1
|
Shi YH, Jiang WC, Wu W, Xu LY, Cheng HL, Zeng J, Wang SY, Zhao Y, Xu ZH, Zhang GQ. Colorimetric sensor array for identifying antioxidants based on pyrolysis-free synthesis of Fe-N/C single-atom nanozymes. Talanta 2024; 279:126621. [PMID: 39079437 DOI: 10.1016/j.talanta.2024.126621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/20/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024]
Abstract
Iron-anchored nitrogen/doped carbon single-atom nanozymes (Fe-N/C), which possess homogeneous active sites and adjustable catalytic environment, represent an exemplary model for investigating the structure-function relationship and catalytic activity. However, the development of pyrolysis-free synthesis technique for Fe-N/C with adjustable enzyme-mimicking activity still presents a significant challenge. Herein, Fe-N/C anchored three carrier morphologies were created via a pyrolysis-free approach by covalent organic polymers. The peroxidase-like activity of these Fe-N/C nanozymes was regulated via the pores of the anchored carrier, resulting in varying electron transfer efficiency due to disparities in contact efficacy between substrates and catalytic sites within diverse microenvironments. Additionally, a colorimetric sensor array for identifying antioxidants was developed: (1) the Fe-N/C catalytically oxidized two substrates TMB and ABTS, respectively; (2) the development of a colorimetric sensor array utilizing oxTMB and oxABTS as sensing channels enabled accurate discrimination of antioxidants such as ascorbic acid (AsA), glutathione (GSH), cysteine (Cys), gallic acid (GA), and caffeic acid (CA). Subsequently, the sensor array underwent rigorous testing to validate its performance, including assessment of antioxidant mixtures and individual antioxidants at varying concentrations, as well as target antioxidants and interfering substances. In general, the present study offered valuable insights into the active origin and rational design of nanozyme materials, and highlighting their potential applications in food analysis.
Collapse
Affiliation(s)
- Yu-Han Shi
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Wen-Cai Jiang
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Wei Wu
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Li-Yao Xu
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Hui-Ling Cheng
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Jing Zeng
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Si-Yan Wang
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Yan Zhao
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China.
| | - Zhi-Hong Xu
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China.
| | - Guo-Qi Zhang
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, PR China; Food Microbiology Key Laboratory of Sichuan Province, School of Food and Bioengineering, Xihua University, Chengdu, Sichuan, 610039, PR China.
| |
Collapse
|
2
|
Feng JD, Zhang WD, Gu ZG. Covalent Organic Frameworks for Electrocatalysis: Design, Applications, and Perspectives. Chempluschem 2024; 89:e202400069. [PMID: 38955991 DOI: 10.1002/cplu.202400069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/31/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Covalent organic frameworks (COFs) are an innovative class of crystalline porous polymers composed of light elements such as C, N, O, etc., linked by covalent bonds. The distinctive properties of COFs, including designable building blocks, large specific surface area, tunable pore size, abundant active sites, and remarkable stability, have led their widespread applications in electrocatalysis. In recent years, COF-based electrocatalysts have made remarkable progress in various electrocatalytic fields, including the hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, nitrogen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. This review begins with an introduction to the design and synthesis strategies employed for COF-based electrocatalysts. These strategies include heteroatom doping, metalation of COF and building monomers, encapsulation of active sites within COF pores, and the development of COF-based derived materials. Subsequently, a systematic overview of the recent advancements in the application of COF-based catalysts in electrocatalysis is presented. Finally, the review discusses the main challenges and outlines possible avenues for the future development of COF-based electrocatalysts.
Collapse
Affiliation(s)
- Jing-Dong Feng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Wen-Da Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| | - Zhi-Guo Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P.R. China
| |
Collapse
|
3
|
Shi YH, Jiang WC, Zeng J, Wang SY, Wu W, Xie SD, Zhao Y, Xu ZH, Zhang GQ. Non-pyrolytic synthesis of laccase-like iron based single-atom nanozymes for highly efficient dual-mode colorimetric and fluorescence detection of epinephrine. Anal Chim Acta 2024; 1322:343031. [PMID: 39182985 DOI: 10.1016/j.aca.2024.343031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024]
Abstract
Single-atom nanozymes have garnered significant attention due to their exceptional atom utilization and ability to establish well-defined structure-activity relationships. However, conventional pyrolytic synthesis methods pose challenges such as high energy consumption and random local environments at the active sites, while achieving non-pyrolytic synthesis of single-atom nanozymes remains a formidable technical hurdle. The present study focuses on the synthesis of laccase-like iron-based single-atom nanozymes (Fe-SAzymes) using a non-pyrolysis method facilitated by microwave irradiation. Under low iron loading conditions, Fe-SAzymes exhibited significantly enhanced laccase activity (12.1 U/mg), surpassing that of laccase by 24-fold. Moreover, Fe-SAzymes demonstrated efficient catalytic oxidation of epinephrine (EP), enabling its colorimetric detection. Owing to the remarkable laccase activity of Fe-SAzymes, the conventional nanozymes EP detection time was reduced from 60 min to 20 min, with an impressive low detection limit as low as 2.95 μM. In addition, an ultra-sensitive fluorescence method for EP detection was developed using the internal filter effect of EP oxidation products and CDs combined with carbon dots probe. The detection limit of fluorescence method was only 0.39 μM. Therefore, an visual, fast, and highly sensitive dual-mode EP detection strategy has great potential in the clinical diagnostic industry.
Collapse
Affiliation(s)
- Yu-Han Shi
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Wen-Cai Jiang
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Jing Zeng
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Si-Yan Wang
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Wei Wu
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Shu-Dan Xie
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China
| | - Yan Zhao
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China.
| | - Zhi-Hong Xu
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China.
| | - Guo-Qi Zhang
- Department of Chemisty, School of Science, Xihua University, Chengdu, 610039, PR China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, PR China.
| |
Collapse
|
4
|
Salerno G, Bettucci O, Manfredi N, Stendardo L, Veronese E, Metrangolo P, Abbotto A. Tailored Metal-Porphyrin Based Molecular Electrocatalysts for Enhanced Artificial Nitrogen Fixation to Green Ammonia. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300345. [PMID: 39006055 PMCID: PMC11237181 DOI: 10.1002/gch2.202300345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/15/2024] [Indexed: 07/16/2024]
Abstract
Electrochemical nitrogen reduction (E-NRR) is one of the most promising approaches to generate green NH3. However, scarce ammonia yields and Faradaic efficiencies (FE) still limit their use on a large scale. Thus, efforts are focusing on different E-NRR catalyst structures and formulations. Among present strategies, molecular electrocatalysts such as metal-porphyrins emerge as an encouraging option due to their planar structures which favor the interaction involving the metal center, responsible for adsorption and activation of nitrogen. Nevertheless, the high hydrophobicity of porphyrins limits the aqueous electrolyte-catalyst interaction lowering yields. This work introduces a new class of metal-porphyrin based catalysts, bearing hydrophilic tris(ethyleneglycol) monomethyl ether chains (metal = Cu(II) and CoII)). Experimental results show that the presence of hydrophilic chains significantly increases ammonia yields and FE, supporting the relevance of fruitful catalyst-electrolyte interactions. This study also investigates the use of hydrophobic branched alkyl chains for comparison, resulting in similar performances with respect to the unsubstituted metal-porphyrin, taken as a reference, further confirming that the appropriate design of electrocatalysts carrying peripheral hydrophilic substituents is able to improve device performances in the generation of green ammonia.
Collapse
Affiliation(s)
- Giorgia Salerno
- Department of Materials Science and Milano‐Bicocca Solar Energy Research Center (MIB‐SOLAR)University of Milano‐BicoccaVia Cozzi 55MilanoI‐20125Italy
- Department of Information and Electrical Engineering and Applied Mathematics (DIEM)University of SalernoInvariante 12/B, Via Giovanni Paolo II, 132Fisciano (SA)I‐84084Italy
| | - Ottavia Bettucci
- Department of Materials Science and Milano‐Bicocca Solar Energy Research Center (MIB‐SOLAR)University of Milano‐BicoccaVia Cozzi 55MilanoI‐20125Italy
| | - Norberto Manfredi
- Department of Materials Science and Milano‐Bicocca Solar Energy Research Center (MIB‐SOLAR)University of Milano‐BicoccaVia Cozzi 55MilanoI‐20125Italy
| | - Luca Stendardo
- Department of Materials Science and Milano‐Bicocca Solar Energy Research Center (MIB‐SOLAR)University of Milano‐BicoccaVia Cozzi 55MilanoI‐20125Italy
| | - Eleonora Veronese
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. MancinelliMilano20131Italy
| | - Pierangelo Metrangolo
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”Politecnico di MilanoVia L. MancinelliMilano20131Italy
| | - Alessandro Abbotto
- Department of Materials Science and Milano‐Bicocca Solar Energy Research Center (MIB‐SOLAR)University of Milano‐BicoccaVia Cozzi 55MilanoI‐20125Italy
| |
Collapse
|
5
|
Shu C, Zhang W, Zhan J, Yu F. Anchoring covalent organic polymers on supports with tunable functional groups boosting the oxygen reduction performance under pH-universal conditions. J Colloid Interface Sci 2024; 661:923-929. [PMID: 38330664 DOI: 10.1016/j.jcis.2024.01.218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
Iron phthalocyanine (FePc) is an attractive nonprecious metal candidate for electrocatalytic oxygen reduction reaction (ORR). However, its low catalytic performance under acidic and neutral conditions limits its practical application. Herein, the FePc-based covalent organic polymers (COPFePc) polymerized in situ on the functionalized multiwalled carbon nanotubes (R-MWCNT) containing different electron-withdrawing or electron-donating groups (COPFePc/R-MWCNT, R = COOH, OH or NH2) were synthesized for ORR. Among them, COPFePc/COOH-MWCNT exhibited the best ORR performance under pH-universal conditions (acidic, neutral, and alkaline). Density-functional theory (DFT) calculations demonstrate that the electron-withdrawing or electron-donating effect of the functional groups in COPFePc/R-MWCNT causes charge redistribution of the active center Fe. The COOH functional group with an electron-withdrawing ability shifts the d-band center of Fe away from the Fermi energy level and reduces the binding strength of oxygen-containing intermediates, accelerating the ORR kinetics and optimizing the catalytic activity.
Collapse
Affiliation(s)
- Chonghong Shu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Wenlin Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China.
| | - Jiayu Zhan
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
6
|
Yu J, Zhang X, Jiang R, He W, Xu M, Xu X, Xiang Q, Yin C, Xiang Z, Ma C, Liu Y, Li X, Lu C. Iron-Based Catalysts with Oxygen Vacancies Obtained by Facile Pyrolysis for Selective Hydrogenation of Nitrobenzene. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8603-8615. [PMID: 38332505 DOI: 10.1021/acsami.3c14353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
The development of preparation strategies for iron-based catalysts with prominent catalytic activity, stability, and cost effectiveness is greatly significant for the field of catalytic hydrogenation but still remains challenging. Herein, a method for the preparation of iron-based catalysts by the simple pyrolysis of organometallic coordination polymers is described. The catalyst Fe@C-2 with sufficient oxygen vacancies obtained in specific coordination environment exhibited superior nitro hydrogenation performance, acid resistance, and reaction stability. Through solvent effect experiments, toxicity experiments, TPSR, and DFT calculations, it was determined that the superior activity of the catalyst was derived from the contribution of sufficient oxygen vacancies to hydrogen activation and the good adsorption ability of FeO on substrate molecules.
Collapse
Affiliation(s)
- Jiaxin Yu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Xiyuan Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Ruikun Jiang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Wei He
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Miaoqi Xu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Xiaotian Xu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Qiuyuan Xiang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Chunyu Yin
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Zhenli Xiang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Chaofan Ma
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Yi Liu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Chunshan Lu
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| |
Collapse
|
7
|
Li X, Chen T, Liu D, Mu Z, Yang B, Xiang Z. Pyrolysis-Free Covalent Organic Polymers Directly for Oxygen Electrocatalysis. Acc Chem Res 2024. [PMID: 38319799 DOI: 10.1021/acs.accounts.3c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
ConspectusOxygen electrode catalysis is crucial for the efficient operation of clean energy devices, such as proton exchange membrane fuel cells (PEMFCs) and Zn-air batteries (ZABs). However, sluggish oxygen electrocatalysis kinetics in these infrastructures put forward impending requirements toward seeking efficient oxygen-electrode catalytic materials with a clear active-site configuration and geometrical morphology to study in depth the structure-property relationship of materials. Although transition-metal-nitrogen-carbon (M-N-C) electrocatalysts have shown great prospects currently and potential in oxygen electrocatalysis as promising platinum group metal-free catalysts, the universal pyrolysis operation in the preparation process often inevitably brings about randomness and diversity of active sites, for which it is difficult to determine the structure-activity relationship, understand the catalytic mechanism, and further improve facilities performance.Covalent organic polymers (COPs) are a class of molecular geometric constructs linked by irreversible kinetic covalent bonds through reticular chemistry. Unique structural tailorability, diverse design principles, and inherent well-defined construction in pristine COPs naturally provide a great platform to study the structure-property relationship of active sites and exhibit unique features for application. In this Account, we afford an overview of our recent attempts toward the utilization of COP materials as free-pyrolysis oxygen electrode catalysts, enabling accurate construction of oxygen electrodes with clear active site and geometrical morphology characteristics in PEMFC and ZAB devices yet without enduring any high-temperature pyrolysis treatments. Starting from the needs of modern electrocatalysis, we discussed the unique properties for the design and development of pyrolysis-free pristine COPs as high-performance oxygen electrode catalytic materials in terms of intrinsic electronic structure properties and membrane-electrode-assembly (MEA) application distinguished from pyrolysis M-N-C catalysts. First, the pyrolysis-free COP catalysts provide a viable molecular model catalyst platform, which is conducive to mechanism comprehension for the relationship between catalyst activity and structure. Second, the simple and low-energy consumption synthesis process for pyrolysis-free catalysts lays the foundation for the large-scale production of catalysts, oxygen electrodes, and even the entire stack assembly without considering numerous complicated factors as traditional pyrolytic catalysts. Besides, most traditional COPs are difficult to dissolve and solution process due to their cross-linked skeleton. Our newly developed COP materials with solution processability bring about new opportunities to the process and assemble oxygen electrodes into device. These properties are unparalleled and have not been systematically reviewed and analyzed by any research reports so far. Here, we have clarified the specific advantage and potential of pyrolysis-free COP materials as oxygen electrodes applied in PEMFC and ZAB devices in response to the latest progress and requirements of current electrocatalytic research.
Collapse
Affiliation(s)
- Xueli Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Tengge Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Di Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhenjie Mu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Bolong Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
8
|
Zhu X, Liu G, Tao X, Huang P, Wang Q, Chen G, Yang J, Zhang L, Zhou Y. Role of the Metal Precursor in Preparing Dual-Atom Catalysts for the Oxygen Reduction Reaction. ACS OMEGA 2023; 8:41708-41717. [PMID: 37970012 PMCID: PMC10633877 DOI: 10.1021/acsomega.3c06005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 11/17/2023]
Abstract
Dual-atom catalysts (DACs) have arisen as a novel type of heterogeneous catalyst that extends from single-atom catalysts (SACs) by incorporating two kinds of metals. These materials have demonstrated enhanced performance when compared to SACs. The choice of metal precursors plays an important role in the synthesis of DACs. Here, we choose Fe and Co as DAC models and study types, contents, molar ratios of two precursors, and oxygen reduction reaction (ORR) activity. The Fe,Co DACs were synthesized by an adsorption-annealing approach, using nitrogen-doped graphitic carbon (NC) as the support. As a result, the adsorption ability of metal precursors on the support determines the metal loadings in Fe and Co DACs, leading to differences in ORR performance. The Fe precursors win the adsorption competitions in most cases, resulting in a much higher loading than that of Co precursors. Importantly, it is difficult to increase the precursor content by simply increasing the initial amount. Choosing the right combination of metal precursors, such as ferrocene and cobalt chloride, can yield Fe,Co DACs with enhanced ORR performance..
Collapse
Affiliation(s)
- Xiu Zhu
- School
of Materials Science and Engineering, Jiangsu
University, Zhenjiang 212013, Jiangsu, China
| | - Genlin Liu
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Xiafang Tao
- School
of Materials Science and Engineering, Jiangsu
University, Zhenjiang 212013, Jiangsu, China
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Pengwei Huang
- School
of Materials Science and Engineering, Jiangsu
University, Zhenjiang 212013, Jiangsu, China
| | - Qing Wang
- Institute
for Catalysis, Hokkaido University, Kita 21-10, Sapporo 001-0021, Japan
| | - Guangbo Chen
- Faculty
of Chemistry and Food Chemistry &; Center for Advancing Electronics
Dresden (cfaed), Technische Universität
Dresden, Dresden 01062, Germany
| | - Juan Yang
- School
of Materials Science and Engineering, Jiangsu
University, Zhenjiang 212013, Jiangsu, China
| | - Liang Zhang
- Institute
of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, China
| | - Yazhou Zhou
- School
of Materials Science and Engineering, Jiangsu
University, Zhenjiang 212013, Jiangsu, China
- Max
Planck Institute for Polymer Research, Mainz 55128, Germany
| |
Collapse
|
9
|
Wang Z, Han Y, Li B, Peng P, Zang SQ. Regulation of Electrocatalytic Behavior by Axial Oxygen Enhances the Catalytic Activity of CoN 4 Sites for CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301797. [PMID: 37093211 DOI: 10.1002/smll.202301797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Recent studies have found that the existence of oxygen around the active sites may be essential for efficient electrochemical CO2 -to-CO conversion. Hence, this work proposes the modulation of oxygen coordination and investigates the as-induced catalytic behavior in CO2 RR. It designs and synthesizes conjugated phthalocyanine frameworks catalysts (CPF-Co) with abundant CoN4 centers as an active source, and subsequently modifies the electronic structure of CPF-Co by introducing graphene oxide (GO) with oxygen-rich functional groups. A systematic study reveals that the axial coordination between oxygen and the catalytic sites could form an optimized O-CoN4 structure to break the electron distribution symmetry of Co, thus reducing the energy barrier to the activation of CO2 to COOH*. Meanwhile, by adjusting the content of oxygen, the proper supports can also facilitate the charge transfer efficiency between the matrix layer and the catalytic sites. The optimized CPF-Co@LGO exhibits a high TOF value (2.81 s-1 ), CO selectivity (97.6%) as well as stability (24 h) at 21 mA cm-2 current density. This work reveals the modulation of oxygen during CO2 RR and provides a novel strategy for the design of efficient electrocatalysts, which may inspire new exploration and principles for CO2 RR.
Collapse
Affiliation(s)
- Zhaodi Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Ye Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, P. R. China
| | - Peng Peng
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
10
|
Zaman S, Chen S. A perspective on inaccurate measurements in oxygen reduction and carbon dioxide reduction reactions. J Catal 2023. [DOI: 10.1016/j.jcat.2023.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
11
|
Zang Y, Lu DQ, Wang K, Li B, Peng P, Lan YQ, Zang SQ. A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting. Nat Commun 2023; 14:1792. [PMID: 36997545 PMCID: PMC10063682 DOI: 10.1038/s41467-023-37530-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Catalysts capable of electrochemical overall water splitting in acidic, neutral, and alkaline solution are important materials. This work develops bifunctional catalysts with single atom active sites through a pyrolysis-free route. Starting with a conjugated framework containing Fe sites, the addition of Ni atoms is used to weaken the adsorption of electrochemically generated intermediates, thus leading to more optimized energy level sand enhanced catalytic performance. The pyrolysis-free synthesis also ensured the formation of well-defined active sites within the framework structure, providing ideal platforms to understand the catalytic processes. The as-prepared catalyst exhibits efficient catalytic capability for electrochemical water splitting in both acidic and alkaline electrolytes. At a current density of 10 mA cm-2, the overpotential for hydrogen evolution and oxygen evolution is 23/201 mV and 42/194 mV in 0.5 M H2SO4 and 1 M KOH, respectively. Our work not only develops a route towards efficient catalysts applicable across a wide range of pH values, it also provides a successful showcase of a model catalyst for in-depth mechanistic insight into electrochemical water splitting.
Collapse
Affiliation(s)
- Ying Zang
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Di-Qiu Lu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Kun Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Bo Li
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Peng Peng
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Ya-Qian Lan
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
12
|
Muuli K, Lyu X, Mooste M, Käärik M, Zulevi B, Leis J, Yu H, Cullen DA, Serov A, Tammeveski K. Outstanding Platinum Group Metal-free Bifunctional Catalysts for Rechargeable Zinc-Air Batteries. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
13
|
Li X, Liu Q, Yang B, Liao Z, Yan W, Xiang Z. An Initial Covalent Organic Polymer with Closed-F Edges Directly for Proton-Exchange-Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204570. [PMID: 35863906 DOI: 10.1002/adma.202204570] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Covalent organic polymers (COPs) are a class of rising electrocatalysts for the oxygen reduction reaction (ORR) due to the atomically metrical control of the organic molecular components along with highly architectural robustness and thermodynamic stability even in acid or alkaline media. However, the direct application of pristine COPs as acidic ORR electrocatalysts, especially in device manner, e.g., in proton-exchange-membrane fuel cells (PEMFCs), remains a big challenge. Currently, the decoration toward electronic structures of active sites is considered a vital pathway to enhancing the acidic ORR activity of carbon-based electrocatalysts. Here, an initial F-decorated fully closed π-conjugated quasi-phthalocyanine COP (denoted as COPBTC -F) is reported. The introduction of the closed-F edges stepwise drags more electrons from FeN4 sites in COPBTC -F into the catalyst margin, which weakens the occupied numbers of bonding orbitals between COPBTC -F and OH* intermediates at the rate-determining step, exhibiting over five times intrinsic performance beyond the counterpart without F functionalities (termed as COPBTC ). Significantly, the maximum power density utilizing COPBTC -F as a cathode catalyst in PEMFCs is remarkably increased by an order of magnitude compared with COPBTC , which is a stride forward among catalysts based on a pyrolysis-free conjugated-polymer network in device manner to date.
Collapse
Affiliation(s)
- Xueli Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qingbin Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Bolong Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhijian Liao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- College of Marine Science and Technology, Hainan Tropical Ocean University, Sanya, 572022, P. R. China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, P. R. China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
14
|
Lei H, Zhang Q, Liang Z, Guo H, Wang Y, Lv H, Li X, Zhang W, Apfel UP, Cao R. Metal-Corrole-Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2022; 61:e202201104. [PMID: 35355376 DOI: 10.1002/anie.202201104] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Indexed: 12/21/2022]
Abstract
Integrating molecular catalysts into designed frameworks often enables improved catalysis. Compared with porphyrin-based frameworks, metal-corrole-based frameworks have been rarely developed, although monomeric metal corroles are usually more efficient than porphyrin counterparts for the electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). We herein report on metal-corrole-based porous organic polymers (POPs) as ORR and OER electrocatalysts. M-POPs (M=Mn, Fe, Co, Cu) were synthesized by coupling metal 10-phenyl-5,15-(4-iodophenyl)corrole with tetrakis(4-ethynylphenyl)methane. Compared with metal corrole monomers, M-POPs displayed significantly enhanced catalytic activity and stability. Co-POP outperformed other M-POPs by achieving four-electron ORR with a half-wave potential of 0.87 V vs. RHE and reaching 10 mA cm-2 OER current density at 340 mV overpotential. This work is unparalleled to develop and explore metal-corrole-based POPs as electrocatalysts.
Collapse
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoyuan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Anorganische Chemie I, Universitätsstrasse 150, 44801, Bochum, Germany.,Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
15
|
Li X, Liu D, Liu Q, Xiang Z. A Pyrolysis-Free Method Toward Large-Scale Synthesis of Ultra-Highly Efficient Bifunctional Oxygen Electrocatalyst for Zinc-Air Flow Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201197. [PMID: 35491510 DOI: 10.1002/smll.202201197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Indexed: 06/14/2023]
Abstract
The transition-metal nitrogen-carbon (M-N-C) catalysts, as one of the optimal bifunctional oxygen catalysts, are vital for cathodic oxygen electrode of Zn-based air flow batteries (ZAFBs). However, chemical complexity of M-N-C catalysts prepared via the traditional pyrolytic process increases the difficulties of precise control toward configuration and repeatability, especially in large-scale synthesis. Herein, a bifunctional oxygen catalyst via a pyrolysis-free approach based on closed π-conjugated covalent organic polymers (COPs, microwave synthesis) is developed, which inherits the advantage of the well-defined configuration in an atomic manner. Profited from distinct catalytic centers and strong electronic coupling at the interface between COP and layered double hydroxides, the as-synthesized catalyst not only more easily permits large quantity production (>1 kg per batch), but also maintains an ultrahigh bifunctional activity and a long cycle stability even after scale synthesis (ΔE [Ej10 - E1/2 ] = 591 mV; energy efficiency drops by only 2.02% after 1200 cycles), which overwhelmingly exceeds the benchmark Pt/C+IrO2 and the state-of-the-art pyrolytic bifunctional M-N-C oxygen catalysts.
Collapse
Affiliation(s)
- Xueli Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Di Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qingbin Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
16
|
Lei H, Zhang Q, Liang Z, Guo H, Wang Y, Lv H, Li X, Zhang W, Apfel U, Cao R. Metal‐Corrole‐Based Porous Organic Polymers for Electrocatalytic Oxygen Reduction and Evolution Reactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Hongbo Guo
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Yabo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Haoyuan Lv
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Ulf‐Peter Apfel
- Ruhr-Universität Bochum Fakultät für Chemie und Biochemie Anorganische Chemie I Universitätsstrasse 150 44801 Bochum Germany
- Fraunhofer UMSICHT Osterfelder Strasse 3 46047 Oberhausen Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|