1
|
Satyanarayana ANV, Pattanayak P, Chatterjee T. Solvent-Controlled, Atom-Economic, and Highly Regio- and Stereoselective Halo-Chalcogenations of Ynamides: Green Synthesis of Stereodefined Tetrasubstituted Alkenes Bearing Four Different Functional Groups. J Org Chem 2024; 89:11455-11466. [PMID: 39105699 DOI: 10.1021/acs.joc.4c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The synthesis of stereodefined tetrasubstituted alkenes bearing four different functional groups is challenging. Herein, we disclose a 100% atom-economic and highly regio- and stereoselective halo-chalcogenations, in particular, chlorosulfenylation, bromosulfenylation, chloroselenation, and bromoselenation, of ynamides in toluene at room temperature under an aerobic atmosphere for the synthesis of a wide variety of stereodefined tetrasubstituted alkenes bearing four different functional groups in excellent yields. Notably, all the reactions are highly efficient and furnished the desired products in excellent yield (average yield >96%) and stereoselectivity (Z/E = 90:10 to >99:1) within a short time (15-30 min). Interestingly, the high (Z)-stereoselectivity (syn-addition) is controlled by the solvent. The transformation does not require any catalyst, oxidizing or reducing reagent, or external energy. The products were obtained pure by evaporating the solvent after the reaction and washing the crude product with either pentane or ethanol (column-chromatography-free protocol). Moreover, the solvent toluene was recovered and reused in subsequent reactions, which makes the protocol highly sustainable. The protocol is efficiently scalable (96% yield) on a gram scale. Notably, the products were synthetically diversified to other new classes of stereodefined tetrasubstituted alkenes. Significantly, the green chemistry metrics of the protocol are found to be excellent.
Collapse
Affiliation(s)
- Appanapalli N V Satyanarayana
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana India
| | - Paramita Pattanayak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana India
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana India
| |
Collapse
|
2
|
Huang H, Yu ZY, Han LY, Wu YQ, Jiang L, Li QZ, Huang W, Han B, Li JL. N-Heterocyclic carbene catalytic 1,2-boron migrative acylation accelerated by photocatalysis. SCIENCE ADVANCES 2024; 10:eadn8401. [PMID: 39047096 PMCID: PMC11268412 DOI: 10.1126/sciadv.adn8401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024]
Abstract
The transformation of organoboron compounds plays an important role in synthetic chemistry, and recent advancements in boron-migration reactions have garnered considerable attention. Here, we report an unprecedented 1,2-boron migrative acylation upon photocatalysis-facilitated N-heterocyclic carbene catalysis. The design of a redox-active boronic ester substrate, serving as an excellent β-boron radical precursor, is the linchpin to the success of this chemistry. With the established protocol, a wide spectrum of β-boryl ketones has been rapidly synthesized, which could further undergo various C─B bond transformations to give multifunctionalized products. The robustness of this catalytic strategy is underscored by its successful application in late-stage modification of drug-derived molecules and natural products. Preliminary mechanistic investigations, including several control experiments, photochemistry measurements, and computational studies, shed light on the catalytic radical reaction mechanism.
Collapse
Affiliation(s)
- Hua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Zhao-Yuan Yu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu-Yao Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yi-Qi Wu
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Lu Jiang
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Qing-Zhu Li
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Anti-infective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| |
Collapse
|
3
|
Ikeno A, Hayakawa M, Sakai M, Tsutsui Y, Nakatsuka S, Seki S, Hatakeyama T. π-Extended 9b-Boraphenalenes: Synthesis, Structure, and Physical Properties. J Am Chem Soc 2024; 146:17084-17093. [PMID: 38861619 DOI: 10.1021/jacs.4c02407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Boraphenalenes, compounds in which one carbon atom in the phenalenyl skeleton is replaced with a boron atom, have attracted attention for their solid-state and electronic structures; however, the construction of boraphenalene skeletons remains challenging because of the lack of suitable methods. Through this study, we showed that the tandem borylative cyclization of C3-symmetric dehydrobenzo[12]annulenes produces a new class of fully fused boron-atom-embedded polycyclic hydrocarbons possessing a 9b-boraphenalene skeleton. The obtained compounds exhibited high electron-accepting characteristics, and their two-step redox process was reversible in the reductive region, involving interconversion of 9b-boraphenalene between Hückel aromaticity and antiaromaticity. Notably, the benzo[b]fluorene-fused derivative exhibited a stepwise single-crystal-to-single-crystal (SCSC) phase transition triggered by thermal annealing. Intermolecular electron coupling calculation of the crystal structures suggested a significant improvement of charge transporting ability associated with the SCSC phase transition. Moreover, adequate photoconductivity was observed for the single crystals before and after the SCSC phase transition through flash photolysis-time-resolved microwave conductivity.
Collapse
Affiliation(s)
- Atsuhiro Ikeno
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Hayakawa
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Mugiho Sakai
- Department of Chemistry, Graduate School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto 615-8510, Japan
| | - Soichiro Nakatsuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
4
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
5
|
Hollister KK, Wentz KE, Gilliard RJ. Redox- and Charge-State Dependent Trends in 5, 6, and 7-Membered Boron Heterocycles: A Neutral Ligand Coordination Chemistry Approach to Boracyclic Cations, Anions, and Radicals. Acc Chem Res 2024; 57:1510-1522. [PMID: 38708938 DOI: 10.1021/acs.accounts.4c00096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
ConspectusBoron heterocycles represent an important subset of heteroatom-incorporated rings, attracting attention from organic, inorganic, and materials chemists. The empty pz orbital at the boron center makes them stand out as quintessential Lewis acidic molecules, also serving as a means to modulate electronic structure and photophysical properties in a facile manner. As boracycles are ripe for extensive functionalization, they are used in catalysis, chemical biology, materials science, and continue to be explored as chemical synthons for conjugated materials and reagents. Neutral boron(III)-incorporated polycyclic molecules are some of the most studied types of boracycles, and understanding their redox transformations is important for applications relying on electron transfer and charge transport. While relevant redox species can often be electrochemically observed, it remains challenging to isolate and characterize boracycles where the boron center and/or polycyclic skeleton have been chemically reduced.We describe our recent work isolating 5-, 6-, and 7-membered boracyclic radicals, anions, and cations, focusing on stabilization strategies, ligand-mediated bonding situations, and reactivity. We present a versatile neutral ligand coordination chemistry approach that permits the transformation of boracycles from potent electrophiles to powerful nucleophilic heterocycles that facilitate diverse electron transfer and bond activation chemistry. Although there are a wide range of suitable stabilizing ligands, we have employed both diamino-N-heterocyclic carbenes (NHCs) and cyclic(alkyl)(amino) carbenes (CAACs), which led to boracycles with tunable electronic structures and aromaticity trends. We highlight successful isolation of borafluorene radicals and demonstrate their reversible redox behavior, undergoing oxidation to the cation or reduction to the anion. The borafluorene anion is a chemical synthon that has been used to prepare boryl main-group and transition-metal bonds, luminescent oxabora-spirocycles, borafluorenate-crown ethers, and CO-releasing molecules via carbon dioxide activation. We expanded to 6-membered boracycles and characterized neutral bis(NHC-supported 9-boraphenanthrene)s and the corresponding bis(CAAC-stabilized 9-boraphenanthrene) biradical. We detail the interconvertible multiredox states of boraphenalene, where the boraphenalenyl radical, anion, and cation mimic the charge-states of the all-hydrocarbon analogue. Reactivity studies of the boraphenalenyl anion displayed unusual nucleophilic reactivity at multiple sites on the periphery of the boraphenalenyl tricyclic scaffold. Reduced borepins, 7-membered boron containing heterocycles, have also been isolated. We used a stepwise one-pot synthesis combining the halo-borepin precursor, CAAC, and KC8 to afford the monomeric borepin radicals and anions. The π-system was extended to contain two borepin rings fused in a pentacyclic scaffold, which permitted isolation of diborepin biradicals and a diborepin containing a dibora-quinone core.Our goal is to provide a guide explaining the current structure-function trends and isolation strategies for redox-active boron-incorporated polycyclic molecules to initiate the rational design and use of these types of compounds across a vast chemical space.
Collapse
Affiliation(s)
- Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| | - Kelsie E Wentz
- Department of Chemistry, Johns Hopkins University, Remson Hall, 3400 N Charles Street, Baltimore, Maryland 21218-2625, United States
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 18-596, Cambridge, Massachusetts 02139-4307, United States
| |
Collapse
|
6
|
Deng CL, Hollister KK, Molino A, Tra BYE, Dickie DA, Wilson DJD, Gilliard RJ. Unveiling Three Interconvertible Redox States of Boraphenalene. J Am Chem Soc 2024; 146:6145-6156. [PMID: 38380615 DOI: 10.1021/jacs.3c13726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Neutral 1-boraphenalene displays the isoelectronic structure of the phenalenyl carbocation and is expected to behave as an attractive organoboron multi-redox system. However, the isolation of new redox states have remained elusive even though the preparation of neutral boron(III)-containing phenalene compounds have been extensively studied. Herein, we have adopted an N-heterocyclic carbene ligand stabilization approach to achieve the first isolation of the stable and ambipolar 1-boraphenalenyl radical 1•. The 1-boraphenalenyl cation 1+ and anion 1- have also been electrochemically observed and chemically isolated, representing new redox forms of boraphenalene for the study of non-Kekulé polynuclear benzenoid molecules. Experimental and theoretical investigations suggest that the interconvertible three-redox-state species undergo reversible electronic structure modifications, which primarily take place on the polycyclic framework of the molecules, exhibiting atypical behavior compared to known donor-stabilized organoboron compounds. Initial reactivity studies, aromaticity evaluations, and photophysical studies show redox-state-dependent trends. While 1+ is luminescent in both the solution and solid states, 1• exhibits boron-centered reactivity and 1- undergoes substitution chemistry on the boraphenalenyl skeleton and serves as a single-electron transfer reductant.
Collapse
Affiliation(s)
- Chun-Lin Deng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kimberly K Hollister
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew Molino
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086 Victoria, Australia
| | - Bi Youan E Tra
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Diane A Dickie
- Department of Chemistry, University of Virginia, Charlottesville, Virginia 22904, United States
| | - David J D Wilson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, 3086 Victoria, Australia
| | - Robert J Gilliard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Seidler G, Schwenzer M, Clausen F, Daniliuc CG, Studer A. Borylative transition metal-free couplings of vinyl iodides with various nucleophiles, alkenes or alkynes. Chem Sci 2024; 15:1672-1678. [PMID: 38303934 PMCID: PMC10829001 DOI: 10.1039/d3sc06131k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024] Open
Abstract
Alkyl boronic esters are highly valuable compounds in organic chemistry and related fields due to their good stability and highly versatile reactivity. In this edge article, stereoselective borylative couplings of vinyl iodides with various nucleophiles, alkenes or alkynes is reported. These coupling reactions proceed through stereospecific hydroboration and subsequent stereospecific 1,2-metallate rearrangement. The cascades utilize readily available reagents and proceed without the need of a transition metal catalyst.
Collapse
Affiliation(s)
- Gesa Seidler
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| | - Max Schwenzer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| | - Florian Clausen
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster Corrensstraße 40 48149 Munster Germany
| |
Collapse
|
8
|
Corpas J, Gomez-Mendoza M, Arpa EM, de la Peña
O'Shea VA, Durbeej B, Carretero JC, Mauleón P, Arrayás R. Iterative Dual-Metal and Energy Transfer Catalysis Enables Stereodivergence in Alkyne Difunctionalization: Carboboration as Case Study. ACS Catal 2023; 13:14914-14927. [PMID: 38026817 PMCID: PMC10662505 DOI: 10.1021/acscatal.3c03570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/04/2023] [Indexed: 12/01/2023]
Abstract
Stereochemically defined tetrasubstituted olefins are widespread structural elements of organic molecules and key intermediates in organic synthesis. However, flexible methods enabling stereodivergent access to E and Z isomers of fully substituted alkenes from a common precursor represent a significant challenge and are actively sought after in catalysis, especially those amenable to complex multifunctional molecules. Herein, we demonstrate that iterative dual-metal and energy transfer catalysis constitutes a unique platform for achieving stereodivergence in the difunctionalization of internal alkynes. The utility of this approach is showcased by the stereodivergent synthesis of both stereoisomers of tetrasubstituted β-boryl acrylates from internal alkynoates with excellent stereocontrol via sequential carboboration and photoisomerization. The reluctance of electron-deficient internal alkynes to undergo catalytic carboboration has been overcome through cooperative Cu/Pd-catalysis, whereas an Ir complex was identified as a versatile sensitizer that is able to photoisomerize the resulting sterically crowded alkenes. Mechanistic studies by means of quantum-chemical calculations, quenching experiments, and transient absorption spectroscopy have been applied to unveil the mechanism of both steps.
Collapse
Affiliation(s)
- Javier Corpas
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Miguel Gomez-Mendoza
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Enrique M. Arpa
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Víctor A. de la Peña
O'Shea
- Photoactivated Processes Unit, IMDEA
Energy Institute, Technological Park of Mostoles, Avda. Ramón de la
Sagra 3, 28935 Madrid, Spain
| | - Bo Durbeej
- Division of Theoretical Chemistry, IFM,
Linköping University, 581 83 Linköping,
Sweden
| | - Juan C. Carretero
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Pablo Mauleón
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| | - Ramón
Gómez Arrayás
- Department of Organic Chemistry, Faculty of Science;
Institute for Advanced Research in Chemical Sciences (IAdChem); and Centro de
Innovación en Química Avanzada (ORFEO−CINQA),
Universidad Autónoma de Madrid (UAM), Cantoblanco,
28049 Madrid, Spain
| |
Collapse
|
9
|
Guo Y, Wang X, Li C, Su J, Xu J, Song Q. Decarboxylation of β-boryl NHPI esters enables radical 1,2-boron shift for the assembly of versatile organoborons. Nat Commun 2023; 14:5693. [PMID: 37709736 PMCID: PMC10502150 DOI: 10.1038/s41467-023-41254-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
In recent years, numerous 1,2-R shift (R = aliphatic or aryl) based on tetracoordinate boron species have been well investigated. In the contrary, the corresponding radical migrations, especially 1,2-boryl radical shift for the construction of organoborons is still in its infancy. Given the paucity and significance of such strategies in boron chemistry, it is urgent to develop other efficient and alternative synthetic protocols to enrich these underdeveloped radical 1,2-boron migrations, before their fundamental potential applications could be fully explored at will. Herein, we have demonstrated a visible-light-induced photoredox neutral decarboxylative radical cross-coupling reaction, which undergoes a radical 1,2-boron shift to give a translocated C-radical for further capture of versatile radical acceptors. The mild reaction conditions, good functional-group tolerance, and broad β-boryl NHPI esters scope as well as versatile radical acceptors make this protocol applicable in modification of bioactive molecules. It can be expected that this methodology will be a very useful tool and an alternative strategy for the construction of primary organoborons via a novel radical 1,2-boron shift mode.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Xiaosha Wang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Chengbo Li
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jianke Su
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, 361021, Xiamen, Fujian, P. R. China.
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, 350108, Fuzhou, P. R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, Henan, P. R. China.
| |
Collapse
|
10
|
Liu Y, Woerpel KA. Uncatalyzed Carbometallation Involving Group 13 Elements: Carboboration and Carboalumination of Alkenes and Alkynes. SYNTHESIS-STUTTGART 2023; 55:2261-2272. [PMID: 38249784 PMCID: PMC10795483 DOI: 10.1055/s-0042-1751362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Carbometallation of alkenes and alkynes are powerful carbon-carbon bond-forming reactions. The use of compounds containing bonds between carbon and group 13 elements, particularly boron and aluminum, are particularly attractive because of the versatility of subsequent transformations. Uncatalyzed carboboration and carboalumination represent less common classes of reactions. This Short Review discusses uncatalyzed carboboration and carboalumination reactions of alkenes and alkynes, including the reaction design and mechanism.
Collapse
Affiliation(s)
- Yudong Liu
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| | - K A Woerpel
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 USA
| |
Collapse
|
11
|
Tang M, Zhu W, Sun H, Wang J, Jing S, Wang M, Shi Z, Hu J. Facile preparation of organosilanes from benzylboronates and gem-diborylalkanes mediated by KO tBu. Chem Sci 2023; 14:7355-7360. [PMID: 37416710 PMCID: PMC10321478 DOI: 10.1039/d3sc02461j] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Methods to efficiently synthesize organosilanes are valuable in the fields of synthetic chemistry and materials science. During the past decades, boron conversion has become a generic and powerful approach for constructing carbon-carbon and other carbon-heteroatom bonds, but its potential application in forming carbon-silicon remains unexplored. Herein, we describe an alkoxide base-promoted deborylative silylation of benzylic organoboronates, geminal bis(boronates) or alkyltriboronates, allowing for straightforward access to synthetically valuable organosilanes. This selective deborylative methodology exhibits operational simplicity, broad substrate scope, excellent functional group compatibility and convenient scalability, providing an effective and complementary platform for the generation of diversified benzyl silanes and silylboronates. Detailed experimental results and calculated studies revealed an unusual mechanistic feature of this C-Si bond formation.
Collapse
Affiliation(s)
- Man Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Wenyan Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Huaxing Sun
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Jing Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Jiefeng Hu
- School of Chemistry and Molecular Engineering, Nanjing Tech University Nanjing 211816 China
| |
Collapse
|
12
|
Xiao Y, Tang L, Xu TT, Sheng JYH, Zhou Z, Yue L, Wang G, Oestreich M, Feng JJ. Atom-economic and stereoselective catalytic synthesis of fully substituted enol esters/carbonates of amides in acyclic systems enabled by boron Lewis acid catalysis. Chem Sci 2023; 14:5608-5618. [PMID: 37265723 PMCID: PMC10231430 DOI: 10.1039/d3sc01394d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
Carboacyloxylation of internal alkynes is emerging as a powerful and straightforward strategy for enol ester synthesis. However, the reported examples come with limitations, including the utilization of noble metal catalysts, the control of regio- and Z/E selectivity, and an application in the synthesis of enol carbonates. Herein, a boron Lewis acid-catalyzed intermolecular carboacyloxylation of ynamides with esters to access fully substituted acyclic enol esters in high yield with generally high Z/E selectivity (up to >96 : 4) is reported. Most importantly, readily available allylic carbonates are also compatible with this difunctionalization reaction, representing an atom-economic, catalytic and stereoselective protocol for the construction of acyclic β,β-disubstituted enol carbonates of amides for the first time. The application of the carboacyloxylation products to decarboxylative allylations provided a ready access to enantioenriched α-quaternary amides. Moreover, experimental studies and theoretical calculations were performed to illustrate the reaction mechanism and rationalize the stereochemistry.
Collapse
Affiliation(s)
- Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Jiang-Yi-Hui Sheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| | - Zhongyan Zhou
- College of Biology, Mass Spectrometry Lab of Bio-Chemistry, Hunan University P. R. China
| | - Lei Yue
- College of Biology, Mass Spectrometry Lab of Bio-Chemistry, Hunan University P. R. China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210093 P. R. China
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany https://www.tu.berlin/en/organometallics
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 P. R. China
| |
Collapse
|
13
|
Boyet M, Chabaud L, Pucheault M. Recent Advances in the Synthesis of Borinic Acid Derivatives. Molecules 2023; 28:molecules28062660. [PMID: 36985634 PMCID: PMC10057197 DOI: 10.3390/molecules28062660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Borinic acids [R2B(OH)] and their chelate derivatives are a subclass of organoborane compounds used in cross-coupling reactions, catalysis, medicinal chemistry, polymer or optoelectronics materials. In this paper, we review the recent advances in the synthesis of diarylborinic acids and their four-coordinated analogs. The main strategies to build up borinic acids rely either on the addition of organometallic reagents to boranes (B(OR)3, BX3, aminoborane, arylboronic esters) or the reaction of triarylboranes with a ligand (diol, amino alcohol, etc.). After general practical considerations of borinic acids, an overview of the main synthetic methods, their scope and limitations is provided. We also discuss some mechanistic aspects.
Collapse
|
14
|
Yepes P, Suárez-Sobrino ÁL, Rodríguez MA, Ballesteros A. Silylium-Catalyzed Regio- and Stereoselective Carbosilylation of Ynamides with Allylic Trimethylsilanes. Org Lett 2023; 25:1020-1024. [PMID: 36749888 PMCID: PMC9942199 DOI: 10.1021/acs.orglett.3c00221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The regio- and stereoselective carbosilylation of tosylynamides with allylic trimethylsilanes takes place under mild conditions in the presence of catalytic TMSNTf2 or HNTf2 to give (Z)-α-allyl-β-trimethylsilylenamides with good yields. Theoretical calculations show the activation of the C-C triple bond of the ynamides by the trimethylsilylium ion and formation of a β-trimethylsilylketenimonium cation. Further transformations of the products demonstrate the synthetic utility of this reaction.
Collapse
Affiliation(s)
- Paz Yepes
- Departamento
de Química Orgánica e Inorgánica, Instituto Universitario
de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Ángel L. Suárez-Sobrino
- Departamento
de Química Orgánica e Inorgánica, Instituto Universitario
de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Miguel A. Rodríguez
- Departamento
de Química, Centro de Investigación en Síntesis
Orgánica, Universidad de la Rioja, Madre de Dios, 51, 26006 Logroño, Spain
| | - Alfredo Ballesteros
- Departamento
de Química Orgánica e Inorgánica, Instituto Universitario
de Química Organometálica “Enrique Moles”, Universidad de Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain,
| |
Collapse
|
15
|
Altarejos J, Valero A, Manzano R, Carreras J. Synthesis of Tri‐ and Tetrasubstituted Alkenyl Boronates from Alkynes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Julia Altarejos
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Antonio Valero
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Rubén Manzano
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica SPAIN
| | - Javier Carreras
- Universidad de Alcalá Facultad de Ciencias: Universidad de Alcala Facultad de Ciencias Química Orgánica y Química Inorgánica Carretera Madrid-Barcelona km 33,6, Campus Universitario.Facultad de Farmacia 28805 Alcalá de Henares SPAIN
| |
Collapse
|
16
|
Averdunk A, Hasenbeck M, Müller T, Becker J, Gellrich U. 1,2-Carboboration of Arylallenes by In Situ Generated Alkenylboranes for the Synthesis of 1,4-Dienes. Chemistry 2022; 28:e202200470. [PMID: 35348257 PMCID: PMC9325554 DOI: 10.1002/chem.202200470] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Indexed: 12/26/2022]
Abstract
We herein report a novel method for the coupling of unactivated alkynes and arylallenes, which relies on an unprecedented and regioselective 1,2-carboboration of the allene by an alkenylborane. The alkenylborane is conveniently prepared in situ by hydroboration of an alkyne with Piers' borane, i. e., HB(C6 F5 )2 . The boryl-substituted 1,4-dienes that are formed by this carboboration are well-suited for a subsequent Suzuki-Miyaura coupling with aryl iodides. This allowed us to develop a three-step, one-pot protocol for the synthesis of aryl-substituted 1,4-dienes. The generality of the reaction was demonstrated by the synthesis of twenty dienes with modular variations of all three reaction partners. The mechanism of the new 1,2-carboboration was investigated using dispersion corrected double-hybrid DFT computations that allowed us to rationalize the chemo- and regioselectivity of this key step.
Collapse
Affiliation(s)
- Arthur Averdunk
- Institut für Organische ChemieJustus-Liebig-Universität GießenHeinrich-Buff-Ring 1735392GießenGermany
| | - Max Hasenbeck
- Institut für Organische ChemieJustus-Liebig-Universität GießenHeinrich-Buff-Ring 1735392GießenGermany
| | - Tizian Müller
- Institut für Organische ChemieJustus-Liebig-Universität GießenHeinrich-Buff-Ring 1735392GießenGermany
| | - Jonathan Becker
- Institut für Anorganische und Analytische ChemieJustus-Liebig-Universität GießenHeinrich-Buff-Ring 1735392GießenGermany
| | - Urs Gellrich
- Institut für Organische ChemieJustus-Liebig-Universität GießenHeinrich-Buff-Ring 1735392GießenGermany
| |
Collapse
|
17
|
Xiao Y, Tang L, Xu TT, Feng JJ. Boron Lewis Acid Catalyzed Intermolecular trans-Hydroarylation of Ynamides with Hydroxyarenes. Org Lett 2022; 24:2619-2624. [PMID: 35389667 DOI: 10.1021/acs.orglett.2c00574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An atom-economic protocol for the efficient and highly chemo- and stereoselective trans-hydroarylation of ynamides with hydroxyarenes catalyzed by B(C6F5)3 has been developed. Use of readily available starting materials, low catalyst loading, mild reaction conditions, a broad substrate scope, ease of scale-up, and versatile functionalizations of the enamide products make this approach very practical and attractive.
Collapse
Affiliation(s)
- Yuanjiu Xiao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Lei Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Tong-Tong Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| | - Jian-Jun Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P. R. China
| |
Collapse
|
18
|
Hansjacob P, Leroux FR, Gandon V, Donnard M. Palladium-Catalyzed Silylcyanation of Ynamides: Regio- and Stereoselective Access to Tetrasubstituted 3-Silyl-2-Aminoacrylonitriles. Angew Chem Int Ed Engl 2022; 61:e202200204. [PMID: 35060272 DOI: 10.1002/anie.202200204] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 01/02/2023]
Abstract
The palladium-catalyzed silylcyanation of ynamides is described. This reaction is fully regioselective, delivering tetrasubstituted 2-aminoacrylonitriles derivatives exclusively. Unexpectedly, the nature (aryl or alkyl) of the substituent located at the β-position of the ynamide directly controls the stereoselectivity. The reaction tolerates a number of functional groups and can be considered as the first general access to fully substituted 2-aminoacrylonitriles. Given the singular reactivity observed, a computational study was performed to shed light on the mechanism of this intriguing transformation. Relying on the specific reactivity of the newly installed vinylsilane functionality, the scope of 2-aminoacrylonitriles has been enlarged by postfunctionalization.
Collapse
Affiliation(s)
- Pierre Hansjacob
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Frédéric R Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405, Orsay cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France
| | - Morgan Donnard
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| |
Collapse
|
19
|
Vanjari R, Dutta S, Yang S, Gandon V, Sahoo AK. Palladium-Catalyzed Regioselective Arylalkenylation of Ynamides. Org Lett 2022; 24:1524-1529. [PMID: 35157460 DOI: 10.1021/acs.orglett.2c00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cationic palladium-catalyzed arylalkenylation of ynamides is presented. The putative keteniminium arylpalladium intermediate likely dictates the regioselective carbopalladation of the ynamide to form a vinylpalladium species. The capture of this complex by the olefin yields linear conjugated β-alkenyl aminodienes (especially with trans selectivity). The transformation features a broad scope with labile functional group tolerance and makes 42 unusual molecular scaffolds with structural diversity. DFT studies provide valuable insights into the reaction mechanism.
Collapse
Affiliation(s)
- Rajeshwer Vanjari
- School of Chemistry, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Shubham Dutta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Shengwen Yang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad-500046, Telangana, India
| |
Collapse
|
20
|
Hansjacob P, Leroux FR, Gandon V, Donnard M. Palladium‐Catalyzed Silylcyanation of Ynamides: Regio‐ and Stereoselective Access to Tetrasubstituted 3‐Silyl‐2‐Aminoacrylonitriles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pierre Hansjacob
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042) Université de Strasbourg Université de Haute-Alsace CNRS 67000 Strasbourg France
| | - Frédéric R. Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042) Université de Strasbourg Université de Haute-Alsace CNRS 67000 Strasbourg France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay CNRS UMR 8182 Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
- Laboratoire de Chimie Moléculaire (LCM) CNRS UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris route de Saclay 91128 Palaiseau cedex France
| | - Morgan Donnard
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042) Université de Strasbourg Université de Haute-Alsace CNRS 67000 Strasbourg France
| |
Collapse
|
21
|
You C, Sakai M, Daniliuc CG, Bergander K, Yamaguchi S, Studer A. Regio- and Stereoselective 1,2-Carboboration of Ynamides with Aryldichloroboranes. Angew Chem Int Ed Engl 2021; 60:21697-21701. [PMID: 34310824 PMCID: PMC8518048 DOI: 10.1002/anie.202107647] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Indexed: 12/17/2022]
Abstract
Catalyst‐free 1,2‐carboboration of ynamides is presented. Readily available aryldichloroboranes react with alkyl‐ or aryl‐substituted ynamides in high yields with complete regio‐ and stereoselectivity to valuable β‐boryl‐β‐alkyl/aryl α‐aryl substituted enamides which belong to the class of trisubstituted alkenylboronates. The 1,2‐carboboration reaction is experimentally easy to conduct, shows high functional group tolerance and broad substrate scope. Gram‐scale reactions and diverse synthetic transformations convincingly demonstrate the synthetic potential of this method. The reaction can also be used to access 1‐boraphenalenes, a class of boron‐doped polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Cai You
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Mika Sakai
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Klaus Bergander
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149, Münster, Germany
| |
Collapse
|