. Catalytic conversion of chitin-based biomass to nitrogen-containing chemicals. iScience 2024; 27:109857. [PMID: 38784004 PMCID: PMC11112376 DOI: 10.1016/j.isci.2024.109857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
The exploration of renewable alternatives to fossil fuels for chemical production is indispensable to achieve the ultimate goals of sustainable development. Chitin biomass is an abundant platform feedstock that naturally bears both nitrogen and carbon atoms to produce nitrogen-containing chemicals (including organonitrogen ones and inorganic ammonia). The expansion of biobased chemicals toward nitrogen-containing ones can elevate the economic competitiveness and benefit the biorefinery scheme. This review aims to provide an up-to-date summary on the overall advances of the chitin biorefinery for nitrogen-containing chemical production, with an emphasis on the design of the catalytic systems. Catalyst design, solvent selection, parametric effect, and reaction mechanisms have been scrutinized for different transformation strategies. Future prospectives on chitin biorefinery have also been outlined.
Collapse
Affiliation(s)
- Xinlei Ji
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, China
| | - Yufeng Zhao
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, China
| | - Matthew Y. Lui
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon, Hong Kong
| | - László T. Mika
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - Xi Chen
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, China
| |
Collapse
|
6
|
Li X, Ma R, Gao X, Li H, Wang S, Song G. Harnessing Atomically Dispersed Cobalt for the Reductive Catalytic Fractionation of Lignocellulose. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310202. [PMID: 38493491 PMCID: PMC11165530 DOI: 10.1002/advs.202310202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/01/2024] [Indexed: 03/19/2024]
Abstract
The reductive catalytic fractionation (RCF) of lignocellulose, considering lignin valorization at design time, has demonstrated the entire utilization of all lignocellulose components; however, such processes always require catalysts based on precious metals or high-loaded nonprecious metals. Herein, the study develops an ultra-low loaded, atomically dispersed cobalt catalyst, which displays an exceptional performance in the RCF of lignocellulose. An approximately theoretical maximum yield of phenolic monomers (48.3 wt.%) from lignin is realized, rivaling precious metal catalysts. High selectivity toward 4-propyl-substituted guaiacol/syringol facilitates their purification and follows syntheses of highly adhesive polyesters. Lignin nanoparticles (LNPs) are generated by simple treatment of the obtained phenolic dimers and oligomers. RCF-resulted carbohydrate pulp are more obedient to enzymatic hydrolysis. Experimental studies on lignin model compounds reveal the concerted cleavage of Cα-O and Cβ-O pathway for the rupture of β-O-4 structure. Overall, the approach involves valorizing products derived from lignin biopolymer, providing the opportunity for the comprehensive utilization of all components within lignocellulose.
Collapse
Affiliation(s)
- Xiancheng Li
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Rumin Ma
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Xueying Gao
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijing100084China
| | - Helong Li
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Shuizhong Wang
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| | - Guoyong Song
- State Key Laboratory of Efficient Production of Forest ResourcesBeijing Key Laboratory of Lignocellulosic ChemistryBeijing Forestry UniversityBeijing100083China
| |
Collapse
|
7
|
Li G, Wang R, Pang J, Wang A, Li N, Zhang T. Production of Renewable Hydrocarbon Biofuels with Lignocellulose and Its Derivatives over Heterogeneous Catalysts. Chem Rev 2024; 124:2889-2954. [PMID: 38483065 DOI: 10.1021/acs.chemrev.2c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
In recent years, the issues of global warming and CO2 emission reduction have garnered increasing global attention. In the 21st Conference of the Parties (convened in Paris in 2015), 179 nations and the European Union signed a pivotal agreement to limit the global temperature increase of this century to well below 2 K above preindustrial levels. To fulfill this objective, extensive research has been conducted to use renewable energy sources as potential replacements for traditional fossil fuels. Among them, the production of hydrocarbon transportation fuels from CO2-neutral and renewable biomass has proven to be a particularly promising solution due to its compatibility with existing infrastructure. This review systematically summarizes research progress in the synthesis of liquid hydrocarbon biofuels from lignocellulose during the past two decades. Based on the chemical structure (including n-paraffins, iso-paraffins, aromatics, and cycloalkanes) of hydrocarbon transportation fuels, the synthesis pathways of these biofuels are discussed in four separate sections. Furthermore, this review proposes three guiding principles for the design of practical hydrocarbon biofuels, providing insights into future directions for the development of viable biomass-derived liquid fuels.
Collapse
Affiliation(s)
- Guangyi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ran Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Sinopec Beijing Research Institute of Chemical Industry Yanshan Branch, Beijing 102500, China
| | - Jifeng Pang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Aiqin Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ning Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
8
|
Zhu W, Shi Y, Lu J, Han F, Luo W, Xu D, Guo T, Huang G, Kühn FE, Zhang B, Zhang T. Sustainable production of triazoles from lignin major motifs. CHEMSUSCHEM 2024; 17:e202301421. [PMID: 38102854 DOI: 10.1002/cssc.202301421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
An efficiently catalyzed synthesis of pharmaceutically relevant 1,2,3-trazoles from renewable resources is highly desirable. However, due to incompatible catalysis conditions, this endeavor remained challenging so far. Herein, a practical access protocol to 1,2,3-triazoles, starting from lignin phenolic β-O-4 with γ-OH group utilizing a vanadium-based catalyst is presented. A broad substrate scope reaching up to 97 % yield of 1,2,3-triazoles are obtained. The reaction pathway includes selective cleavage of double C-O bonds, cycloaddition, and dehydrogenation. Mechanistic studies and density-functional theory (DFT) calculations suggest that the V-based complex acts as a bifunctional catalyst for both selective C-O bonds cleavage and dehydrogenation. This synthetic pathway has been applied for the synthesis of pharmacological and biological active carbohydrate derivatives starting from biomass components as feedstock, enabling a potential sustainable route to triazolyl carbohydrate derivatives, which paves the way for lignin-based heterocyclic aromatics in the pharmaceutical applications.
Collapse
Affiliation(s)
- Wenqing Zhu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Shi
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Jinfei Lu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fengan Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wenhao Luo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot, 010021, China
| | - Dezhu Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tenglong Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Fritz E Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, D - 85748, Garching bei München
| | - Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
9
|
Zheng W, Feng S, Hu C. Production of Oximes Directly from Sustainable Lignocellulose-Derived Aldehydes and Ammonia over HTS-1 Catalyst. CHEMSUSCHEM 2024; 17:e202301364. [PMID: 37889199 DOI: 10.1002/cssc.202301364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 10/28/2023]
Abstract
Oxime chemicals are the building blocks of many anticancer drugs and widely used in industry and laboratory. A simple but robust hierarchically porous zeolite (HTS-1) catalyst was prepared by hydrothermal methods and used for the preparation of vanillin oxime from vanillin in NH3 ⋅ H2 O/DIO (v/v 1/10) system. The results of the catalyst characterization showed that the larger pore size and more framework Ti were conducive to promote the transformation of the substrates. The conversion of vanillin and the yield of vanillin oxime were both higher than 99 % under optimized reaction conditions. It was found that the reaction proceeded by oxidation of NH3 to hydroxylamine (NH2 OH), and oximation of hydroxylamine with vanillin to obtain vanillin oxime, where the rate-controlling step was the hydroxylamine formation, and the apparent activation energy was 26.22 kJ/mol. The corresponding oximation products could also be obtained by extending this method to other compounds derived from lignin. Furthermore, the catalytic system was used directly to the conversion of birch biomass to obtain oxime products such as vanillin oxime, syringaldehyde oxime, and furfural oxime etc. This work might give insights into the sustainable production of N-containing high-value products from lignocellulose.
Collapse
Affiliation(s)
- Wanping Zheng
- Key laboratory of green chemistry and Technology Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Shanshan Feng
- Key laboratory of green chemistry and Technology Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| | - Changwei Hu
- Key laboratory of green chemistry and Technology Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, P. R. China
| |
Collapse
|
10
|
Li Y, Wen J, Wu S, Luo S, Ma C, Li S, Chen Z, Liu S, Tian B. Photocatalytic Conversion of Lignin Models into Functionalized Aromatic Molecules Initiated by the Proton-Coupled Electron Transfer Process. Org Lett 2024; 26:1218-1223. [PMID: 38319139 DOI: 10.1021/acs.orglett.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A mild and efficient method for lignin β-O-4 cleavage and functionalization was achieved via photocatalysis. This protocol exhibits a broad scope of lignin models and excellent compatibility of functionalization reagents, constructing a series of functionalized lignin-based aromatic compounds. Highly selective formation of alkyl radical species through a proton-coupled electron transfer and β-scission process provides the opportunity to form new C-C and C-N bonds by reaction with electrophilic reagents.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Jingya Wen
- Appraisal Center for Environment & Engineering, Ministry of Ecology and Environment, Beijing 100041, People's Republic of China
| | - Simeng Wu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Sha Luo
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Chunhui Ma
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Shujun Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| | - Bing Tian
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, Heilongjiang 150040, People's Republic of China
| |
Collapse
|
11
|
Xu L, Cao M, Zhou J, Pang Y, Li Z, Yang D, Leu SY, Lou H, Pan X, Qiu X. Aqueous amine enables sustainable monosaccharide, monophenol, and pyridine base coproduction in lignocellulosic biorefineries. Nat Commun 2024; 15:734. [PMID: 38272912 PMCID: PMC10810809 DOI: 10.1038/s41467-024-45073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/10/2024] [Indexed: 01/27/2024] Open
Abstract
Thought-out utilization of entire lignocellulose is of great importance to achieving sustainable and cost-effective biorefineries. However, there is a trade-off between efficient carbohydrate utilization and lignin-to-chemical conversion yield. Here, we fractionate corn stover into a carbohydrate fraction with high enzymatic digestibility and reactive lignin with satisfactory catalytic depolymerization activity using a mild high-solid process with aqueous diethylamine (DEA). During the fractionation, in situ amination of lignin achieves extensive delignification, effective lignin stabilization, and dramatically reduced nonproductive adsorption of cellulase on the substrate. Furthermore, by designing a tandem fractionation-hydrogenolysis strategy, the dissolved lignin is depolymerized and aminated simultaneously to co-produce monophenolics and pyridine bases. The process represents the viable scheme of transforming real lignin into pyridine bases in high yield, resulting from the reactions between cleaved lignin side chains and amines. This work opens a promising approach to the efficient valorization of lignocellulose.
Collapse
Affiliation(s)
- Li Xu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Meifang Cao
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Jiefeng Zhou
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yuxia Pang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhixian Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Dongjie Yang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Shao-Yuan Leu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Hongming Lou
- Guangdong Provincial Key Lab of Green Chemical Product Technology, State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, China.
| | - Xuejun Pan
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Liu SC, Shi T, He ZJ, Chen K, Liu ZH, Li BZ, Yuan YJ. Ethylenediamine pretreatment simultaneously improved carbohydrate hydrolysis and lignin valorization. BIORESOURCE TECHNOLOGY 2023; 386:129552. [PMID: 37499927 DOI: 10.1016/j.biortech.2023.129552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Lignocellulosic biomass (LCB) is the promising feedstock for value-added products, which would contribute to the bioeconomy and sustainable development. The efficient pretreatment is still required in the biorefinery of LCB. To make a simultaneous utilization of carbohydrates and lignin, a novel easy-recycled ethylenediamine (EDA) pretreatment was designed and evaluated in the present study. The results highlighted that this pretreatment yielded 96% glucose and 70% xylose in enzymatic hydrolysis. It simultaneously promoted the depolymerization of lignin into small molecules and functionalized the yielded lignin with Schiff base and amide structures. These animated-lignins showed a pH-responsive behavior and the excellent flocculation capacity by reducing more than 90% turbidity of kaolin suspensions. Therefore, easy-recycled EDA pretreatment hold the promise to simultaneously enhance the enzymatic hydrolysis of carbohydrates and endowed the new functionality of lignin toward downstream valorization, which improved the process feasibility and potentially enable the sustainability of LCB utilization.
Collapse
Affiliation(s)
- Shi-Chang Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Tao Shi
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Zi-Jing He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Kai Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, China
| |
Collapse
|
13
|
Guo T, Lin Y, Pan D, Zhang X, Zhu W, Cai XM, Huang G, Wang H, Xu D, Kühn FE, Zhang B, Zhang T. Towards bioresource-based aggregation-induced emission luminogens from lignin β-O-4 motifs as renewable resources. Nat Commun 2023; 14:6076. [PMID: 37770462 PMCID: PMC10539282 DOI: 10.1038/s41467-023-41681-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/14/2023] [Indexed: 09/30/2023] Open
Abstract
One-pot synthesis of heterocyclic aromatics with good optical properties from phenolic β-O-4 lignin segments is of high importance to meet high value added biorefinery demands. However, executing this process remains a huge challenge due to the incompatible reaction conditions of the depolymerization of lignin β-O-4 segments containing γ-OH functionalities and bioresource-based aggregation-induced emission luminogens (BioAIEgens) formation with the desired properties. In this work, benzannulation reactions starting from lignin β-O-4 moieties with 3-alkenylated indoles catalyzed by vanadium-based complexes have been successfully developed, affording a wide range of functionalized carbazoles with up to 92% yield. Experiments and density functional theory calculations suggest that the reaction pathway involves the selective cleavage of double C-O bonds/Diels-Alder cycloaddition/dehydrogenative aromatization. Photophysical investigations show that these carbazole products represent a class of BioAIEgens with twisted intramolecular charge transfer. Distinctions of emission behavior were revealed based on unique acceptor-donor-acceptor-type molecular conformations as well as molecular packings. This work features lignin β-O-4 motifs with γ-OH functionalities as renewable substrates, without the need to apply external oxidant/reductant systems. Here, we show a concise and sustainable route to functional carbazoles with AIE properties, building a bridge between lignin and BioAIE materials.
Collapse
Affiliation(s)
- Tenglong Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuting Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Deng Pan
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China
| | - Xuedan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenqing Zhu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xu-Min Cai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Genping Huang
- Department of Chemistry, School of Science and Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin, 300072, China.
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dezhu Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fritz E Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748, Garching bei München, Germany
| | - Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
14
|
Guo L, Ding Y, Wang H, Liu Y, Qiang Q, Luo Q, Song F, Li C. Imidazo[1,2-a]pyridine derivatives synthesis from lignin β-O-4 segments via a one-pot multicomponent reaction. iScience 2023; 26:106834. [PMID: 37250767 PMCID: PMC10209544 DOI: 10.1016/j.isci.2023.106834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/01/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023] Open
Abstract
The catalytic conversion of lignin into N-containing chemicals is of great significance for the realization of value-added biorefinery concept. In this article, a one-pot strategy was designed for the transformation of lignin β-O-4 model compounds to imidazo[1,2-a]pyridines in yields up to 95% using 2-aminopyridine as a nitrogen source. This transformation involves highly coupled cleavage of C-O bonds, sp3C-H bond oxidative activation, and intramolecular dehydrative coupling reaction to construction of N-heterobicyclic ring. With this protocol, a wide range of functionalized imidazo[1,2-a]pyridines sharing the same structure skeleton as those commercial drug molecules, such as Zolimidine, Alpidem, Saripidem, etc., were synthesized from different lignin β-O-4 model compounds and one β-O-4 polymer, emphasizing the application feasibility of lignin derivatives in N-heterobicyclic pharmaceutical synthesis.
Collapse
Affiliation(s)
- Luxian Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangming Ding
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yuxuan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qian Qiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Fei Song
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Qin J, Han B, Lu X, Nie J, Xian C, Zhang Z. Biomass-Derived Single Zn Atom Catalysts: The Multiple Roles of Single Zn Atoms in the Oxidative Cleavage of C-N Bonds. JACS AU 2023; 3:801-812. [PMID: 37006771 PMCID: PMC10052240 DOI: 10.1021/jacsau.2c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 06/19/2023]
Abstract
The C-N bond cleavage represents one kind of important organic and biochemical transformation, which has attracted great interest in recent years. The oxidative cleavage of C-N bonds in N,N-dialkylamines into N-alkylamines has been well documented, but it is challenging in the further oxidative cleavage of C-N bonds in N-alkylamines into primary amines due to the thermally unfavorable release of α-position H from N-Cα-H and the paralleling side reactions. Herein, a biomass-derived single Zn atom catalyst (ZnN4-SAC) was discovered to be a robust heterogeneous non-noble catalyst for the oxidative cleavage of C-N bonds in N-alkylamines with O2 molecules. Experimental results and DFT calculation revealed that ZnN4-SAC not only activates O2 to generate superoxide radicals (·O2 -) for the oxidation of N-alkylamines to generate imine intermediates (C=N), but the single Zn atoms also served as the Lewis acid sites to promote the cleavage of C=N bonds in imine intermediates, including the first addition of H2O to generate α-hydroxylamine intermediates and the following C-N bond cleavage via a H atom transfer process.
Collapse
Affiliation(s)
- Jingzhong Qin
- School
of Chemistry and Materials Science, South-Central
Minzu University, Wuhan, Hubei 430074, P. R. China
| | - Bo Han
- Sustainable
Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
| | - Xiaomei Lu
- School
of Chemistry and Materials Science, South-Central
Minzu University, Wuhan, Hubei 430074, P. R. China
| | - Jiabao Nie
- School
of Chemistry and Materials Science, South-Central
Minzu University, Wuhan, Hubei 430074, P. R. China
| | - Chensheng Xian
- School
of Chemistry and Materials Science, South-Central
Minzu University, Wuhan, Hubei 430074, P. R. China
| | - Zehui Zhang
- School
of Chemistry and Materials Science, South-Central
Minzu University, Wuhan, Hubei 430074, P. R. China
| |
Collapse
|
16
|
Su S, Shen Q, Wang S, Song G. Discovery, disassembly, depolymerization and derivatization of catechyl lignin in Chinese tallow seed coats. Int J Biol Macromol 2023; 239:124256. [PMID: 36996963 DOI: 10.1016/j.ijbiomac.2023.124256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/21/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
The search for feedstock of catechyl lignin (C-lignin) is great interest and importance, as C-lignin featuring homogeneity and linearity is considered as an "ideal lignin" archetype for valorization and exits in only a few plant seed coats. In this study, naturally occurring C-lignin is first discovered in the seed coats of Chinese tallow, which has the highest content of C-lignin (15.4 wt%) as compared with other known feedstocks. An optimized extraction procedure by ternary deep eutectic solvents (DESs) enables the complete disassembly of C-lignin and G/S-lignin coexisted in Chinese tallow seed coats, and characterizations revealed that the as-separated C-lignin sample is abundant in benzodioxane units with no observation of β-O-4 structures from G/S-lignin. Catalytic depolymerization of C-lignin results in a simplex catechol product in 129 mg per gram seed coats, being higher than other reported feedstocks. Derivatizing the "black" C-lignin via the nucleophilic isocyanation of benzodioxane γ-OH leads to a "whitened C-lignin" with uniform laminar structure and excellent crystallization ability, being conducive to fabricating functional materials. Overall, this contribution showed that Chinses tallow seed coats are suitable feedstock for acquiring C-lignin biopolymer.
Collapse
|
17
|
Gao Y, Ma H, Rao Y, Lv K, Shu F, Long J. Selective hydrogenolysis of lignin in the presence of Ni3Fe1 alloy supported on zirconium phosphate. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
18
|
Jiang W, Cao JP, He ZM, Zhu C, Feng XB, Zhao XY, Zhao YP, Bai HC. Highly selective hydrogenation of arenes over Rh nanoparticles immobilized on α-Al2O3 support at room temperature. Chem Eng Sci 2023. [DOI: 10.1016/j.ces.2023.118544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
19
|
Wu X, De Bruyn M, Hulan JM, Brasil H, Sun Z, Barta K. High yield production of 1,4-cyclohexanediol and 1,4-cyclohexanediamine from high molecular-weight lignin oil. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:211-220. [PMID: 36685710 PMCID: PMC9808896 DOI: 10.1039/d2gc03777g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The complete utilization of all lignin depolymerization streams obtained from the reductive catalytic fractionation (RCF) of woody biomass into high-value-added compounds is a timely and challenging objective. Here, we present a catalytic methodology to transform beech lignin-derived dimers and oligomers (DO) into well-defined 1,4-cyclohexanediol and 1,4-cyclohexanediamine. The latter two compounds have vast industrial relevance as monomers for polymer synthesis as well as pharmaceutical building blocks. The proposed two-step catalytic sequence involves the use of the commercially available RANEY® Ni catalyst. Therefore, the first step involves the efficient defunctionalization of lignin-derived 2,6-dimethoxybenzoquinone (DMBQ) into 1,4-cyclohexanediol (14CHDO) in 86.5% molar yield, representing a 10.7 wt% yield calculated on a DO weight basis. The second step concerns the highly selective amination of 1,4-cyclohexanediol with ammonia to give 1,4-cyclohexanediamine (14CHDA) in near quantitative yield. The ability to use RANEY® Ni and ammonia in this process holds great potential for future industrial synthesis of 1,4-cyclohexanediamine from renewable resources.
Collapse
Affiliation(s)
- Xianyuan Wu
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
| | - Mario De Bruyn
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Julia Michaela Hulan
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Henrique Brasil
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Zhuohua Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University No. 35 Tsinghua East Road Haidian District Beijing 100083 P. R. China
| | - Katalin Barta
- Stratingh Institute for Chemistry, University of Groningen Groningen The Netherlands
- Department of Chemistry, Organic and Bioorganic Chemistry, University of Graz Heinrichstrasse 28/II 8010 Graz Austria
| |
Collapse
|
20
|
Liu Y, Luo Q, Qiang Q, Wang H, Ding Y, Wang C, Xiao J, Li C, Zhang T. Successive Cleavage and Reconstruction of Lignin β-O-4 Models and Polymer to Access Quinoxalines. CHEMSUSCHEM 2022; 15:e202201401. [PMID: 36055966 DOI: 10.1002/cssc.202201401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The construction of N-heterocyclic compounds from lignin remains a great challenge due to the complex lignin structure and the involvement of multiple steps, including the cleavage of lignin C-O linkages and the formation of heterocyclic aromatic rings. Herein, the first example of KOH mediated sustainable synthesis of quinoxaline derivatives from lignin β-O-4 model compounds in a one-pot fashion under transition-metal-free conditions has been achieved. Mechanistic studies suggested that this transformation includes highly coupled cascade steps of cleavage of C-O bonds, dehydrative condensation, sp3 C-H bond oxidative activation, and intramolecular dehydrative coupling reaction. With this protocol, a wide range of functionalized quinoxalines, including an important drug compound AG1295, were synthesized from lignin β-O-4 model compounds and β-O-4 polymer, showcasing the application potential of lignin in pharmaceutical synthesis.
Collapse
Affiliation(s)
- Yuxuan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Qi Luo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Qian Qiang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Hua Wang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Yangming Ding
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, 710119, Xi'an, P. R. China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, L69 7ZD, Liverpool, United Kingdom
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
21
|
Wan Z, Zhang H, Guo Y, Li H. Advances in Catalytic Depolymerization of Lignin. ChemistrySelect 2022. [DOI: 10.1002/slct.202202582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhouyuanye Wan
- Zhouyuanye Wan Prof. Dr. Yanzhu Guo Prof. Dr. Haiming Li Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery School of Light Industry and Chemical Engineering Dalian Polytechnic University No.1 Qinggongyuan, Ganjingzi District Dalian 116034 China
| | - Hongjie Zhang
- China National Pulp and Paper Research Institute Co. Ltd. Beijing 100102 China
| | - Yanzhu Guo
- Zhouyuanye Wan Prof. Dr. Yanzhu Guo Prof. Dr. Haiming Li Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery School of Light Industry and Chemical Engineering Dalian Polytechnic University No.1 Qinggongyuan, Ganjingzi District Dalian 116034 China
| | - Haiming Li
- Zhouyuanye Wan Prof. Dr. Yanzhu Guo Prof. Dr. Haiming Li Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery School of Light Industry and Chemical Engineering Dalian Polytechnic University No.1 Qinggongyuan, Ganjingzi District Dalian 116034 China
| |
Collapse
|
22
|
Ding Y, Guo T, Li Z, Zhang B, Kühn FE, Liu C, Zhang J, Xu D, Lei M, Zhang T, Li C. Transition‐Metal‐Free Synthesis of Functionalized Quinolines by Direct Conversion of β‐O‐4 Model Compounds. Angew Chem Int Ed Engl 2022; 61:e202206284. [DOI: 10.1002/anie.202206284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Indexed: 12/28/2022]
Affiliation(s)
- Yangming Ding
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Tenglong Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Fritz E. Kühn
- Molecular Catalysis Catalysis Research Center and Department of Chemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching bei München Germany
| | - Chang Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jian Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Dezhu Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering Institute of Computational Chemistry College of Chemistry Beijing University of Chemical Technology Beijing 100029 China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| |
Collapse
|
23
|
Li T, Chen B, Cao M, Ouyang X, Qiu X, Li C. Constructing Single‐atom Ni on N‐doped Carbon Via Chelation‐anchored Strategy for the Hydrogenolysis of Lignin. AIChE J 2022. [DOI: 10.1002/aic.17877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tianjin Li
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou P. R. China
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Dalian P.R. China
- Shandong Provincial Key Laboratory of Biomass Gasification Technology Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan P.R. China
| | - Bo Chen
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou P. R. China
| | - Meifang Cao
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou P. R. China
| | - Xinping Ouyang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab of Green Chemical Product Technology South China University of Technology Guangzhou P. R. China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou P. R. China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis Dalian Institute of Chemical Physics Dalian P.R. China
| |
Collapse
|
24
|
Ding Y, Guo T, Li Z, Zhang B, Kühn FE, Liu C, Zhang J, Xu D, Lei M, Zhang T, Li C. Transition‐Metal‐Free Synthesis of Functionalized Quinolines by Direct Conversion of β‐O‐4 Linkages. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yangming Ding
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Tenglong Guo
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Zhewei Li
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering CHINA
| | - Bo Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Fritz E. Kühn
- Technical University of Munich: Technische Universitat Munchen Catalysis Research Center and Department of Chemistry GERMANY
| | - Chang Liu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Jian Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Dezhu Xu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Ming Lei
- Beijing University of Chemical Technology State Key Laboratory of Chemical Resource Engineering CHINA
| | - Tao Zhang
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CAS Key Laboratory of Science and Technology on Applied Catalysis CHINA
| | - Changzhi Li
- Dalian Institute of Chemical Physics 457 Zhongshan Road 116023 Dalian CHINA
| |
Collapse
|
25
|
Song W, Du Q, Li X, Wang S, Song G. Sustainable Production of Bioactive Molecules from C-Lignin-Derived Propenylcatechol. CHEMSUSCHEM 2022; 15:e202200646. [PMID: 35548878 DOI: 10.1002/cssc.202200646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Catechyl lignin (C-lignin) is a naturally occurring linear homogeneous biopolymer composed solely of caffeyl alcohol subunits with cleavable benzodioxane linkages. The inherent structural features of propenylcatechol, a direct depolymerized product of castor seed coats C-lignin, render it a sustainable and promising platform for the synthesis of bioactive molecules. Herein, diversified transformations of propenylcatechol, including C=C bond difunctionalization, β-modification, β,γ-rearrangement, and γ-methyl derivatization, were reported based on known or developed methods. A series of functional molecular skeletons involved in the current synthetic routes for the preparation of pharmaceuticals and bioactive molecules were obtained. Starting from castor seed coats, annuloline (natural product) and CC-5079 (antitumor) were synthesized using facile and inexpensive reagents in only four- and five-sequence reactions, respectively, thereby demonstrating a superior step-efficiency to that of reported synthetic routes. Almost all atoms in the C-lignin biopolymer were incorporated into the final products owing to the intrinsic structures of naturally occurring C-lignin. Bioactive molecules produced from C-lignin integrate a low-carbon footprint with high-quality and economical manufacture of pharmaceuticals.
Collapse
Affiliation(s)
- Weihong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
- Institute of Drug Discovery Technology Institution, Ningbo University, Ningbo, 315000, P. R. China
| | - Qinglian Du
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Xiancheng Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Shuizhong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Guoyong Song
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
26
|
Li Z, Li Y, Chen Y, Wang Q, Jadoon M, Yi X, Duan X, Wang X. Developing Dawson-Type Polyoxometalates Used as Highly Efficient Catalysts for Lignocellulose Transformation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zonghang Li
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yiming Li
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Yuannan Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Qiwen Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Mehwish Jadoon
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| | - Xiaohu Yi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaohong Wang
- Key Lab of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
| |
Collapse
|
27
|
Zhang B, Guo T, Li Z, Kühn FE, Lei M, Zhao ZK, Xiao J, Zhang J, Xu D, Zhang T, Li C. Transition-metal-free synthesis of pyrimidines from lignin β-O-4 segments via a one-pot multi-component reaction. Nat Commun 2022; 13:3365. [PMID: 35690613 PMCID: PMC9188570 DOI: 10.1038/s41467-022-30815-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/16/2022] [Indexed: 11/30/2022] Open
Abstract
Heteroatom-participated lignin depolymerization for heterocyclic aromatic compounds production is of great importance to expanding the product portfolio and meeting value-added biorefinery demand, but it is also particularly challenging. In this work, the synthesis of pyrimidines from lignin β-O-4 model compounds, the most abundant segment in lignin, mediated by NaOH through a one-pot multi-component cascade reaction is reported. Mechanism study suggests that the transformation starts by NaOH-induced deprotonation of Cα-H bond in β-O-4 model compounds, and involves highly coupled sequential cleavage of C-O bonds, alcohol dehydrogenation, aldol condensation, and dehydrogenative aromatization. This strategy features transition-metal free catalysis, a sustainable universal approach, no need of external oxidant/reductant, and an efficient one-pot process, thus providing an unprecedented opportunity for N-containing aromatic heterocyclic compounds synthesis from biorenewable feedstock. With this protocol, an important marine alkaloid meridianin derivative can be synthesized, emphasizing the application feasibility in pharmaceutical synthesis.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tenglong Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fritz E Kühn
- Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, D-85748, Garching bei München, Germany
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zongbao K Zhao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool, L697ZD, UK
| | - Jian Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dezhu Xu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Changzhi Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| |
Collapse
|
28
|
Aleku GA, Titchiner GR, Roberts GW, Derrington SR, Marshall JR, Hollfelder F, Turner NJ, Leys D. Enzymatic N-Allylation of Primary and Secondary Amines Using Renewable Cinnamic Acids Enabled by Bacterial Reductive Aminases. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:6794-6806. [PMID: 35634269 PMCID: PMC9131517 DOI: 10.1021/acssuschemeng.2c01180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Allylic amines are a versatile class of synthetic precursors of many valuable nitrogen-containing organic compounds, including pharmaceuticals. Enzymatic allylic amination methods provide a sustainable route to these compounds but are often restricted to allylic primary amines. We report a biocatalytic system for the reductive N-allylation of primary and secondary amines, using biomass-derivable cinnamic acids. The two-step one-pot system comprises an initial carboxylate reduction step catalyzed by a carboxylic acid reductase to generate the corresponding α,β-unsaturated aldehyde in situ. This is followed by reductive amination of the aldehyde catalyzed by a bacterial reductive aminase pIR23 or BacRedAm to yield the corresponding allylic amine. We exploited pIR23, a prototype bacterial reductive aminase, self-sufficient in catalyzing formal reductive amination of α,β-unsaturated aldehydes with various amines, generating a broad range of secondary and tertiary amines accessed in up to 94% conversion under mild reaction conditions. Analysis of products isolated from preparative reactions demonstrated that only selective hydrogenation of the C=N bond had occurred, preserving the adjacent alkene moiety. This process represents an environmentally benign and sustainable approach for the synthesis of secondary and tertiary allylic amine frameworks, using renewable allylating reagents and avoiding harsh reaction conditions. The selectivity of the system ensures that bis-allylation of the alkylamines and (over)reduction of the alkene moiety are avoided.
Collapse
Affiliation(s)
- Godwin A. Aleku
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Gabriel R. Titchiner
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - George W. Roberts
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Sasha R. Derrington
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - James R. Marshall
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - Florian Hollfelder
- Department
of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, U.K.
| | - Nicholas J. Turner
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| | - David Leys
- Manchester
Institute of Biotechnology, Department of Chemistry, University of Manchester, Manchester, 131 Princess Street, Manchester M1 7DN, U.K.
| |
Collapse
|
29
|
Wu Y, Huang Z, Lv K, Rao Y, Chen Z, Zhang J, Long J. Producing Methyl p-Coumarate from Herbaceous Lignin via a "Clip-Off" Strategy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5624-5633. [PMID: 35473308 DOI: 10.1021/acs.jafc.1c08353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the most abundant renewable aromatic resource on Earth, lignin is a preferred starting material for producing bulk chemicals via a sustainable route. In this study, we provide a novel and efficient "clip-off" approach for producing methyl p-coumarate, an important and versatile fine chemical by selective cleavage of the ester linkage in herbaceous lignin in the presence of commercial metal chlorides. When bagasse lignin was depolymerized at 155 °C for 4 h, a 12.7% yield of aromatic chemicals was obtained in the presence of CuCl2, 71.7% of which was identified as methyl p-coumarate (the yield was 9.1%). Further investigation of the structural evolution of lignin revealed that the ester linkages in lignin were efficiently broken via intensive transesterification with methanol accompanied by the simultaneous weakening of the inter-/intramolecular hydrogen bonds. Moreover, this observation of selective cleavage of ester linkages could be further confirmed by the conversion of model compounds with characteristic bonds under identical reaction conditions. Therefore, this work provides a new insight into the production of value-added chemicals from renewable resources.
Collapse
Affiliation(s)
- Yuanhao Wu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhechao Huang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Kaiqi Lv
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yinan Rao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhengjian Chen
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, China
| | - Jiaheng Zhang
- Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519003, China
| | - Jinxing Long
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
30
|
Jia L, Li CJ, Zeng H. Cleavage∕cross-coupling strategy for converting β-O-4 linkage lignin model compounds into high valued benzyl amines via dual C–O bond cleavage. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Abstract
Being the major renewable source of bio-aromatics, lignin possesses considerable potential for the chemical industry as raw material. Kraft lignin is a couple product of paper industry with an annual production of 55,000,000 ton/y and is considered the largest share of available lignin. Here we report a facile approach of Kraft lignin depolymerization to defined oligomeric units with yields of up to 70 wt.%. The process implies utilization of an aqueous base in combination with a metal containing catalyst and an alcohol under non-oxidative atmosphere at 300 °C. An advantage of the developed approach is the facile separation of the oligomer product that precipitates from the reaction mixture. In addition, the process proceeds without char formation; both factors make it attractive for industrialization. The suppression of the repolymerization processes that lead to char formation is possible when the combination of metal containing catalyst in the presence of an alcohol is used. It was found that the oligomer units have structural features found in phenol-acetaldehyde resins. These features result from the base catalyzed condensation of lignin fragments with in situ formed aldehydes. Catalytic dehydrogenation of the alcohol provides the latter. This reaction pathway is confirmed by the presence condensation products of Guerbet type reactions.
Collapse
|
32
|
Li Z, Zhang H, Tan T, Lei M. The mechanism of direct reductive amination of aldehyde and amine with formic acid catalyzed by boron trifluoride complexes: insights from a DFT study. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00967f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A volcano diagram of BF3 catalytic species and their activities was proposed for the DRA of aldehyde and amine with formic acid.
Collapse
Affiliation(s)
- Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Institute of Computational Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Huili Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Institute of Computational Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Institute of Computational Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|