1
|
Royla P, Schwedtmann K, Gomila RM, Frontera A, Weigand JJ. Zwitterionic 2-Phosphaethene-thiolates [(L C)P=CS(L C/P)] + as PCS Building Blocks (L C=NHC, L P=PR 3). Angew Chem Int Ed Engl 2024:e202419502. [PMID: 39559961 DOI: 10.1002/anie.202419502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
The zwitterionic compounds [(LC)P=CS(LC/P)]+ (3+, LC=NHC, LP=PR3), featuring cationic substituents at the phosphorus and carbon atoms, are synthesized as their triflate salts at a multi-gram scale from the reaction of Lewis base adducts of CS2, namely LC/P-CS2 (4), with a combination of [(LCP)4][OTf]4 (1[OTf]4) and Ph3P. The feasibility of using 3+ as PCS building blocks is showcased in their reactions with representative electrophiles (MeOTf) and nucleophiles (MesMgBr, Ph3PCH2), leading to selective functionalization of the PCS core at the S- and P-terminus, respectively. Additionally, it is reported that 3+ can function as ambident nucleophiles with AgOTf (2 equivalents), affording unprecedented linear coordination polymer [Ag2(OTf)3-μ2:κP,κS-((LC)P=CS(PCy3))]+ (6 b), where the PCS moiety acts as a bridging ligand in transition metal complexes for the first time. Reduction of 3+ facilitates the cleavage of the P- and C-bound substituents leading to the formation of the [PCS]- anion. Moreover, cycloaddition reactions of 3+ with 1[OTf]4 are shown to selectively yield five- and eight-membered polyphosphorus heterocycles. Preliminary results suggest the possibility of activating the C-S bond in [(LC)P=CS(LC)]+, resulting in the formation of [(LC)P=C(LC)-P(LC)][OTf]2, 12[OTf]2, which may serve as a synthon for the PCP unit in future studies.
Collapse
Affiliation(s)
- Philipp Royla
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Kai Schwedtmann
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Rosa M Gomila
- Department of Chemistry, Universitat de Illes Balears, 07122, Palma de Mallorca, Spain
| | - Antonio Frontera
- Department of Chemistry, Universitat de Illes Balears, 07122, Palma de Mallorca, Spain
| | - Jan J Weigand
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
2
|
Hauer S, Horsley Downie TM, Balázs G, Schwedtmann K, Weigand JJ, Wolf R. Cobalt-Mediated [3+1] Fragmentation of White Phosphorus: Access to Acylcyanophosphanides. Angew Chem Int Ed Engl 2024; 63:e202317170. [PMID: 38059391 DOI: 10.1002/anie.202317170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
Despite the accessibility of numerous transition metal polyphosphido complexes through transition-metal-mediated activation of white phosphorus, the targeted functionalization of Pn ligands to obtain functional monophosphorus species remains challenging. In this study, we introduce a new [3+1] fragmentation procedure for cyclo-P4 ligands, leading to the discovery of acylcyanophosphanides and -phosphines. Treatment of the complex [K(18c-6)][(Ar*BIAN)Co(η4 -P4 )] ([K(18c-6)]3, 18c-6=[18]crown-6, Ar*=2,6-dibenzhydryl-4-isopropylphenyl, BIAN=1,2-bis(arylimino)acenaphthene diimine) with acyl chlorides results in the formation of acylated tetraphosphido complexes [(Ar*BIAN)Co(η4 -P4 C(O)R)] (R=tBu, Cy, 1-Ad, Ph; 4 a-d). Subsequent reactions of 4 a-d with cyanide salts yield acylated cyanophosphanides [RC(O)PCN]- (9 a-d- ) and the cyclo-P3 cobaltate anion [(Ar*BIAN)Co(η3 -P3 )(CN)]- (8- ). Further reactions of 4 a-d with trimethylsilyl cyanide (Me3 SiCN) and isocyanides provide insight into a plausible mechanism of this [3+1] fragmentation reaction, as these reagents partially displace the P4 C(O)R ligand from the cobalt center. Several potential intermediates of the [3+1] fragmentation were characterized. Additionally, the introduction of a second acyl substituent was achieved by treating [K(18c-6)]9b with CyC(O)Cl, resulting in the first bis(acyl)monocyanophosphine (CyC(O))2 PCN (10).
Collapse
Affiliation(s)
- Sebastian Hauer
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| | | | - Gábor Balázs
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| | - Kai Schwedtmann
- TU Dresden, Faculty of Chemistry and Food Chemistry, 01062, Dresden, Germany
| | - Jan J Weigand
- TU Dresden, Faculty of Chemistry and Food Chemistry, 01062, Dresden, Germany
| | - Robert Wolf
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany
| |
Collapse
|
3
|
Mei Y, Chen X, Wei R, Chang XY, Tao L, Liu LL. An Isolable Radical Anion Featuring a 2-Center-3-Electron π-Bond without a Clearly Defined σ-Bond. Angew Chem Int Ed Engl 2023; 62:e202315555. [PMID: 37942957 DOI: 10.1002/anie.202315555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Featuring an extra electron in the π* antibonding orbital, species with a 2-center-3-electron (2c3e) π bond without an underlying σ bond are scarcely known. Herein, we report the synthesis, isolation and characterization of a radical anion salt [K(18-C-6)]+ {[(HCNDipp)2 Si]2 P2 }⋅- (i.e. [K(18-C-6)]+ 3⋅- ) (18-C-6=18-crown-6, Dipp=2,6-diisopropylphenyl), in which 3⋅- features a perfectly planar Si2 P2 four-membered ring. This species represents the first example of a Si- and P-containing analog of a bicyclo[1.1.0]butane radical anion. The unusual bonding motif of 3⋅- was thoroughly investigated via X-ray diffraction crystallography, electron paramagnetic resonance spectroscopy (EPR), and calculations by density functional theory (DFT), which collectively unveiled the existence of a 2c3e π bond between the bridgehead P atoms and no clearly defined supporting P-P σ bond.
Collapse
Affiliation(s)
- Yanbo Mei
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Department of Chemistry and Dongguan Key Laboratory for Data Science and Intelligent Medicine, Great Bay University, Dongguan, 523000, China
| | - Xiaodan Chen
- Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Rui Wei
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao-Yong Chang
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lizhi Tao
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Luo H, Li M, Wang XC, Quan ZJ. Direct synthesis of phosphorotrithioates from [TBA][P(SiCl 3) 2] and disulfides. Org Biomol Chem 2023; 21:2499-2503. [PMID: 36880434 DOI: 10.1039/d2ob02285k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Sulfur-containing organophosphorus molecules have played a pivotal role in organic synthesis, pharmaceutical pesticides and functional materials, thereby motivating researchers worldwide to establish S-P bonds from more environmentally friendly phosphorus sources. In this study, a novel method was developed for constructing S-P bonds, specifically by reacting the inorganic phosphorus derivative TBA[P(SiCl3)2] with sulfur-containing compounds under mild conditions. This method demonstrates the advantages of low energy consumption, mild reaction conditions and environmental friendliness. Moreover, this protocol-as a green synthesis method to replace the use of white phosphorus in the production of organophosphorus compounds (OPCs)-achieved the functional conversion of "inorganic phosphorus to organic phosphorus", in line with the national green development strategy.
Collapse
Affiliation(s)
- Hui Luo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| |
Collapse
|
5
|
Basappa S, Bhawar R, Nagaraju DH, Bose SK. Recent advances in the chemistry of the phosphaethynolate and arsaethynolate anions. Dalton Trans 2022; 51:3778-3806. [PMID: 35108724 DOI: 10.1039/d1dt03994f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the past decade, the reactivity of 2-phosphaethynolate (OCP-), a heavier analogue of the cyanate anion, has been the subject of momentous interest in the field of modern organometallic chemistry. It is used as a precursor to novel phosphorus-containing heterocycles and as a ligand in decarbonylative processes, serving as a synthetic equivalent of a phosphinidene derivative. This perspective aims to describe advances in the reactivities of phosphaethynolate and arsaethynolate anions (OCE-; E = P, As) with main-group element, transition metal, and f-block metal scaffolds. Further, the unique structures and bonding properties are discussed based on spectroscopic and theoretical studies.
Collapse
Affiliation(s)
- Suma Basappa
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - Ramesh Bhawar
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| | - D H Nagaraju
- Department of Chemistry, School of Applied Sciences, Reva University, Bangalore 560064, India.
| | - Shubhankar Kumar Bose
- Centre for Nano and Material Sciences (CNMS), Jain University, Jain Global Campus, Bangalore-562112, India.
| |
Collapse
|
6
|
Grützmacher H, Le Corre G. Simple conversion of trisodium phosphide, Na3P, into silyl- and cyanophosphides and structure of a terminal silver phosphide. Dalton Trans 2022; 51:3497-3501. [DOI: 10.1039/d1dt04223h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of trisodium phosphide (Na3P) with chlorosilanes allows for simple derivatization into silyl- and cyano-substituted phosphanide species which were compared to each other. The recently discovered cyano(triphenylsilyl)phosphanide shows unique coordination...
Collapse
|