1
|
Ahamad S, Abdulla M, Saquib M, Kamil Hussain M. Pseudo-Natural Products: Expanding chemical and biological space by surpassing natural constraints. Bioorg Chem 2024; 150:107525. [PMID: 38852308 DOI: 10.1016/j.bioorg.2024.107525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
This review explores the recent advancements in the design and synthesis of pseudo-natural products (pseudo-NPs) by employing innovative principles and strategies, heralding a transformative era in chemistry and biology. Pseudo-NPs, produced through in silico fragmentation and the de novo recombination of natural product fragments, reveal compounds endowed with distinct biological activities. Their advantage lies in transcending natural product structures, fostering diverse possibilities. Research in this area over the past decade has yielded unconventional combinations of natural product fragments, leading to the identification of novel compounds possessing unique scaffolds and biological significance, thereby contributing to the discovery of new therapeutics. The pseudo-NPs exert potent biological effects through various signaling pathways. In chemical biology and medicinal chemistry, designing pseudo-NPs is an important strategy, harnessing molecular hybridization and bioinspired synthesis to generate diverse compounds with remarkable biological activities, underscoring their immense potential in drug discovery and development.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh-202002, India.
| | - Mohd Abdulla
- Babasaheb Bhimrao Ambedkar University, Lucknow-226025, India
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad), 211002, UP, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad), 211010, UP, India.
| | - Mohd Kamil Hussain
- Department of Chemistry, Govt. Raza P.G. College, Rampur-244901, UP, India.
| |
Collapse
|
2
|
Pahl A, Grygorenko OO, Kondratov IS, Waldmann H. Identification of readily available pseudo-natural products. RSC Med Chem 2024; 15:2709-2717. [PMID: 39149091 PMCID: PMC11324060 DOI: 10.1039/d4md00310a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/20/2024] [Indexed: 08/17/2024] Open
Abstract
Pseudo-natural products (PNPs) combine fragments derived from NPs in ways that are not found in nature, and may lead to the discovery of novel chemotypes for unexpected targets or the identification of unprecedented bioactivities. PNPs have increasingly been explored in recent drug discovery programs, and are strongly enriched in clinical compounds. We describe how a large number of structurally different PNPs can be accessed readily and without the need to execute labor- and time intensive synthesis programs. We employed an improved version of the previously reported natural product fragment combination (NPFC) tool to analyze the full library of 3.5 M synthetic small molecules and screening libraries from Enamine for PNP content, assessed the spatial complexity of Enamine-PNPs using the recently developed normalized spatial score (nSPS) and evaluated the bioactivity of a selected subset of Enamine-PNPs in the unbiased morphological cell painting assay. A major fraction (32%; 1.1 million compounds) of the Enamine library are PNPs which contain a significant number of compounds with unexpected and probably new bioactivity.
Collapse
Affiliation(s)
- Axel Pahl
- Compound Management and Screening Center (COMAS), Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Oleksandr O Grygorenko
- Enamine Ltd. Chervonotkatska Street 78 Kyïv 02094 Ukraine https://enamine.net
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyïv 01601 Ukraine
| | - Ivan S Kondratov
- Enamine Ltd. Chervonotkatska Street 78 Kyïv 02094 Ukraine https://enamine.net
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry, NAS of Ukraine Akademik Kukhar Street 1 Kyïv 02660 Ukraine
- Enamine Germany GmbH, Industriepark Hoechst G837 65926 Frankfurt am Main Germany https://www.enamine.de
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
3
|
Bag S, Liu J, Patil S, Bonowski J, Koska S, Schölermann B, Zhang R, Wang L, Pahl A, Sievers S, Brieger L, Strohmann C, Ziegler S, Grigalunas M, Waldmann H. A divergent intermediate strategy yields biologically diverse pseudo-natural products. Nat Chem 2024; 16:945-958. [PMID: 38365941 PMCID: PMC11164679 DOI: 10.1038/s41557-024-01458-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
The efficient exploration of biologically relevant chemical space is essential for the discovery of bioactive compounds. A molecular design principle that possesses both biological relevance and structural diversity may more efficiently lead to compound collections that are enriched in diverse bioactivities. Here the diverse pseudo-natural product (PNP) strategy, which combines the biological relevance of the PNP concept with synthetic diversification strategies from diversity-oriented synthesis, is reported. A diverse PNP collection was synthesized from a common divergent intermediate through developed indole dearomatization methodologies to afford three-dimensional molecular frameworks that could be further diversified via intramolecular coupling and/or carbon monoxide insertion. In total, 154 PNPs were synthesized representing eight different classes. Cheminformatic analyses showed that the PNPs are structurally diverse between classes. Biological investigations revealed the extent of diverse bioactivity enrichment of the collection in which four inhibitors of Hedgehog signalling, DNA synthesis, de novo pyrimidine biosynthesis and tubulin polymerization were identified from four different PNP classes.
Collapse
Affiliation(s)
- Sukdev Bag
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Jie Liu
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sohan Patil
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Jana Bonowski
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Sandra Koska
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Beate Schölermann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Ruirui Zhang
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Lin Wang
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Axel Pahl
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - Sonja Sievers
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Compound Management and Screening Center, Dortmund, Germany
| | - Lukas Brieger
- Faculty of Chemistry and Chemical Biology, Inorganic Chemistry, TU Dortmund University, Dortmund, Germany
| | - Carsten Strohmann
- Faculty of Chemistry and Chemical Biology, Inorganic Chemistry, TU Dortmund University, Dortmund, Germany
| | - Slava Ziegler
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Michael Grigalunas
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany.
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany.
| |
Collapse
|
4
|
Luz Tibaldi-Bollati M, Nicotra V, Oksdath-Mansilla G, García ME. Expanding Diterpene Complexity and Diversity via Photoinduced Ring Distortions. Chempluschem 2024; 89:e202300537. [PMID: 38029375 DOI: 10.1002/cplu.202300537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/23/2023] [Accepted: 11/29/2023] [Indexed: 12/01/2023]
Abstract
Natural products and their semi-synthetic derivatives undoubtedly constitute an important source of therapeutic agents. Their importance lies in their own origin and evolution, since they have great chemical diversity, biochemical specificity, and pharmacological properties. Currently, there is a renewed interest in the development of methodologies capable of efficiently modifying the chemical structure of these bioactive platforms. In this work, the photoderivatization of the diterpene solidagenone was performed using a complexity-to-diversity-oriented approach. By exploring [2+2]-photocycloaddition, photoinduced-hydrogen abstraction, and photoxygenation reactions, a set of solidagenone derivatives was obtained, showing different ring fusions, side chain rearrangements, and modifications of the original furan ring's substitution pattern. The derivatives obtained were characterised by NMR methodologies. To evaluate the structural diversity of the labdane-derived compounds, their physicochemical properties, structural similarity, and chemical space were analysed. These results suggest that photochemical reactions are a useful tool for performing ring distortion transformations, generating derivatives of natural compounds with wide diversity, structural complexity, and with potential biological properties.
Collapse
Affiliation(s)
- María Luz Tibaldi-Bollati
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Viviana Nicotra
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Gabriela Oksdath-Mansilla
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto de Investigaciones en Físico-Química de Córdoba (INFIQC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Manuela E García
- Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, X5000HUA, Córdoba, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
5
|
Qin LQ, Sun JY, Chen NY, Li XW, Gao DF, Wang W, Mo DL, Su JC, Su GF, Pan CX. Design and synthesis of pseudo-rutaecarpines as potent anti-inflammatory agents via regulating MAPK/NF-κB pathways to relieve inflammation-induced acute liver injury in mice. Bioorg Chem 2023; 138:106611. [PMID: 37236073 DOI: 10.1016/j.bioorg.2023.106611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/11/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Pseudo-natural products (PNPs) design strategy provides a great valuable entrance to effectively identify of novel bioactive scaffolds. In this report, novel pseudo-rutaecarpines were designed via the combination of several privileged structure units and 46 target compounds were synthesized. Most of them display moderate to potent inhibitory effect on LPS-induced NO production and low cytotoxicity in RAW264.7 macrophage. The results of the anti-inflammatory efficacy and action mechanism of compounds 7l and 8c indicated that they significantly reduced the release of IL-6, IL-1β and TNF-α. Further studies revealed that they can strongly inhibit the activation of NF-κB and MAPK signal pathways. The LPS-induced acute liver injury mice model studies not only confirmed their anti-inflammatory efficacy in vivo but also could effectively relieve the liver injury in mice. The results suggest that compounds 7l and 8c might serve as lead compounds to develop therapeutic drugs for treatment of inflammation.
Collapse
Affiliation(s)
- Li-Qing Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China; Department of Chemistry and Pharmaceutical Science, Guilin Normal College, 9 Feihu Road, Gulin 541199, China
| | - Jia-Yi Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Nan-Ying Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Xin-Wei Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - De-Feng Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Wang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Jun-Cheng Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Gui-Fa Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| | - Cheng-Xue Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China.
| |
Collapse
|
6
|
Okolo EA, Pahl A, Sievers S, Pask CM, Nelson A, Marsden SP. Scaffold Remodelling of Diazaspirotricycles Enables Synthesis of Diverse sp 3 -Rich Compounds With Distinct Phenotypic Effects. Chemistry 2023; 29:e202203992. [PMID: 36722618 PMCID: PMC10946999 DOI: 10.1002/chem.202203992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/02/2023]
Abstract
A 'top down' scaffold remodelling approach to library synthesis was applied to spirotricyclic ureas prepared by a complexity-generating oxidative dearomatisation. Eighteen structurally-distinct, sp3 -rich scaffolds were accessed from the parent tricycle through ring addition, cleavage and expansion strategies. Biological screening of a small compound library based on these scaffolds using the cell-painting assay demonstrated distinctive phenotypic responses engendered by different library members, illustrating the functional as well as structural diversity of the compounds.
Collapse
Affiliation(s)
| | - Axel Pahl
- Max-Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 11Dortmund44227Germany
| | - Sonja Sievers
- Max-Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 11Dortmund44227Germany
| | | | - Adam Nelson
- School of ChemistryUniversity of LeedsLeedsLS2 9JTUK
- Astbury Centre for Structural Molecular BiologyUniversity of LeedsLeedsLS2 9JTUK
| | | |
Collapse
|
7
|
Wang Z, Debuigne A. Radical Polymerization of Methylene Heterocyclic Compounds: Functional Polymer Synthesis and Applications. POLYM REV 2023. [DOI: 10.1080/15583724.2023.2181819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Zhuoqun Wang
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Chemistry Department, University of Liege, Liege, Belgium
| | - Antoine Debuigne
- Center for Education and Research on Macromolecules (CERM), CESAM Research Unit, Chemistry Department, University of Liege, Liege, Belgium
| |
Collapse
|
8
|
Hua L, Liang S, Zhou Y, Wu X, Cai H, Liu Z, Ou Y, Chen Y, Chen X, Yan Y, Wu D, Sun P, Hu W, Yang Z. Artemisinin-derived artemisitene blocks ROS-mediated NLRP3 inflammasome and alleviates ulcerative colitis. Int Immunopharmacol 2022; 113:109431. [DOI: 10.1016/j.intimp.2022.109431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022]
|
9
|
Grigalunas M, Patil S, Krzyzanowski A, Pahl A, Flegel J, Schölermann B, Xie J, Sievers S, Ziegler S, Waldmann H. Unprecedented Combination of Polyketide Natural Product Fragments Identifies the New Hedgehog Signaling Pathway Inhibitor Grismonone. Chemistry 2022; 28:e202202164. [PMID: 36083197 PMCID: PMC10091983 DOI: 10.1002/chem.202202164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Pseudo-natural products (pseudo-NPs) are de novo combinations of natural product (NP) fragments that define novel bioactive chemotypes. For their discovery, new design principles are being sought. Previously, pseudo-NPs were synthesized by the combination of fragments originating from biosynthetically unrelated NPs to guarantee structural novelty and novel bioactivity. We report the combination of fragments from biosynthetically related NPs in novel arrangements to yield a novel chemotype with activity not shared by the guiding fragments. We describe the synthesis of the polyketide pseudo-NP grismonone and identify it as a structurally novel and potent inhibitor of Hedgehog signaling. The insight that the de novo combination of fragments derived from biosynthetically related NPs may also yield new biologically relevant compound classes with unexpected bioactivity may be considered a chemical extension or diversion of existing biosynthetic pathways and greatly expands the opportunities for exploration of biologically relevant chemical space by means of the pseudo-NP principle.
Collapse
Affiliation(s)
- Michael Grigalunas
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Sohan Patil
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Adrian Krzyzanowski
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| | - Axel Pahl
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Jana Flegel
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Beate Schölermann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Jianing Xie
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Sonja Sievers
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Compound Management and Screening CenterDortmund44227Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyDortmund44227Germany
- Technical University DortmundFaculty of ChemistryChemical BiologyDortmund44227Germany
| |
Collapse
|
10
|
Young RJ, Flitsch SL, Grigalunas M, Leeson PD, Quinn RJ, Turner NJ, Waldmann H. The Time and Place for Nature in Drug Discovery. JACS AU 2022; 2:2400-2416. [PMID: 36465532 PMCID: PMC9709949 DOI: 10.1021/jacsau.2c00415] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/06/2022] [Accepted: 10/06/2022] [Indexed: 05/31/2023]
Abstract
The case for a renewed focus on Nature in drug discovery is reviewed; not in terms of natural product screening, but how and why biomimetic molecules, especially those produced by natural processes, should deliver in the age of artificial intelligence and screening of vast collections both in vitro and in silico. The declining natural product-likeness of licensed drugs and the consequent physicochemical implications of this trend in the context of current practices are noted. To arrest these trends, the logic of seeking new bioactive agents with enhanced natural mimicry is considered; notably that molecules constructed by proteins (enzymes) are more likely to interact with other proteins (e.g., targets and transporters), a notion validated by natural products. Nature's finite number of building blocks and their interactions necessarily reduce potential numbers of structures, yet these enable expansion of chemical space with their inherent diversity of physical characteristics, pertinent to property-based design. The feasible variations on natural motifs are considered and expanded to encompass pseudo-natural products, leading to the further logical step of harnessing bioprocessing routes to access them. Together, these offer opportunities for enhancing natural mimicry, thereby bringing innovation to drug synthesis exploiting the characteristics of natural recognition processes. The potential for computational guidance to help identifying binding commonalities in the route map is a logical opportunity to enable the design of tailored molecules, with a focus on "organic/biological" rather than purely "synthetic" structures. The design and synthesis of prototype structures should pay dividends in the disposition and efficacy of the molecules, while inherently enabling greener and more sustainable manufacturing techniques.
Collapse
Affiliation(s)
| | - Sabine L. Flitsch
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Michael Grigalunas
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
| | - Paul D. Leeson
- Paul
Leeson Consulting Limited, The Malt House, Main Street, Congerstone, Nuneaton, Warwickshire CV13 6LZ, U.K.
| | - Ronald J. Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Nicholas J. Turner
- Department
of Chemistry, University of Manchester,
Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Herbert Waldmann
- Department
of Chemical Biology, Max-Planck-Institute
of Molecular Physiology, Otto-Hahn Strasse 11, 44227 Dortmund, Germany
- Faculty of
Chemistry and Chemical Biology, Technical
University of Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| |
Collapse
|
11
|
Inverse hydride shuttle catalysis enables the stereoselective one-step synthesis of complex frameworks. Nat Chem 2022; 14:1306-1310. [PMID: 36266571 DOI: 10.1038/s41557-022-00991-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/01/2022] [Indexed: 11/09/2022]
Abstract
The rapid assembly of complex scaffolds in a single step from simple precursors identifies as an ideal reaction in terms of efficiency and sustainability. Indeed, the direct single-step synthesis of complex alkaloid frameworks remains an unresolved problem at the heart of organic chemistry in spite of the tremendous progress of the discipline. Herein, we present a broad strategy in which dynamically assembled ternary complexes are converted into valuable azabicyclic scaffolds based on the concept of inverse hydride shuttle catalysis. The ternary complexes are readily constructed in situ from three simple precursors and enable a highly modular installation of various substitution patterns. Upon subjection to a unique dual-catalytic system, the transient intermediates undergo an unusual hydride shuttle process that is initiated by a hydride donation event. Furthermore, we show that, in combination with asymmetric organocatalysis, the product alkaloid frameworks are obtained in excellent optical purity.
Collapse
|
12
|
Li Y, Cheng S, Tian Y, Zhang Y, Zhao Y. Recent ring distortion reactions for diversifying complex natural products. Nat Prod Rep 2022; 39:1970-1992. [PMID: 35972343 DOI: 10.1039/d2np00027j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2013-2022.Chemical diversification of natural products is an efficient way to generate natural product-like compounds for modern drug discovery programs. Utilizing ring-distortion reactions for diversifying natural products would directly alter the core ring systems of small molecules and lead to the production of structurally complex and diverse compounds for high-throughput screening. We review the ring distortion reactions recently used in complexity-to-diversity (CtD) and pseudo natural products (pseudo-NPs) strategies for diversifying complex natural products. The core ring structures of natural products are altered via ring expansion, ring cleavage, ring edge-fusion, ring spiro-fusion, ring rearrangement, and ring contraction. These reactions can rapidly provide natural product-like collections with properties suitable for a wide variety of biological and medicinal applications. The challenges and limitations of current ring distortion reactions are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We also provide a toolbox for chemists for the application of ring distortion reactions to access natural product-like molecules.
Collapse
Affiliation(s)
- Yu Li
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Shihao Cheng
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yun Tian
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yanan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|
13
|
Liu RM, Zhang M, Han XX, Liu XL, Pan BW, Tian YP, Peng LJ, Yuan WC. Catalytic asymmetric Michael/cyclization reaction of 3-isothiocyanato thiobutyrolactone: an approach to the construction of a library of bispiro[pyrazolone-thiobutyrolactone] skeletons. Org Biomol Chem 2022; 20:5060-5065. [PMID: 35703322 DOI: 10.1039/d2ob00773h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we demonstrate the first example of 3-isothiocyanato thiobutyrolactone serving as a useful building block in the Michael/cyclization reaction with alkylidene pyrazolones for the enantioselective construction of optically active structural bispiro[pyrazolone-thiobutyrolactone] skeletons containing three contiguous stereocenters with two spiroquaternary stereocenters. These products were smoothly afforded in up to 90% yield, >20 : 1 dr and >99% ee with chiral squaramide as the catalyst under mild conditions. Notably, this is also the first example of the merger of a spirocyclic pyrazolone scaffold with a spirocyclic thiobutyrolactone scaffold, potentially useful in medicinal chemistry.
Collapse
Affiliation(s)
- Ren-Ming Liu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Min Zhang
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Xiao-Xue Han
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Xiong-Li Liu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Bo-Wen Pan
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - You-Ping Tian
- College of Pharmaceutical Sciences, Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Li-Jun Peng
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, Guizhou 550025, P. R. China.
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
14
|
Zeng T, Hess BA, Zhang F, Wu R. Bio-inspired chemical space exploration of terpenoids. Brief Bioinform 2022; 23:6586263. [PMID: 35576010 DOI: 10.1093/bib/bbac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/12/2022] Open
Abstract
Many computational methods are devoted to rapidly generating pseudo-natural products to expand the open-ended border of chemical spaces for natural products. However, the accessibility and chemical interpretation were often ignored or underestimated in conventional library/fragment-based or rule-based strategies, thus hampering experimental synthesis. Herein, a bio-inspired strategy (named TeroGen) is developed to mimic the two key biosynthetic stages (cyclization and decoration) of terpenoid natural products, by utilizing physically based simulations and deep learning models, respectively. The precision and efficiency are validated for different categories of terpenoids, and in practice, more than 30 000 sesterterpenoids (10 times as many as the known sesterterpenoids) are predicted to be linked in a reaction network, and their synthetic accessibility and chemical interpretation are estimated by thermodynamics and kinetics. Since it could not only greatly expand the chemical space of terpenoids but also numerate plausible biosynthetic routes, TeroGen is promising for accelerating heterologous biosynthesis, bio-mimic and chemical synthesis of complicated terpenoids and derivatives.
Collapse
Affiliation(s)
- Tao Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | | | - Fan Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| |
Collapse
|
15
|
Zhang R, Yan X, Yin S, Wang W, Zhu W, Fu P. Discovery of New Bohemamines and Synthesis of
Methylene‐Bridged
Chimeric Derivatives through Natural Product Chimera Strategy. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rongxin Zhang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
| | - Xiaotang Yan
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
| | - Shupeng Yin
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
| | - Weihong Wang
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao 266237 China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China Qingdao 266003 China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao) Qingdao 266237 China
| |
Collapse
|
16
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20-Membered Macrocyclic Pseudo-Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022; 61:e202114328. [PMID: 34978373 PMCID: PMC9303634 DOI: 10.1002/anie.202114328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 01/02/2023]
Abstract
Design and synthesis of pseudo-natural products (PNPs) through recombination of natural product (NP) fragments in unprecedented arrangements enables the discovery of novel biologically relevant chemical matter. With a view to wider coverage of NP-inspired chemical and biological space, we describe the combination of this principle with macrocycle formation. PNP-macrocycles were synthesized efficiently in a stereoselective one-pot procedure including the 1,3-dipolar cycloadditions of different dipolarophiles with dimeric cinchona alkaloid-derived azomethine ylides formed in situ. The 20-membered bis-cycloadducts embody 18 stereocenters and an additional fragment-sized NP-structure. After further functionalization, a collection of 163 macrocyclic PNPs was obtained. Biological investigation revealed potent inducers of the lipidation of the microtubule associated protein 1 light chain 3 (LC3) protein, which plays a prominent role in various autophagy-related processes.
Collapse
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Anastasia Knyazeva
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Raphael Gasper
- Max Planck Institute of Molecular PhysiologyCrystallography and Biophysics UnitOtto-Hahn-Strasse 1144227DortmundGermany
| | - Dale Corkery
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| | - Julian J. Holstein
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
- Technical University DortmundFaculty of Chemistry, Inorganic ChemistryOtto-Hahn-Strasse 644221DortmundGermany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS)Otto-Hahn-Strasse 1144221DortmundGermany
| | - Yao‐Wen Wu
- Umeå UniversityDepartment of Chemistry90187UmeåSweden
- Umeå UniversityUmeå Center for Microbial Research90187UmeåSweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular PhysiologyDepartment of Chemical BiologyOtto-Hahn-Strasse 1144227DortmundGermany
- Technical University DortmundFaculty of Chemistry, Chemical BiologyOtto-Hahn-Strasse 644221DortmundGermany
| |
Collapse
|
17
|
Abstract
![]()
Natural products
are the result of Nature’s exploration
of biologically relevant chemical space through evolution and an invaluable
source of bioactive small molecules for chemical biology and medicinal
chemistry. Novel concepts for the discovery of new bioactive compound
classes based on natural product structure may enable exploration
of wider biologically relevant chemical space. The pseudo-natural
product concept merges the relevance of natural product structure
with efficient exploration of chemical space by means of fragment-based
compound development to inspire the discovery of new bioactive chemical
matter through de novo combination of natural product
fragments in unprecedented arrangements. The novel scaffolds retain
the biological relevance of natural products but are not obtainable
through known biosynthetic pathways which can lead to new chemotypes
that may have unexpected or unprecedented bioactivities. Herein, we
cover the workflow of pseudo-natural product design and development,
highlight recent examples, and discuss a cheminformatic analysis in
which a significant portion of biologically active synthetic compounds
were found to be pseudo-natural products. We compare the concept to
natural evolution and discuss pseudo-natural products as the human-made
equivalent, i.e. the chemical evolution of natural product structure.
Collapse
Affiliation(s)
- Michael Grigalunas
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany
| | - Susanne Brakmann
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| | - Herbert Waldmann
- Max-Planck-Institute of Molecular Physiology, Otto-Hahn Strasse 11, 44227, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Strasse 4a, 44227, Dortmund, Germany
| |
Collapse
|
18
|
Singh M, Hirlekar BU, Mondal S, Pant S, Dhaked DK, Ravichandiran V, Hazra A, Bharitkar YP. Isolation of phytochemicals from Dolichandrone atrovirens followed by semisynthetic modification of ixoside via azomethine ylide cycloaddition; computational approach towards chemo-selection. Nat Prod Res 2022:1-10. [DOI: 10.1080/14786419.2022.2037084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Meenakshi Singh
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| | - Bhakti Umesh Hirlekar
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| | - Shagufta Mondal
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| | - Suyash Pant
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| | - Devendra K. Dhaked
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| | - V. Ravichandiran
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| | - Abhijit Hazra
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| | - Yogesh P. Bharitkar
- National Institute of Pharmaceutical Education and Research (NIPER), Chunilal Bhawan, Kolkata, India
| |
Collapse
|
19
|
Niggemeyer G, Knyazeva A, Gasper R, Corkery D, Bodenbinder P, Holstein JJ, Sievers S, Wu Y, Waldmann H. Synthesis of 20‐Membered Macrocyclic Pseudo‐Natural Products Yields Inducers of LC3 Lipidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Georg Niggemeyer
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Anastasia Knyazeva
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Raphael Gasper
- Max Planck Institute of Molecular Physiology Crystallography and Biophysics Unit Otto-Hahn-Strasse 11 44227 Dortmund Germany
| | - Dale Corkery
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Pia Bodenbinder
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Julian J. Holstein
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Inorganic Chemistry Otto-Hahn-Strasse 6 44221 Dortmund Germany
| | - Sonja Sievers
- Compound Management and Screening Center (COMAS) Otto-Hahn-Strasse 11 44221 Dortmund Germany
| | - Yao‐Wen Wu
- Umeå University Department of Chemistry 90187 Umeå Sweden
- Umeå University Umeå Center for Microbial Research 90187 Umeå Sweden
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology Department of Chemical Biology Otto-Hahn-Strasse 11 44227 Dortmund Germany
- Technical University Dortmund Faculty of Chemistry, Chemical Biology Otto-Hahn-Strasse 6 44221 Dortmund Germany
| |
Collapse
|
20
|
Zhang L, Quan W, Liu RM, Tian YP, Pan BW, Liu XL. Diastereoselective construction of a library of structural bispiro[butyrolactone/valerolactone-pyrrolidine-indanedione] hybrids via 1,3-dipolar cycloaddition reactions. NEW J CHEM 2022. [DOI: 10.1039/d2nj01571d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a highly efficient strategy that allows the diversity synthesis of a library of structural bispiro[butyrolactone-pyrrolidine-indanedione] hybrids is achieved effectively by means of 1,3-dipolar cycloadditions of α,β-unsaturated butyrolactones/valerolactones as dipolarophiles...
Collapse
|
21
|
Yildirim O, Grigalunas M, Brieger L, Strohmann C, Antonchick AP, Waldmann H. Dynamic Catalytic Highly Enantioselective 1,3-Dipolar Cycloadditions. Angew Chem Int Ed Engl 2021; 60:20012-20020. [PMID: 34236754 PMCID: PMC8456807 DOI: 10.1002/anie.202108072] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/06/2021] [Indexed: 11/06/2022]
Abstract
In dynamic covalent chemistry, reactions follow a thermodynamically controlled pathway through equilibria. Reversible covalent‐bond formation and breaking in a dynamic process enables the interconversion of products formed under kinetic control to thermodynamically more stable isomers. Notably, enantioselective catalysis of dynamic transformations has not been reported and applied in complex molecule synthesis. We describe the discovery of dynamic covalent enantioselective metal‐complex‐catalyzed 1,3‐dipolar cycloaddition reactions. We have developed a stereodivergent tandem synthesis of structurally and stereochemically complex molecules that generates eight stereocenters with high diastereo‐ and enantioselectivity through asymmetric reversible bond formation in a dynamic process in two consecutive Ag‐catalyzed 1,3‐dipolar cycloadditions of azomethine ylides with electron‐poor olefins. Time‐dependent reversible dynamic covalent‐bond formation gives enantiodivergent and diastereodivergent access to structurally complex double cycloadducts with high selectivity from a common set of reagents.
Collapse
Affiliation(s)
- Okan Yildirim
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technichal University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Michael Grigalunas
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany
| | - Lukas Brieger
- Technichal University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Carsten Strohmann
- Technichal University Dortmund, Faculty of Chemistry, Inorganic Chemistry, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| | - Andrey P Antonchick
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technichal University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany.,Nottingham Trent University, Department of Chemistry and Forensics, Cifton Lane, NG11 8NS, Nottingham, UK
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany.,Technichal University Dortmund, Faculty of Chemistry, Chemical Biology, Otto-Hahn-Strasse 6, 44221, Dortmund, Germany
| |
Collapse
|