1
|
Küssner K, Ugone V, Sanna D, Cziferszky M. In-Depth Mass Spectrometry Study of Vanadium(IV) Complexes with Model Peptides. Inorg Chem 2024; 63:17785-17796. [PMID: 39264738 PMCID: PMC11423397 DOI: 10.1021/acs.inorgchem.4c02683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Investigating the speciation of vanadium complexes in the presence of potential biomolecular targets under physiological conditions remains challenging, and further experimental techniques are needed to better understand the mechanism of action of potential metallodrugs. The interaction of two model peptides (angiotensin I and angiotensin II) with three well-known oxidovanadium(IV) compounds with antidiabetic and/or anticancer activity, [VIVO(pic)2(H2O)], [VIVO(ma)2], and [VIVO(dhp)2] (where pic, ma, and dhp are picolinate, maltolate, and 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate anions, respectively), was investigated by ESI-MS/MS (electrospray ionization tandem mass spectrometry) and complemented by EPR (electron paramagnetic resonance) spectroscopy measurements and theoretical calculations at the DFT (density functional theory) level. The results demonstrated that vanadium-peptide bonds are preserved after HCD (higher energy collisional dissociation) fragmentation, allowing for the identification of binding sites through a detailed analysis of the fragmentation spectra. Angiotensin I (AT1) and angiotensin II (AT2) exhibited different coordination behaviors. AT1, with two His residues (His6, His9), prefers to form [AT1 + VOL] adducts with both histidine residues coordinated to the metal ion, while AT2, which has only His6, can bind the metal in a monodentate fashion, forming also [AT2 + VOL2] adducts. Insights from this study pave the way to ESI-MS/MS investigations of more complex systems, including target proteins and further development of vanadium-based drugs.
Collapse
Affiliation(s)
- Kira Küssner
- Institute for Pharmacy, Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck A-6020, Austria
| | - Valeria Ugone
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Traversa La Crucca 3, Sassari 07040, Italy
| | - Daniele Sanna
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Traversa La Crucca 3, Sassari 07040, Italy
| | - Monika Cziferszky
- Institute for Pharmacy, Pharmaceutical Chemistry, Department of Chemistry and Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck A-6020, Austria
| |
Collapse
|
2
|
Tremlett WDJ, Crowley JD, Wright LJ, Hartinger CG. Towards building blocks for metallosupramolecular structures: non-symmetrically-functionalised ferrocenyl compounds. Dalton Trans 2024; 53:14742-14751. [PMID: 39158552 DOI: 10.1039/d4dt01646g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Metallosupramolecular architectures formed from metal ions and bridging ligands are increasing in popularity due to their range of applications and ease of self-assembly. Many are able to readily change their shape and/or function in response to an external stimulus and have the ability to encapsulate guest molecules within their internal cavities. Ferrocenyl groups (Fc) have been incorporated previously within the bridging ligands of metallosupramolecular structures due to their ideal attributes brought about by the structural and rotational flexiblity of the two cyclopentadienyl (Cp) rings coordinated to the Fe(II) centre. However, the majority of these Fc-based structures contain symmetrically substituted Cp rings. We report the synthesis and characterisation of non-symmetrically functionalised Fc-based ligands incorporating both N,N' and NHC-donor groups chosen for their differing coordination properties. Both substituents were designed to coordinate to a single metal centre with the dissimilar coordination properties of each donor group facilitating stimulus-induced dissociation/association of one of the substituents as an opening/closing mechanism. Preliminary investigations into the coordination of these Fc-based ligands to a [Ru(η6-p-cymene)]2+ moiety indicated complexation through a mixture of either a bi- or tridentate fashion, as alluded by 1H NMR spectroscopy and mass spectrometry. Density functional theory (DFT) calculations revealed the Fc-based ligands adopt a syn conformation driven by H-bonding and π-interactions between the two Cp substituents, which facilitate coordination of both donor groups towards the metal centre.
Collapse
Affiliation(s)
- William D J Tremlett
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - James D Crowley
- Department of Chemistry, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - L James Wright
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
3
|
Tito G, Ferraro G, Pisanu F, Garribba E, Merlino A. Non-Covalent and Covalent Binding of New Mixed-Valence Cage-like Polyoxidovanadate Clusters to Lysozyme. Angew Chem Int Ed Engl 2024; 63:e202406669. [PMID: 38842919 DOI: 10.1002/anie.202406669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
The high-resolution X-ray structures of the model protein lysozyme in the presence of the potential drug [VIVO(acetylacetonato)2] from crystals grown in 1.1 M NaCl, 0.1 M sodium acetate at pH 4.0 reveal the binding to the protein of different and unexpected mixed-valence cage-like polyoxidovanadates (POVs): [V15O36(OH2)]5-, which non-covalently interacts with the lysozyme surface, [V15O33(OH2)]+ and [V20O51(OH2)]n- (this latter based on an unusual {V18O43} cage) which covalently bind the protein. EPR spectroscopy confirms the partial oxidation of VIV to VV and the formation of mixed-valence species. The results indicate that the interaction with proteins can stabilize the structure of unexpected - both for dimension and architecture - POVs, not observed in aqueous solution.
Collapse
Affiliation(s)
- Gabriella Tito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| |
Collapse
|
4
|
Eade L, Sullivan MP, Allison TM, Goldstone DC, Hartinger CG. Not All Binding Sites Are Equal: Site Determination and Folding State Analysis of Gas-Phase Protein-Metallodrug Adducts. Chemistry 2024; 30:e202400268. [PMID: 38472116 DOI: 10.1002/chem.202400268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/14/2024]
Abstract
Modern approaches in metallodrug research focus on compounds that bind protein targets rather than DNA. However, the identification of protein targets and binding sites is challenging. Using intact mass spectrometry and proteomics, we investigated the binding of the antimetastatic agent RAPTA-C to the model proteins ubiquitin, cytochrome c, lysozyme, and myoglobin. Binding to cytochrome c and lysozyme was negligible. However, ubiquitin bound up to three Ru moieties, two of which were localized at Met1 and His68 as [Ru(cym)], and [Ru(cym)] or [Ru(cym)(PTA)] adducts, respectively. Myoglobin bound up to four [Ru(cym)(PTA)] moieties and five sites were identified at His24, His36, His64, His81/82 and His113. Collision-induced unfolding (CIU) studies via ion-mobility mass spectrometry allowed measuring protein folding as a function of collisional activation. CIU of protein-RAPTA-C adducts showed binding of [Ru(cym)] to Met1 caused a significant compaction of ubiquitin, likely from N-terminal S-Ru-N chelation, while binding of [Ru(cym)(PTA)] to His residues of ubiquitin or myoglobin induced a smaller effect. Interestingly, the folded state of ubiquitin formed by His functionalization was more stable than Met1 metalation. The data suggests that selective metalation of amino acids at different positions on the protein impacts the conformation and potentially the biological activity of anticancer compounds.
Collapse
Affiliation(s)
- Liam Eade
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Timothy M Allison
- Biomolecular Interaction Centre, School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| |
Collapse
|
5
|
Ronga L, Tolbatov I, Giorgi E, Pisarek P, Enjalbal C, Marrone A, Tesauro D, Lobinski R, Marzo T, Cirri D, Pratesi A. Mechanistic Evaluations of the Effects of Auranofin Triethylphosphine Replacement with a Trimethylphosphite Moiety. Inorg Chem 2023; 62:10389-10396. [PMID: 37342994 PMCID: PMC10324304 DOI: 10.1021/acs.inorgchem.3c01280] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Indexed: 06/23/2023]
Abstract
Auranofin, a gold(I)-based complex, is under clinical trials for application as an anticancer agent for the treatment of nonsmall-cell lung cancer and ovarian cancer. In the past years, different derivatives have been developed, modifying gold linear ligands in the search for new gold complexes endowed with a better pharmacological profile. Recently, a panel of four gold(I) complexes, inspired by the clinically established compound auranofin, was reported by our research group. As described, all compounds possess an [Au{P(OMe)3}]+ cationic moiety, in which the triethylphosphine of the parent compound auranofin was replaced with an oxygen-rich trimethylphosphite ligand. The gold(I) linear coordination geometry was complemented by Cl-, Br-, I-, and the auranofin-like thioglucose tetraacetate ligand. As previously reported, despite their close similarity to auranofin, the panel compounds exhibited some peculiar and distinctive features, such as lower log P values which can induce relevant differences in the overall pharmacokinetic profiles. To get better insight into the P-Au strength and stability, an extensive study was carried out for relevant biological models, including three different vasopressin peptide analogues and cysteine, using 31P NMR and LC-ESI-MS. A DFT computational study was also carried out for a better understanding of the theoretical fundamentals of the disclosed differences with regard to triethylphosphine parent compounds.
Collapse
Affiliation(s)
- Luisa Ronga
- Université
de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
| | - Iogann Tolbatov
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Paisos Catalans 16, 43007 Tarragona, Spain
| | - Ester Giorgi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Paulina Pisarek
- Université
de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
| | - Christine Enjalbal
- IBMM,
Université de Montpellier, CNRS, ENSCM, UMR 5247, 34293 Montpellier, France
| | - Alessandro Marrone
- Department
of Pharmacy, University “G. D’Annunzio”
Chieti-Pescara, Via dei
Vestini, 31, 66100 Chieti, Italy
| | - Diego Tesauro
- Department
of Pharmacy and CIRPeB, Università
degli Studi di Napoli Federico II, 80131 Naples, Italy
| | - Ryszard Lobinski
- Université
de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, 64053 Pau, France
- Chair
of Analytical Chemistry, Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Tiziano Marzo
- Department
of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Damiano Cirri
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| | - Alessandro Pratesi
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi 13, 56124 Pisa, Italy
| |
Collapse
|
6
|
Riaz Z, Lee BYT, Stjärnhage J, Movassaghi S, Söhnel T, Jamieson SMF, Shaheen MA, Hanif M, Hartinger CG. Anticancer Ru and Os complexes of N-(4-chlorophenyl)pyridine-2-carbothioamide: Substitution of the labile chlorido ligand with phosphines. J Inorg Biochem 2023; 241:112115. [PMID: 36731369 DOI: 10.1016/j.jinorgbio.2022.112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/11/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Half-sandwich MII(cym)Cl (cym = η6-p-cymene; M = Ru, Os) complexes of pyridinecarbothioamide (PCA) ligands have demonstrated potential as orally active anticancer agents. In order to investigate the impact of the substitution of the labile chlorido ligand with phosphorous donor ligands on the antiproliferative properties, the triphenylphosphine (PPh3) and 1,3,5-triaza-7-phophaadamantane (pta) analogues were prepared and characterized by spectroscopic techniques and the molecular structures of several complexes were determined by X-diffraction analysis. Interestingly, the molecular structures contained the PCA ligand deprotonated, presumably driven by the reduction in overall charge of the complex. Density Functional Theory (DFT) calculations suggested minor energy differences between the protonated and deprotonated forms. The aqueous stability and the reactivity with the amino acids l-histidine and l-cysteine were investigated by 1H NMR spectroscopy of representative examples. The most potent anticancer agents featured Ru or Os centers and a PPh3 ligand and showed IC50 values in the submicromolar range against four cancer cell lines. This suggests that the antiproliferative activity was mainly dependent on the lipophilic properties of the phosphine ligand with PPh3 having a significantly higher clog P value than pta.
Collapse
Affiliation(s)
- Zahid Riaz
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; University of Sargodha, Department of Chemistry, Sargodha 40100, Pakistan
| | - Betty Y T Lee
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Julia Stjärnhage
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand
| | - Sanam Movassaghi
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand
| | - Tilo Söhnel
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - Muhammad Hanif
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington, New Zealand.
| | - Christian G Hartinger
- University of Auckland, School of Chemical Sciences, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
7
|
Tolbatov I, Marrone A, Shepard W, Chiaverini L, Upadhyay Kahaly M, La Mendola D, Marzo T, Ciccone L. Inorganic Drugs as a Tool for Protein Structure Solving and Studies on Conformational Changes. Chemistry 2023; 29:e202202937. [PMID: 36477932 DOI: 10.1002/chem.202202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Inorganic drugs are capable of tight interactions with proteins through coordination towards aminoacidic residues, and this feature is recognized as a key aspect for their pharmacological action. However, the "protein metalation process" is exploitable for solving the phase problem and structural resolution. In fact, the use of inorganic drugs bearing specific metal centers and ligands capable to drive the binding towards the desired portions of the protein target could represent a very intriguing and fruitful strategy. In this context, a theoretical approach may further contribute to solve protein structures and their refinement. Here, we delineate the main features of a reliable experimental-theoretical integrated approach, based on the use of metallodrugs, for protein structure solving.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Alessandro Marrone
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - William Shepard
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | | | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| |
Collapse
|
8
|
Denison M, Ahrens JJ, Dunbar MN, Warmahaye H, Majeed A, Turro C, Kocarek TA, Sevrioukova IF, Kodanko JJ. Dynamic Ir(III) Photosensors for the Major Human Drug-Metabolizing Enzyme Cytochrome P450 3A4. Inorg Chem 2023; 62:3305-3320. [PMID: 36758158 PMCID: PMC10268476 DOI: 10.1021/acs.inorgchem.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Probing the activity of cytochrome P450 3A4 (CYP3A4) is critical for monitoring the metabolism of pharmaceuticals and identifying drug-drug interactions. A library of Ir(III) probes that detect occupancy of the CYP3A4 active site were synthesized and characterized. These probes show selectivity for CYP3A4 inhibition, low cellular toxicity, Kd values as low as 9 nM, and are highly emissive with lifetimes up to 3.8 μs in cell growth media under aerobic conditions. These long emission lifetimes allow for time-resolved gating to distinguish probe from background autofluorescence from growth media and live cells. X-ray crystallographic analysis revealed structure-activity relationships and the preference or indifference of CYP3A4 toward resolved stereoisomers. Ir(III)-based probes show emission quenching upon CYP3A4 binding, then emission increases following displacement with CYP3A4 inhibitors or substrates. Importantly, the lead probes inhibit the activity of CYP3A4 at concentrations as low as 300 nM in CYP3A4-overexpressing HepG2 cells that accurately mimic human hepatic drug metabolism. Thus, the Ir(III)-based agents show promise as novel chemical tools for monitoring CYP3A4 active site occupancy in a high-throughput manner to gain insight into drug metabolism and drug-drug interactions.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Justin J Ahrens
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Marilyn N Dunbar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Habon Warmahaye
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aliza Majeed
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
9
|
Sullivan MP, Adams M, Riisom M, Herbert CD, Tong KKH, Astin JW, Jamieson SMF, Hanif M, Goldstone DC, Hartinger CG. Platinum(terpyridine) complexes with N-heterocyclic carbene co-ligands: high antiproliferative activity and low toxicity in vivo. Dalton Trans 2023; 52:1388-1392. [PMID: 36637059 DOI: 10.1039/d2dt02539f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pt(terpyridine) complexes are well-known DNA intercalators. The introduction of an NHC co-ligand rendered such a complex highly antiproliferative in cancer cells compared to its chlorido derivative. Despite the high potency, zebrafish embryos tolerated the compound well, especially compared to cisplatin. DNA interaction studies support a mode of action related to intercalation.
Collapse
Affiliation(s)
- Matthew P Sullivan
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand. .,School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Muneebah Adams
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Mie Riisom
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Caitlin D Herbert
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kelvin K H Tong
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Jonathan W Astin
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Stephen M F Jamieson
- Auckland Cancer Society Research Centre, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - David C Goldstone
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
10
|
Ruthenium Complex HB324 Induces Apoptosis via Mitochondrial Pathway with an Upregulation of Harakiri and Overcomes Cisplatin Resistance in Neuroblastoma Cells In Vitro. Int J Mol Sci 2023; 24:ijms24020952. [PMID: 36674465 PMCID: PMC9866957 DOI: 10.3390/ijms24020952] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/06/2023] Open
Abstract
Ruthenium(II) complexes with N-heterocyclic carbene (NHC) ligands have recently attracted attention as novel chemotherapeutic agents. The complex HB324 was intensively studied as an apoptosis-inducing compound in resistant cell lines. HB324 induced apoptosis via mitochondrial pathways. Of particular interest is the upregulation of the Harakiri resistance protein, which inhibits the anti-apoptotic and death repressor proteins Bcl-2 (B-cell lymphoma 2) and BCL-xL (B-cell lymphoma-extra large). Moreover, HB324 showed synergistic activity with various established anticancer drugs and overcame resistance in several cell lines, such as neuroblastoma cells. In conclusion, HB324 showed promising potential as a novel anticancer agent in vitro, suggesting further investigations on this and other preclinical ruthenium drug candidates.
Collapse
|
11
|
Tolbatov I, Marrone A. Kinetics of Reactions of Dirhodium and Diruthenium Paddlewheel Tetraacetate Complexes with Nucleophilic Protein Sites: Computational Insights. Inorg Chem 2022; 61:16421-16429. [PMID: 36194651 DOI: 10.1021/acs.inorgchem.2c02516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Recently, dirhodium and diruthenium paddlewheel complexes have drawn attention as perspective anticancer drugs. In this study, the kinetics of reaction of typical paddlewheel scaffolds Rh2(μ-O2CCH3)4(H2O)2, Ru2(μ-O2CCH3)4(H2O)Cl, and [Ru2(μ-O2CCH3)4(HO)Cl]- with protein nucleophiles were investigated by means of the density functional theory. The substitution of axial ligands─water and chloride─by the models of protein residue side chains was analyzed, revealing the binding selectivity displayed by these paddlewheel metal scaffolds. The substitution of water is under a thermodynamic control, in which, although the Arg, Cys-, and Sec- residues are the most favorable, their binding is expected to be scarcely selective in a biological context. On the other hand, the replacement of the axial water with a more stable hydroxo ligand induces the chloride substitution in diRu complexes, which also targets Arg, Cys-, and Sec-, although with a moderately higher activation barrier for any examined protein residue. Additionally, the carried out characterization of the geometrical parameters of the transition states permitted determination of the impact of an increased steric hindrance of diRh and diRu complexes on their protein site selectivity. This study corroborates the idea of the substitution of the acetate ligands with biologically active, but more hindering, carboxylate ligands, in order to yield dual acting metallodrugs. This study allows us to assume that the delivery of diRu paddlewheel complexes in their monoanionic form [Ru2(μ-O2CR)4(OH)Cl]- decorated by the bulky substituents R may constitute an approach to augment the selectivity toward anticancer targets, such as TrxR in tumor cells, although under the condition that such a selectivity is operative only in high pH conditions.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB), Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, 21000 Dijon, France
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
12
|
Tolbatov I, Storchi L, Marrone A. Structural Reshaping of the Zinc-Finger Domain of the SARS-CoV-2 nsp13 Protein Using Bismuth(III) Ions: A Multilevel Computational Study. Inorg Chem 2022; 61:15664-15677. [PMID: 36125417 PMCID: PMC9514052 DOI: 10.1021/acs.inorgchem.2c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/29/2022]
Abstract
The identification of novel therapeutics against the pandemic SARS-CoV-2 infection is an indispensable new address of current scientific research. In the search for anti-SARS-CoV-2 agents as alternatives to the vaccine or immune therapeutics whose efficacy naturally degrades with the occurrence of new variants, the salts of Bi3+ have been found to decrease the activity of the Zn2+-dependent non-structural protein 13 (nsp13) helicase, a key component of the SARS-CoV-2 molecular tool kit. Here, we present a multilevel computational investigation based on the articulation of DFT calculations, classical MD simulations, and MIF analyses, focused on the examination of the effects of Bi3+/Zn2+ exchange on the structure and molecular interaction features of the nsp13 protein. Our calculations confirmed that Bi3+ ions can replace Zn2+ in the zinc-finger metal centers and cause slight but appreciable structural modifications in the zinc-binding domain of nsp13. Nevertheless, by employing an in-house-developed ATOMIF tool, we evidenced that such a Bi3+/Zn2+ exchange may decrease the extension of a specific hydrophobic portion of nsp13, responsible for the interaction with the nsp12 protein. The present study provides for a detailed, atomistic insight into the potential anti-SARS-CoV-2 activity of Bi3+ and, more generally, evidences the hampering of the nsp13-nsp12 interaction as a plausible therapeutic strategy.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut
de Chimie Moleculaire de L’Université de Bourgogne (ICMUB),
Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, Dijon 21000, France
| | - Loriano Storchi
- Dipartimento
di Farmacia, Università“G
D’Annunzio” di Chieti-Pescara, Via Dei Vestini 31, Chieti 66100, Italy
| | - Alessandro Marrone
- Dipartimento
di Farmacia, Università“G
D’Annunzio” di Chieti-Pescara, Via Dei Vestini 31, Chieti 66100, Italy
| |
Collapse
|
13
|
Denison M, Steinke SJ, Majeed A, Turro C, Kocarek TA, Sevrioukova IF, Kodanko JJ. Ir(III)-Based Agents for Monitoring the Cytochrome P450 3A4 Active Site Occupancy. Inorg Chem 2022; 61:13673-13677. [PMID: 35994607 PMCID: PMC9547529 DOI: 10.1021/acs.inorgchem.2c02587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochromes P450 (CYPs) are a superfamily of enzymes responsible for biosynthesis and drug metabolism. Monitoring the activity of CYP3A4, the major human drug-metabolizing enzyme, is vital for assessing the metabolism of pharmaceuticals and identifying harmful drug-drug interactions. Existing probes for CYP3A4 are irreversible turn-on substrates that monitor activity at specific time points in end-point assays. To provide a more dynamic approach, we designed, synthesized, and characterized emissive Ir(III) and Ru(II) complexes that allow monitoring of the CYP3A4 active-site occupancy in real time. In the bound state, probe emission is quenched by the active-site heme. Upon displacement from the active site by CYP3A4-specific inhibitors or substrates, these probes show high emission turn-on. Direct probe binding to the CYP3A4 active site was confirmed by X-ray crystallography. The lead Ir(III)-based probe has nanomolar Kd and high selectivity for CYP3A4, efficient cellular uptake, and low toxicity in CYP3A4-overexpressing HepG2 cells.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aliza Majeed
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Irina F Sevrioukova
- Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
14
|
Li G, Li D, Wu C, Li S, Chen F, Li P, Ko CN, Wang W, Lee SMY, Lin L, Ma DL, Leung CH. Homocysteine-targeting compounds as a new treatment strategy for diabetic wounds via inhibition of the histone methyltransferase SET7/9. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:988-998. [PMID: 35859119 PMCID: PMC9356058 DOI: 10.1038/s12276-022-00804-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/10/2022] [Accepted: 04/27/2022] [Indexed: 11/20/2022]
Abstract
In hypoxia and hyperglycemia, SET7/9 plays an important role in controlling HIF-1α methylation and regulating the transcription of HIF-1α target genes, which are responsible for angiogenesis and wound healing. Here, we report the Ir(III) complex Set7_1a bearing acetonitrile (ACN) ligands as a SET7/9 methyltransferase inhibitor and HIF-1α stabilizer. Interestingly, Set7_1a could engage SET7/9 and strongly inhibit SET7/9 activity, especially after preincubation with homocysteine (Hcy), which is elevated in diabetes. We hypothesize that Set7_1a exchanges ACN subunits for Hcy to disrupt the interaction between SET7/9 and SAM/SAH, which are structurally related to Hcy. Inhibition of SET7/9 methyltransferase activity by Set7_1a led to reduced HIF-1α methylation at the lysine 32 residue, causing increased HIF-1α level and recruitment of HIF-1α target genes that promote angiogenesis, such as VEGF, GLUT1, and EPO, in hypoxia and hyperglycemia. Significantly, Set7_1a improved wound healing in a type 2 diabetic mouse model by activating HIF-1α signaling and downstream proangiogenic factors. To our knowledge, this is the first Hcy-targeting iridium compound shown to be a SET7/9 antagonist that can accelerate diabetic wound healing. More importantly, this study opens a therapeutic avenue for the treatment of diabetic wounds by the inhibition of SET7/9 lysine methyltransferase activity. Animal trials have demonstrated the potential of a new drug strategy to heal the wounds associated with diabetes, especially in the feet,which often lead to chronic damage, sometimes treatable only by amputation. Leung CH and Lin L at the University of Macau, China, and Ma DL at the Hong Kong Baptist University tested the new therapy on a mouse model of type 2 diabetes. The treatment uses a homocysteine-targeting metal complex that inhibits a key enzyme SET7/9 involved in the processes that cause diabetic wounds. The treatment activated a molecular signalling cascade involved in generating the new blood vessels needed for wounds to heal. It could help address the urgent need for better treatments for this serious problem.
Collapse
Affiliation(s)
- Guodong Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.,Zhuhai UM Science and Technology Research Institute, Zhuhai, 519031, China
| | - Dan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chun Wu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Shengnan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Feng Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.,Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ligen Lin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China. .,Zhuhai UM Science and Technology Research Institute, Zhuhai, 519031, China. .,Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Macao, China.
| |
Collapse
|
15
|
Santos MFA, Sciortino G, Correia I, Fernandes ACP, Santos-Silva T, Pisanu F, Garribba E, Costa Pessoa J. Binding of V IV O 2+ , V IV OL, V IV OL 2 and V V O 2 L Moieties to Proteins: X-ray/Theoretical Characterization and Biological Implications. Chemistry 2022; 28:e202200105. [PMID: 35486702 DOI: 10.1002/chem.202200105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 12/16/2022]
Abstract
Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIV O2+ and VIV OL2+ , where L=2,2'-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIV O(picolinato)2 and VV O2 (phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin-VV O2 (phen) and trypsin-VIV O(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium-protein interactions.
Collapse
Affiliation(s)
- Marino F A Santos
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007, Tarragona, Spain
| | - Isabel Correia
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Andreia C P Fernandes
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Teresa Santos-Silva
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,UCIBIO, Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, I-07100, Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, I-07100, Sassari, Italy
| | - João Costa Pessoa
- Centro de Química Estrutural and Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| |
Collapse
|
16
|
Chiaverini L, Cirri D, Tolbatov I, Corsi F, Piano I, Marrone A, Pratesi A, Marzo T, La Mendola D. Medicinal Hypervalent Tellurium Prodrugs Bearing Different Ligands: A Comparative Study of the Chemical Profiles of AS101 and Its Halido Replaced Analogues. Int J Mol Sci 2022; 23:ijms23147505. [PMID: 35886853 PMCID: PMC9317073 DOI: 10.3390/ijms23147505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Ammonium trichloro (dioxoethylene-O,O′) tellurate (AS101) is a potent immunomodulator prodrug that, in recent years, entered various clinical trials and was tested for a variety of potential therapeutic applications. It has been demonstrated that AS101 quickly activates in aqueous milieu, producing TeOCl3−, which likely represents the pharmacologically active species. Here we report on the study of the activation process of AS101 and of two its analogues. After the synthesis and characterization of AS101 and its derivatives, we have carried out a comparative study through a combined experimental and computational analysis. Based on the obtained results, we describe here, for the first time, the detailed reaction that AS101 and its bromido- and iodido-replaced analogues undergo in presence of water, allowing the conversion of the original molecule to the likely true pharmacophore. Interestingly, moving down in the halogens’ group we observed a higher tendency to react, attributable to the ligands’ effect. The chemical and mechanistic implications of these meaningful differences are discussed.
Collapse
Affiliation(s)
- Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy; (D.C.); (A.P.)
| | - Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- Correspondence: (I.T.); (T.M.)
| | - Francesca Corsi
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy; (D.C.); (A.P.)
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
- Correspondence: (I.T.); (T.M.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (F.C.); (I.P.); (D.L.M.)
| |
Collapse
|
17
|
Chiaverini L, Pratesi A, Cirri D, Nardinocchi A, Tolbatov I, Marrone A, Di Luca M, Marzo T, La Mendola D. Anti-Staphylococcal Activity of the Auranofin Analogue Bearing Acetylcysteine in Place of the Thiosugar: An Experimental and Theoretical Investigation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082578. [PMID: 35458776 PMCID: PMC9032686 DOI: 10.3390/molecules27082578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/16/2022]
Abstract
Auranofin (AF, hereafter) is an orally administered chrysotherapeutic agent approved for the treatment of rheumatoid arthritis that is being repurposed for various indications including bacterial infections. Its likely mode of action involves the impairment of the TrxR system through the binding of the pharmacophoric cation [AuPEt3]+. Accordingly, a reliable strategy to expand the medicinal profile of AF is the replacement of the thiosugar moiety with different ligands. Herein, we aimed to prepare the AF analogue bearing the acetylcysteine ligand (AF-AcCys, hereafter) and characterize its anti-staphylococcal activity. Biological studies revealed that AF-AcCys retains an antibacterial effect superimposable with that of AF against Staphylococcus aureus, whereas it is about 20 times less effective against Staphylococcus epidermidis. Bioinorganic studies confirmed that upon incubation with human serum albumin, AF-AcCys, similarly to AF, induced protein metalation through the [AuPEt3]+ fragment. Additionally, AF-AcCys appeared capable of binding the dodecapeptide Ac-SGGDILQSGCUG-NH2, corresponding to the tryptic C-terminal fragment (488–499) of hTrxR. To shed light on the pharmacological differences between AF and AF-AcCys, we carried out a comparative experimental stability study and a theoretical estimation of bond dissociation energies, unveiling the higher strength of the Au–S bond in AF-AcCys. From the results, it emerged that the lower lipophilicity of AF-AcCys with respect to AF could be a key feature for its different antibacterial activity. The differences and similarities between AF and AF-AcCys are discussed, alongside the opportunities and consequences that chemical structure modifications imply.
Collapse
Affiliation(s)
- Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (D.L.M.)
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy; (A.P.); (D.C.)
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy; (A.P.); (D.C.)
| | - Arianna Nardinocchi
- Department of Biology, University of Pisa, Via San Zeno 35–39, 56100 Pisa, Italy;
| | - Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
- Correspondence: (I.T.); (M.D.L.); (T.M.)
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy;
| | - Mariagrazia Di Luca
- Department of Biology, University of Pisa, Via San Zeno 35–39, 56100 Pisa, Italy;
- Correspondence: (I.T.); (M.D.L.); (T.M.)
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (D.L.M.)
- Correspondence: (I.T.); (M.D.L.); (T.M.)
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy; (L.C.); (D.L.M.)
| |
Collapse
|
18
|
Chiaverini L, Pratesi A, Cirri D, Nardinocchi A, Tolbatov I, Marrone A, Di Luca M, Marzo T, La Mendola D. Anti-Staphylococcal Activity of the Auranofin Analogue Bearing Acetylcysteine in Place of the Thiosugar: An Experimental and Theoretical Investigation. Molecules 2022. [PMID: 35458776 DOI: 10.3390/molecules27082578/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
Auranofin (AF, hereafter) is an orally administered chrysotherapeutic agent approved for the treatment of rheumatoid arthritis that is being repurposed for various indications including bacterial infections. Its likely mode of action involves the impairment of the TrxR system through the binding of the pharmacophoric cation [AuPEt3]+. Accordingly, a reliable strategy to expand the medicinal profile of AF is the replacement of the thiosugar moiety with different ligands. Herein, we aimed to prepare the AF analogue bearing the acetylcysteine ligand (AF-AcCys, hereafter) and characterize its anti-staphylococcal activity. Biological studies revealed that AF-AcCys retains an antibacterial effect superimposable with that of AF against Staphylococcus aureus, whereas it is about 20 times less effective against Staphylococcus epidermidis. Bioinorganic studies confirmed that upon incubation with human serum albumin, AF-AcCys, similarly to AF, induced protein metalation through the [AuPEt3]+ fragment. Additionally, AF-AcCys appeared capable of binding the dodecapeptide Ac-SGGDILQSGCUG-NH2, corresponding to the tryptic C-terminal fragment (488-499) of hTrxR. To shed light on the pharmacological differences between AF and AF-AcCys, we carried out a comparative experimental stability study and a theoretical estimation of bond dissociation energies, unveiling the higher strength of the Au-S bond in AF-AcCys. From the results, it emerged that the lower lipophilicity of AF-AcCys with respect to AF could be a key feature for its different antibacterial activity. The differences and similarities between AF and AF-AcCys are discussed, alongside the opportunities and consequences that chemical structure modifications imply.
Collapse
Affiliation(s)
- Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry (DCCI), University of Pisa, Via G. Moruzzi, 13, 56124 Pisa, Italy
| | - Arianna Nardinocchi
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| | - Mariagrazia Di Luca
- Department of Biology, University of Pisa, Via San Zeno 35-39, 56100 Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| |
Collapse
|
19
|
Tolbatov I, Marrone A. Selenocysteine of thioredoxin reductase as the primary target for the antitumor metallodrugs: A computational point of view. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Tolbatov I, Cirri D, Tarchi M, Marzo T, Coletti C, Marrone A, Messori L, Re N, Massai L. Reactions of Arsenoplatin-1 with Protein Targets: A Combined Experimental and Theoretical Study. Inorg Chem 2022; 61:3240-3248. [PMID: 35137586 PMCID: PMC8864615 DOI: 10.1021/acs.inorgchem.1c03732] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 11/30/2022]
Abstract
Arsenoplatin-1 (AP-1) is a dual-action anticancer metallodrug with a promising pharmacological profile that features the simultaneous presence of a cisplatin-like center and an arsenite center. We investigated its interactions with proteins through a joint experimental and theoretical approach. The reactivity of AP-1 with a variety of proteins, including carbonic anhydrase (CA), superoxide dismutase (SOD), myoglobin (Mb), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and human serum albumin (HSA), was analyzed by means of electrospray ionization mass spectrometry (ESI MS) measurements. In accordance with previous observations, ESI MS experiments revealed that the obtained metallodrug-protein adducts originated from the binding of the [(AP-1)-Cl]+ fragment to accessible protein residues. Remarkably, in two cases, i.e., Mb and GAPDH, the formation of a bound metallic fragment that lacked the arsenic center was highlighted. The reactions of AP-1 with various nucleophiles side chains of neutral histidine, methionine, cysteine, and selenocysteine, in neutral form as well as cysteine and selenocysteine in anionic form, were subsequently analyzed through a computational approach. We found that the aquation of AP-1 is energetically disfavored, with a reaction free energy of +19.2 kcal/mol demonstrating that AP-1 presumably attacks its biological targets through the exchange of the chloride ligand. The theoretical analysis of thermodynamics and kinetics for the ligand-exchange processes of AP-1 with His, Met, Cys, Sec, Cys-, and Sec- side chain models unveils that only neutral histidine and deprotonated cysteine and selenocysteine are able to effectively replace the chloride ligand in AP-1.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut
de Chimie Moleculaire de l’Université de Bourgogne (ICMUB),
Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, 21078 Dijon, France
| | - Damiano Cirri
- Department
of Chemistry and Industrial Chemistry, University
of Pisa, Via G. Moruzzi
13, 56124 Pisa, Italy
| | - Matteo Tarchi
- Department
of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Tiziano Marzo
- Department
of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy
- CISUP
- Centre for Instrumentation Sharing (Centro per l’Integrazione
della Strumentazione Scientifica), University
of Pisa, 56126 Pisa, Italy
- University
Consortium for Research in the Chemistry of Metal ions in Biological
Systems (CIRCMSB), Via
Celso Ulpiani 27, 70126 Bari, Italy
| | - Cecilia Coletti
- Dipartimento
di Farmacia, Università “G
d’Annunzio” di Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
| | - Alessandro Marrone
- Dipartimento
di Farmacia, Università “G
d’Annunzio” di Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
| | - Luigi Messori
- Department
of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| | - Nazzareno Re
- Dipartimento
di Farmacia, Università “G
d’Annunzio” di Chieti-Pescara, Via dei Vestini 31, 66013, Chieti, Italy
| | - Lara Massai
- Department
of Chemistry, University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
21
|
|
22
|
Microwave assisted synthesis of rhodium(+Ⅰ) N-heterocyclic carbene complexes and their cytotoxicity against tumor cell lines. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Truong D, Lam NYS, Kamalov M, Riisom M, Jamieson SMF, Harris PWR, Brimble MA, Metzler-Nolte N, Hartinger C. A solid support-based synthetic strategy for the site-selective functionalization of peptides with organometallic half-sandwich moieties. Chemistry 2021; 28:e202104049. [PMID: 34967066 DOI: 10.1002/chem.202104049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 11/11/2022]
Abstract
The number of donor atoms available on peptides that can competitively coordinate to metal centers renders the site-selective generation of advanced metal-peptide conjugates in high purity a challenging venture. Herein, we present a transmetalation-based synthetic approach on solid support in which an imidazolium proligand can be used to selectively anchor a range of transition metal half-sandwich complexes onto peptides in the presence of multiple coordinative motifs. Amenable to solid support, a range of N-terminus and/or lysine conjugated metal-peptide conjugates were obtained in high purity after cleavage from the resin. The metalated peptides were evaluated for their anticancer properties against human cancer cell lines. While no cytotoxic activity was observed, this platform has the potential to i) provide a pathway to site-selective peptide labelling, ii) be explored as a biorthogonal handle and/or iii) generate a new strategy for ligand design in transition metal catalysts.
Collapse
Affiliation(s)
- Dianna Truong
- University of Auckland, School of Chemical Sciences, NEW ZEALAND
| | - Nelson Y S Lam
- The Scripps Research Institute, Department of Chemistry, UNITED STATES
| | - Meder Kamalov
- University of Auckland, School of Chemical Sciences, NEW ZEALAND
| | - Mie Riisom
- University of Auckland, School of Chemical Sciences, NEW ZEALAND
| | | | - Paul W R Harris
- University of Auckland, School of Chemical Sciences, NEW ZEALAND
| | | | | | - Christian Hartinger
- University of Auckland, School of Chemical Sciences, 23 Symonds Street, 1010, Auckland, NEW ZEALAND
| |
Collapse
|
24
|
Tolbatov I, Marrone A, Coletti C, Re N. Computational Studies of Au(I) and Au(III) Anticancer MetalLodrugs: A Survey. Molecules 2021; 26:7600. [PMID: 34946684 PMCID: PMC8707411 DOI: 10.3390/molecules26247600] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Owing to the growing hardware capabilities and the enhancing efficacy of computational methodologies, computational chemistry approaches have constantly become more important in the development of novel anticancer metallodrugs. Besides traditional Pt-based drugs, inorganic and organometallic complexes of other transition metals are showing increasing potential in the treatment of cancer. Among them, Au(I)- and Au(III)-based compounds are promising candidates due to the strong affinity of Au(I) cations to cysteine and selenocysteine side chains of the protein residues and to Au(III) complexes being more labile and prone to the reduction to either Au(I) or Au(0) in the physiological milieu. A correct prediction of metal complexes' properties and of their bonding interactions with potential ligands requires QM computations, usually at the ab initio or DFT level. However, MM, MD, and docking approaches can also give useful information on their binding site on large biomolecular targets, such as proteins or DNA, provided a careful parametrization of the metal force field is employed. In this review, we provide an overview of the recent computational studies of Au(I) and Au(III) antitumor compounds and of their interactions with biomolecular targets, such as sulfur- and selenium-containing enzymes, like glutathione reductases, glutathione peroxidase, glutathione-S-transferase, cysteine protease, thioredoxin reductase and poly (ADP-ribose) polymerase 1.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut de Chimie Moleculaire de l’Université de Bourgogne (ICMUB), Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, 21078 Dijon, France;
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| | - Nazzareno Re
- Dipartimento di Farmacia, Università degli Studi “G. D’Annunzio” Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy; (A.M.); (C.C.)
| |
Collapse
|
25
|
Tolbatov I, Marrone A. Reactivity of N-Heterocyclic Carbene Half-Sandwich Ru-, Os-, Rh-, and Ir-Based Complexes with Cysteine and Selenocysteine: A Computational Study. Inorg Chem 2021; 61:746-754. [PMID: 34894670 DOI: 10.1021/acs.inorgchem.1c03608] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The structure and the reactivity of four half-sandwich metal complexes of RuII, OsII, RhIII, and IrIII were investigated by means of density functional theory approaches. These piano-stool complexes, grouped in cym-bound complexes, RuII(cym)(dmb)Cl2, 1, and OsII(cym)(dmb)Cl2, 2, and Cp*-bound complexes, RhIII(Cp*)(dmb)Cl2, 3, and IrIII(Cp*)(dmb)Cl2, 4, with cym = η6-p-cymene, Cp* = η5-pentamethylcyclopentadienyl, and dmb = 1,3-dimethylbenzimidazol-2-ylidene, were recently proposed as anticancer metallodrugs that preferably target Cys- or Sec-containing proteins. Thus, density functional theory calculations were performed here to characterize in detail the thermodynamics and the kinetics underlining the targeting of these metallodrugs at either neutral or anionic Cys and Sec side chains. Calculations evidenced that all these complexes preferably target at Cys or Sec via chloro exchange, although cym-bound and Cp*-bound complexes resulted to be more prone to bind at neutral or anionic forms, respectively, of these soft protein sites. Further decomposition analyses of the activation free energies for the reaction between 1-4 complexes and either Cys or Sec, paralleled with the comparison among the optimized transition-state structures, allowed us to spotlight the significant role played by solvation in determining the overall reactivity and selectivity expected for these prototypical metallodrugs.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut de Chimie Moleculaire de l'Université de Bourgogne (ICMUB), Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, 25000 Dijon, France
| | - Alessandro Marrone
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
26
|
Cziferszky M, Truong D, Hartinger CG, Gust R. Determination of Relative Stabilities of Metal-Peptide Bonds in the Gas Phase. Chemistry 2021; 27:16401-16406. [PMID: 34554615 PMCID: PMC9298285 DOI: 10.1002/chem.202102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 11/09/2022]
Abstract
Understanding binding site preferences in biological systems as well as affinities to binding partners is a crucial aspect in metallodrug development. We here present a mass spectrometry‐based method to compare relative stabilities of metal‐peptide adducts in the gas phase. Angiotensin 1 and substance P were used as model peptides. Incubation with isostructural N‐heterocyclic carbene (NHC) complexes of RuII, OsII, RhIII, and IrIII led to the formation of various adducts, which were subsequently studied by energy‐resolved fragmentation experiments. The gas‐phase stability of the metal‐peptide bonds depended on the metal and the binding partner. Of the four complexes used, the OsII derivative bound strongest to Met, while RuII formed the most stable coordination bond with His. RhIII was identified as the weakest peptide binder and IrIII formed peptide adducts with intermediate stability. Probing these intrinsic gas‐phase properties can help in the interpretation of biological activities and the design of site‐specific protein binding metal complexes.
Collapse
Affiliation(s)
- Monika Cziferszky
- Department of Chemistry and Pharmacy, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Dianna Truong
- School of Chemical Sciences, University of Auckland Private Bag, 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland Private Bag, 92019, Auckland 1142, New Zealand
| | - Ronald Gust
- Department of Chemistry and Pharmacy, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| |
Collapse
|
27
|
Lee BYT, Sullivan MP, Yano E, Tong KKH, Hanif M, Kawakubo-Yasukochi T, Jamieson SMF, Soehnel T, Goldstone DC, Hartinger CG. Anthracenyl Functionalization of Half-Sandwich Carbene Complexes: In Vitro Anticancer Activity and Reactions with Biomolecules. Inorg Chem 2021; 60:14636-14644. [PMID: 34528438 DOI: 10.1021/acs.inorgchem.1c01675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
N-Heterocyclic carbene (NHC) ligands are widely investigated in medicinal inorganic chemistry. Here, we report the preparation and characterization of a series of half-sandwich [M(L)(NHC)Cl2] (M = Ru, Os, Rh, Ir; L = cym/Cp*) complexes with a N-flanking anthracenyl moiety attached to imidazole- and benzimidazole-derived NHC ligands. The anticancer activity of the complexes was investigated in cell culture studies where, in comparison to a Rh derivative with an all-carbon-donor-atom-based ligand (5a), they were found to be cytotoxic with IC50 values in the low micromolar range. The Ru derivative 1a was chosen as a representative for stability studies as well as for biomolecule interaction experiments. It underwent partial chlorido/aqua ligand exchange in DMSO-d6/D2O to rapidly form an equilibrium in aqueous media. The reactions of 1a with biomolecules proceeded quickly and resulted in the formation of adducts with amino acids, DNA, and protein. Hen egg white lysozyme crystals were soaked with 1a, and the crystallographic analysis revealed an interaction with an l-aspartic acid residue (Asp119), resulting in the cleavage of the p-cymene ligand but the retention of the NHC moiety. Cell morphology studies for the Rh analog 3a suggested that the cytotoxicity is exerted via mechanisms different from that of cisplatin.
Collapse
Affiliation(s)
| | | | - Ena Yano
- OBT (Oral Health-Brain Health-Total Health) Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | - Tomoyo Kawakubo-Yasukochi
- OBT (Oral Health-Brain Health-Total Health) Research Center, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|