1
|
Kushvaha SK, Roesky HW. Amidinato silylene-based inorganic aromatic rings. Dalton Trans 2024; 53:19058-19074. [PMID: 39565335 DOI: 10.1039/d4dt02790f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Aromaticity is a key concept that underpins the behavior and applications of a wide range of chemical compounds. Its impact on stability, reactivity, biological functions, material properties, and environmental persistence underscores the importance of understanding and harnessing aromaticity in chemistry and materials sciences. We have been pioneers in the field of silylene chemistry and recently, our silylene molecules have been used to synthesize several inorganic aromatic ring compounds. Aromaticity in inorganic compounds is not commonly observed; hence, inorganic aromatic rings derived from silylene would further enhance our understanding of aromaticity and stability. Herein, we discuss the inorganic aromatic rings which have been synthesized from amidinato silylene.
Collapse
Affiliation(s)
- Saroj Kumar Kushvaha
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| | - Herbert W Roesky
- Institut für Anorganische Chemie, Georg-August-Universität Göttingen, Göttingen, 37077, Germany.
| |
Collapse
|
2
|
Ajithkumar VS, Ghanwat PB, Saha S, Pati SK, Sen SS. Stereodivergent sila-germylenation vs. sila-stannylenation of an internal alkyne. Chem Commun (Camb) 2024; 60:9837-9840. [PMID: 39171507 DOI: 10.1039/d4cc02101k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
We report on the insertion of electron deficient alkyne, dimethyl acetylene dicarboxylate (DMAD), into the E-Si bond of hypersilyl tetrylenes, PhC(NtBu)2ESi(SiMe3)3 (E = Ge and Sn), at room temperature. Uniquely, the germylene leads to cis alkenes, while the stannylene gives access to trans alkenes, and the insight into divergent stereoselectivity has been obtained by DFT studies.
Collapse
Affiliation(s)
- V S Ajithkumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pratiksha B Ghanwat
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sougata Saha
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore-560064, India.
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Ajithkumar VS, Khilari N, Ghanwat PB, Venugopal G, Koley D, Sen SS. Activation of carbon disulfide by a hypersilyl germylene. Dalton Trans 2024; 53:10814-10818. [PMID: 38859708 DOI: 10.1039/d4dt01573h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
In this work, the insertion of CS2 into the Ge-Si bond of PhC(NtBu)2Ge-Si(SiMe3)3 (1) has been investigated, resulting in the formation of PhC(NtBu)2Ge-C(S)-S-Si(SiMe3)3 (2). Interestingly, the addition of NHC to 2 allows the release of NHC·CS2 with concomitant regeneration of 1. Addition of another equivalent of 1 or an analogous hypersilyl silylene, [PhC(NtBu)2Si-Si(SiMe3)3], to 2 led to the formation of compounds with a GeS (3) or a SiS (4) bond.
Collapse
Affiliation(s)
- V S Ajithkumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Nripen Khilari
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India.
| | - Pratiksha B Ghanwat
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Geethu Venugopal
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, 741246, India.
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India.
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| |
Collapse
|
4
|
Pahar S, Sharma V, Raj KV, Sangole MP, George CP, Singh K, Vanka K, Gonnade RG, Sen SS. Tridentate NacNac Tames T-Shaped Nickel(I) Radical. Chemistry 2024; 30:e202303957. [PMID: 38051591 DOI: 10.1002/chem.202303957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
The reaction of a nickel(II) chloride complex containing a tridentate β-diketiminato ligand with a picolyl group [2,6-iPr2 -C6 H3 NC(Me)CHC(Me)NH(CH2 py)]Ni(II)Cl (1)] with KSi(SiMe3 )3 conveniently afforded a nickel(I) radical with a T-shaped geometry (2). The compound's metalloradical nature was confirmed through electron paramagnetic resonance (EPR) studies and its reaction with TEMPO, resulting in the formation of a highly unusual three-membered nickeloxaziridine complex (3). When reacted with disulfide and diselenide, the S-S and Se-Se bonds were cleaved, and a coupled product was formed through carbon atom of the pyridine-imine group. The nickel(I) radical activates dihydrogen at room temperature and atmospheric pressure to give the monomeric nickel hydride.
Collapse
Affiliation(s)
- Sanjukta Pahar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - K Vipin Raj
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Mayur P Sangole
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Christy P George
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Kirandeep Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Sarkar D, Dutta S, Hanusch F, Koley D, Inoue S. Synthesis and reactivity of N-heterocyclic carbene (NHC)-supported heavier nitrile ylides. Chem Sci 2024; 15:2391-2397. [PMID: 38362429 PMCID: PMC10866356 DOI: 10.1039/d3sc06430a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
The synthesis and isolation of stable heavier analogues of nitrile ylide as N-heterocyclic carbene (NHC) adducts of phosphasilenyl-tetrylene [(NHC)(TerAr)Si(H)PE14(TerAr)] (E14 = Ge 1, Sn 2; TerAr = 2,6-Mes2C6H3, NHC = IMe4) are reported. The delocalized Si-P-E14 π-conjugation was examined experimentally and computationally. Interestingly, the germanium derivative 1 exhibits a 1,3-dipolar nature, leading to an unprecedented [3 + 2] cycloaddition with benzaldehyde, resulting in unique heterocycles containing four heteroatoms from group 14, 15, and 16. Further exploiting the nucleophilicity of germanium, activation of the P-P bond of P4 was achieved, leading to a [(NHC)(phosphasilenyl germapolyphide)] complex. Moreover, the [3 + 2] cycloaddition and the σ-bond activation by 1 resemble the characteristics of the classic nitrile ylide.
Collapse
Affiliation(s)
- Debotra Sarkar
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Sayan Dutta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741 246 India
| | - Franziska Hanusch
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| | - Debasis Koley
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741 246 India
| | - Shigeyoshi Inoue
- TUM School of Natural Sciences, Department of Chemistry, Institute of Silicon Chemistry and Catalysis Research Center, Technische Universität München Lichtenbergstraße 4 85748 Garching Germany
| |
Collapse
|
6
|
Bisai MK, Ajithkumar VS, Raj KV, Vanka K, Gonnade RG, Sen SS. A zwitterionic disilanylium from an unsymmetrical disilene. Chem Commun (Camb) 2023; 59:1669-1672. [PMID: 36689219 DOI: 10.1039/d2cc06954g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The reaction of PhC(NtBu)2SiSi(SiMe3)3 (1) with Me3SiCH2Cl afforded an unsymmetrical sp2-sp3 disilene, 2, with concomitant elimination of Me3SiCl. The analogous reaction with PhC(NtBu)2SiCl resulted in the oxidative addition of the C-Cl bond at the Si(II) atom (3). The reactions of 2 with sulfur and selenium led to compounds with SiE (ES (4) and Se (5)) double bonds. Tellurium reacted differently with 2 and furnished a zwitterionic compound, 6.
Collapse
Affiliation(s)
- Milan Kumar Bisai
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - V S Ajithkumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - K Vipin Raj
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Rajesh G Gonnade
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India.
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| |
Collapse
|
7
|
Helmer J, Hepp A, Lips F. A strongly twisted SiSi bond with resemblance to a buckled dimer in an unexpected isomer of hexasilabenzene. Dalton Trans 2022; 51:3254-3262. [PMID: 35133371 DOI: 10.1039/d2dt00259k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reductive debromination of {N(SiMe3)Ph}SiBr31 with Rieke magnesium yields the six-vertex amido-substituted silicon cluster 2 with zwitterionic character that represents an unprecedented isomer of hexasilabenzene. The topology of Si1 and Si2 in 2 has bonding features of a highly twisted disilene and resembles that of a buckled dimer of Si(100)2 × 1 reconstructed surfaces. Cluster 2 forms the adducts 3 and 4 with NHCMe4 and DMAP, respectively. The NHC adduct 4 additionally coordinates to BH3 which affords the saturated cluster BH3NHCMe4Si6{N(SiMe3)Ph}6 (5). Furthermore, 2 undergoes addition with MeI and iodine to form the halogenated silicon clusters 6 and 7, respectively.
Collapse
Affiliation(s)
- Joschua Helmer
- Westfälische-Willhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28-30, 48149 Münster, Germany.
| | - Alexander Hepp
- Westfälische-Willhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28-30, 48149 Münster, Germany.
| | - Felicitas Lips
- Westfälische-Willhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28-30, 48149 Münster, Germany.
| |
Collapse
|
8
|
Gour K, Bisai MK, Sen SS. Hypersilyl Substituent in Heavier Low‐valent Group 14 Chemistry. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kritika Gour
- CSIR-NCL: National Chemical Laboratory CSIR Inorganic Chemistry and Catalysis INDIA
| | - Milan Kumar Bisai
- CSIR-NCL: National Chemical Laboratory CSIR Inorganic Chemistry and Catalysis INDIA
| | - Sakya S. Sen
- National Chemical Laboraotry Catalysis Division Dr. Homi Bhabha RoadPashan 411008 Pune INDIA
| |
Collapse
|
9
|
Pahar S, Sharma V, Tothadi S, Sen SS. Pyridylpyrrolido ligand in Ge(II) and Sn(II) chemistry: synthesis, reactivity and catalytic application. Dalton Trans 2021; 50:16678-16684. [PMID: 34757370 DOI: 10.1039/d1dt03136h] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In our previous communication, we have reported the synthesis of a new chlorogermylene (B) featuring a pyridylpyrrolido ligand. This study details the preparation of a series of new germylenes and stannylenes starting from B. A transmetallation reaction between B and SnCl2 led to the analogous chlorostannylene (1) with the simultaneous elimination of GeCl2. This is a very unusual example of transmetallation between two elements of the same group. The preparation of 1via lithiation led to the formation of 2 as a side product, where the ortho C-H bond of the pyridine ring was activated and functionalized with a nBu moiety. Subsequently, B and 1 were used as precursors to generate germylene (4) and stannylene (5) featuring tris(trimethylsilyl)silyl (hypersilyl) moieties. We also prepared tetrafluoropyridyl germylene (6) by reacting 4 with C5F5N with the simultaneous elimination of (Me3Si)3SiF by utilizing the fluoride affinity of the silicon atom. As there is scarcity of Sn(II) compounds as single-site catalysts, we investigated 5 as a catalyst towards the hydroboration of aldehydes, ketones, alkenes and alkynes. All the compounds have been characterized by single-crystal X-ray diffraction and by state of the art spectroscopic studies.
Collapse
Affiliation(s)
- Sanjukta Pahar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Srinu Tothadi
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|