1
|
Becker M, Arvidsson F, Bertilson J, Aslanikashvili E, Korvink JG, Jouda M, Lehmkuhl S. Deep learning corrects artifacts in RASER MRI profiles. Magn Reson Imaging 2024; 115:110247. [PMID: 39461486 DOI: 10.1016/j.mri.2024.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 09/29/2024] [Indexed: 10/29/2024]
Abstract
A newly developed magnetic resonance imaging (MRI) approach is based on "Radiowave amplification by the stimulated emission of radiation" (RASER). RASER MRI potentially allows for higher resolution, is inherently background-free, and does not require radio-frequency excitation. However, RASER MRI can be "nearly unusable" as heavy distortions from nonlinear effects can occur. In this work, we show that deep learning (DL) reduces such artifacts in RASER images. We trained a two-step DL pipeline on purely synthetic data, which was generated based on a previously published, theoretical model for RASER MRI. A convolutional neural network was trained on 630'000 1D RASER projections, and a U-net on 2D random images. The DL pipeline generalizes well when applied from synthetic to experimental RASER MRI data.
Collapse
Affiliation(s)
- Moritz Becker
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Filip Arvidsson
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Jonas Bertilson
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Elene Aslanikashvili
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Mazin Jouda
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany.
| |
Collapse
|
2
|
Trofimov IA, Salnikov OG, Pravdivtsev AN, de Maissin H, Yi AP, Chekmenev EY, Hövener JB, Schmidt AB, Koptyug IV. Through-bond and through-space radiofrequency amplification by stimulated emission of radiation. Commun Chem 2024; 7:235. [PMID: 39414912 PMCID: PMC11484792 DOI: 10.1038/s42004-024-01313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/20/2024] [Indexed: 10/18/2024] Open
Abstract
Radio Amplification by Stimulated Emission of Radiation (RASER) is a phenomenon observed during nuclear magnetic resonance (NMR) experiments with strongly negatively polarized systems. This phenomenon may be utilized for the production of very narrow NMR lines, background-free NMR spectroscopy, and excitation-free sensing of chemical transformations. Recently, novel methods of producing RASER by ParaHydrogen-Induced Polarization (PHIP) were introduced. Here, we show that pairwise addition of parahydrogen to various propargylic compounds induces RASER activity of other protons beyond those chemically introduced in the reaction. In high-field PHIP, negative polarization initiating RASER is transferred via intramolecular cross-relaxation. When parahydrogen is added in Earth's field followed by adiabatic transfer to a high field, RASER activity of other protons is induced via both J-couplings and cross-relaxation. This through-bond and through-space induction of RASER holds potential for the ongoing development and expansion of RASER applications and can potentially enhance spectral resolution in two-dimensional NMR spectroscopy techniques.
Collapse
Grants
- 122-09-053 EC | European Regional Development Fund (Europski Fond za Regionalni Razvoj)
- R01 EB034197 NIBIB NIH HHS
- PR 1868/3-1, PR 1868/5-1, HO-4602/2-2, HO-4602/3, EXC2167, FOR5042, TRR287 Deutsche Forschungsgemeinschaft (German Research Foundation)
- #SCHM 3694/1, #SCHM 3694/2, #SFB1479, Project ID: 441891347SFB1160 Deutsche Forschungsgemeinschaft (German Research Foundation)
- 01ZX1915C Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- #22-43-04426 Russian Science Foundation (RSF)
- Postdoctoral Fellow award Wayne State University
- CHE-1904780, NIBIB R01EB034197, NHLBI 1R21HL154032, DOD CDMRP W81XWH-20-10576 National Science Foundation (NSF)
- R21 HL154032 NHLBI NIH HHS
- 13N16448 Bundesministerium für Bildung und Forschung (Federal Ministry of Education and Research)
- German Cancer Consortium (DKTK), the DKTK Joint Funding project “HYPERBOLIC”
Collapse
Affiliation(s)
- Ivan A Trofimov
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany.
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia.
| | - Andrey N Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118, Kiel, Germany
| | - Henri de Maissin
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 280 Im Neuenheimer Feld, Heidelberg, 69120, Germany
| | - Anna P Yi
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
- Novosibirsk State University, 2 Pirogova St., 630090, Novosibirsk, Russia
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118, Kiel, Germany
| | - Andreas B Schmidt
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), 280 Im Neuenheimer Feld, Heidelberg, 69120, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, USA
| | - Igor V Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090, Novosibirsk, Russia
| |
Collapse
|
3
|
Adelabu I, Nantogma S, Fleischer S, Abdulmojeed M, de Maissin H, Schmidt AB, Lehmkuhl S, Rosen MS, Appelt S, Theis T, Qian C, Chekmenev EY. Toward Ultra-High-Quality-Factor Wireless Masing Magnetic Resonance Sensing. Angew Chem Int Ed Engl 2024; 63:e202406551. [PMID: 38822492 PMCID: PMC11463167 DOI: 10.1002/anie.202406551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
It has recently been shown that a bolus of hyperpolarized nuclear spins can yield stimulated emission signals similar in nature to maser signals, potentially enabling new ways of sensing hyperpolarized contrast media, including most notably [1-13C]pyruvate that is under evaluation in over 50 clinical trials for metabolic imaging of cancer. The stimulated NMR signal emissions lasting for minutes do not require radio-frequency excitation, offering unprecedented advantages compared to conventional MR sensing. However, creating nuclear spin maser emission is challenging in practice due to stringent fundamental requirements, making practical in vivo applications hardly possible using conventional passive MR detectors. Here, we demonstrate the utility of a wireless NMR maser detector, the quality factor of which was enhanced 22-fold (to 1,670) via parametric pumping. This active-feedback technique breaks the intrinsic fundamental limit of NMR detector circuit quality factor. We show the use of parametric pumping to reduce the threshold requirement for inducing nuclear spin masing at 300 MHz resonance frequency in a preclinical MRI scanner. Indeed, stimulated emission from hyperpolarized protons was obtained under highly unfavorable conditions of low magnetic field homogeneity (T2* of 3 ms). Greater gains of the quality factor of the MR detector (up to 1 million) were also demonstrated.
Collapse
Affiliation(s)
- Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| | - Simon Fleischer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Mustapha Abdulmojeed
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Andreas B Schmidt
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg, 79106, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, 69120, Germany
| | - Soeren Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Matthew S Rosen
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Boston, Massachusetts, 02129, United States
- Department of Physics, Harvard University, Cambridge, Massachusetts, 02138, United States
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056, Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics-Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina, 27695-8204, United States
| | - Chunqi Qian
- Department of Radiology, Michigan State University, East Lansing, Michigan, 48824, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan, 48202, United States
| |
Collapse
|
4
|
Nantogma S, de Maissin H, Adelabu I, Abdurraheem A, Nelson C, Chukanov NV, Salnikov OG, Koptyug IV, Lehmkuhl S, Schmidt AB, Appelt S, Theis T, Chekmenev EY. Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation of the Hyperpolarized Ketone and Hemiketal Forms of Allyl [1- 13C]Pyruvate. ACS Sens 2024; 9:770-780. [PMID: 38198709 PMCID: PMC10922715 DOI: 10.1021/acssensors.3c02075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
13C hyperpolarized pyruvate is an emerging MRI contrast agent for sensing molecular events in cancer and other diseases with aberrant metabolic pathways. This metabolic contrast agent can be produced via several hyperpolarization techniques. Despite remarkable success in research settings, widespread clinical adoption faces substantial roadblocks because the current sensing technology utilized to sense this contrast agent requires the excitation of 13C nuclear spins that also need to be synchronized with MRI field gradient pulses. Here, we demonstrate sensing of hyperpolarized allyl [1-13C]pyruvate via the stimulated emission of radiation that mitigates the requirements currently blocking broader adoption. Specifically, 13C Radiofrequency Amplification by Stimulated Emission of Radiation (13C RASER) was obtained after pairwise addition of parahydrogen to a pyruvate precursor, detected in a commercial inductive detector with a quality factor (Q) of 32 for sample concentrations as low as 0.125 M with 13C polarization of 4%. Moreover, parahydrogen-induced polarization allowed for the preparation of a mixture of ketone and hemiketal forms of hyperpolarized allyl [1-13C]pyruvate, which are separated by 10 ppm in 13C NMR spectra. This is a good model system to study the simultaneous 13C RASER signals of multiple 13C species. This system models the metabolic production of hyperpolarized [1-13C]lactate from hyperpolarized [1-13C]pyruvate, which has a similar chemical shift difference. Our results show that 13C RASER signals can be obtained from both species simultaneously when the emission threshold is exceeded for both species. On the other hand, when the emission threshold is exceeded only for one of the hyperpolarized species, 13C stimulated emission is confined to this species only, therefore enabling the background-free detection of individual hyperpolarized 13C signals. The reported results pave the way to novel sensing approaches of 13C hyperpolarized pyruvate, potentially unlocking hyperpolarized 13C MRI on virtually any MRI system─an attractive vision for the future molecular imaging and diagnostics.
Collapse
Affiliation(s)
- Shiraz Nantogma
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Freiburg 79106, Germany
- Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Abubakar Abdurraheem
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Christopher Nelson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090 Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Karlsruhe 76344, Germany
| | - Andreas B Schmidt
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Freiburg 79106, Germany
- Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen 52056, Germany
- Central Institute for Engineering, Electronics and Analytics - Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, Jülich D-52425, Germany
| | - Thomas Theis
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27606, United States
- Joint UNC & NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Bio-Sciences (IBIO), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Schmidt AB, Adelabu I, Nelson C, Nantogma S, Kiselev VG, Zaitsev M, Abdurraheem A, de Maissin H, Rosen MS, Lehmkuhl S, Appelt S, Theis T, Chekmenev EY. 13C Radiofrequency Amplification by Stimulated Emission of Radiation Threshold Sensing of Chemical Reactions. J Am Chem Soc 2023; 145:11121-11129. [PMID: 37172079 PMCID: PMC10257364 DOI: 10.1021/jacs.3c00776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Conventional nuclear magnetic resonance (NMR) enables detection of chemicals and their transformations by exciting nuclear spin ensembles with a radio-frequency pulse followed by detection of the precessing spins at their characteristic frequencies. The detected frequencies report on chemical reactions in real time and the signal amplitudes scale with concentrations of products and reactants. Here, we employ Radiofrequency Amplification by Stimulated Emission of Radiation (RASER), a quantum phenomenon producing coherent emission of 13C signals, to detect chemical transformations. The 13C signals are emitted by the negatively hyperpolarized biomolecules without external radio frequency pulses and without any background signal from other, nonhyperpolarized spins in the ensemble. Here, we studied the hydrolysis of hyperpolarized ethyl-[1-13C]acetate to hyperpolarized [1-13C]acetate, which was analyzed as a model system by conventional NMR and 13C RASER. The chemical transformation of 13C RASER-active species leads to complete and abrupt disappearance of reactant signals and delayed, abrupt reappearance of a frequency-shifted RASER signal without destroying 13C polarization. The experimentally observed "quantum" RASER threshold is supported by simulations.
Collapse
Affiliation(s)
- Andreas B. Schmidt
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Christopher Nelson
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Valerij G. Kiselev
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
| | - Abubakar Abdurraheem
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - Matthew S. Rosen
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Boston, MA 02129, United States
- Department of Physics, Harvard University; Cambridge, MA 02138, United States
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology; 76344 Eggenstein-Leopoldshafen, Karlsruhe, Germany
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University; 52056 Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics – Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Department of Physics, North Carolina State University, Raleigh, North Carolina 27606, United States
- Joint UNC & NC State Department of Biomedical Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Bio-sciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
6
|
Nelson C, Schmidt AB, Adelabu I, Nantogma S, Kiselev VG, Abdurraheem A, de Maissin H, Lehmkuhl S, Appelt S, Theis T, Chekmenev EY. Parahydrogen-Induced Carbon-13 Radiofrequency Amplification by Stimulated Emission of Radiation. Angew Chem Int Ed Engl 2023; 62:e202215678. [PMID: 36437237 PMCID: PMC9889133 DOI: 10.1002/anie.202215678] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
The feasibility of Carbon-13 Radiofrequency (RF) Amplification by Stimulated Emission of Radiation (C-13 RASER) is demonstrated on a bolus of liquid hyperpolarized ethyl [1-13 C]acetate. Hyperpolarized ethyl [1-13 C]acetate was prepared via pairwise addition of parahydrogen to vinyl [1-13 C]acetate and polarization transfer from nascent parahydrogen-derived protons to the carbon-13 nucleus via magnetic field cycling yielding C-13 nuclear spin polarization of approximately 6 %. RASER signals were detected from samples with concentration ranging from 0.12 to 1 M concentration using a non-cryogenic 1.4T NMR spectrometer equipped with a radio-frequency detection coil with a quality factor (Q) of 32 without any modifications. C-13 RASER signals were observed for several minutes on a single bolus of hyperpolarized substrate to achieve 21 mHz NMR linewidths. The feasibility of creating long-lasting C-13 RASER on biomolecular carriers opens a wide range of new opportunities for the rapidly expanding field of C-13 magnetic resonance hyperpolarization.
Collapse
Affiliation(s)
- Christopher Nelson
- Department of Chemistry, North Carolina State University, 27695-8204, Raleigh, NC, USA
| | - Andreas B Schmidt
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
| | - Isaiah Adelabu
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
| | - Shiraz Nantogma
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
| | - Valerij G Kiselev
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Abubakar Abdurraheem
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
| | - Henri de Maissin
- Division of Medical Physics, Department of Radiology, Medical Center, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, 76344, Karlsruhe, Germany
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056, Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics-, Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, 27695-8204, Raleigh, NC, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, 48202, Detroit, MI, USA
- Russian Academy of Sciences (RAS), 14 Leninskiy Prospekt, 119991, Moscow, Russia
| |
Collapse
|
7
|
Salnikov OG, Trofimov IA, Pravdivtsev AN, Them K, Hövener JB, Chekmenev EY, Koptyug IV. Through-Space Multinuclear Magnetic Resonance Signal Enhancement Induced by Parahydrogen and Radiofrequency Amplification by Stimulated Emission of Radiation. Anal Chem 2022; 94:15010-15017. [PMID: 36264746 PMCID: PMC10007960 DOI: 10.1021/acs.analchem.2c02929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hyperpolarized (i.e., polarized far beyond the thermal equilibrium) nuclear spins can result in the radiofrequency amplification by stimulated emission of radiation (RASER) effect. Here, we show the utility of RASER to amplify nuclear magnetic resonance (NMR) signals of solute and solvent molecules in the liquid state. Specifically, parahydrogen-induced RASER was used to spontaneously enhance nuclear spin polarization of protons and heteronuclei (here 19F and 31P) in a wide range of molecules. The magnitude of the effect correlates with the T1 relaxation time of the target nuclear spins. A series of control experiments validate the through-space dipolar mechanism of the RASER-assisted polarization transfer between the parahydrogen-polarized compound and to-be-hyperpolarized nuclei of the target molecule. Frequency-selective saturation of the RASER-active resonances was used to control the RASER and the amplitude of spontaneous polarization transfer. Spin dynamics simulations support our experimental RASER studies. The enhanced NMR sensitivity may benefit various NMR applications such as mixture analysis, metabolomics, and structure determination.
Collapse
Affiliation(s)
- Oleg G. Salnikov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090 Novosibirsk, Russia
| | - Ivan A. Trofimov
- International Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118 Kiel, Germany
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118 Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein and Kiel University, 24118 Kiel, Germany
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, 14 Leninskiy Pr., 119991 Moscow, Russia
| | - Igor V. Koptyug
- International Tomography Center SB RAS, 3A Institutskaya St., 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Lehmkuhl S, Fleischer S, Lohmann L, Rosen MS, Chekmenev EY, Adams A, Theis T, Appelt S. RASER MRI: Magnetic resonance images formed spontaneously exploiting cooperative nonlinear interaction. SCIENCE ADVANCES 2022; 8:eabp8483. [PMID: 35857519 PMCID: PMC9278855 DOI: 10.1126/sciadv.abp8483] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/27/2022] [Indexed: 05/27/2023]
Abstract
The spatial resolution of magnetic resonance imaging (MRI) is limited by the width of Lorentzian point spread functions associated with the transverse relaxation rate 1/T2*. Here, we show a different contrast mechanism in MRI by establishing RASER (radio-frequency amplification by stimulated emission of radiation) in imaged media. RASER imaging bursts emerge out of noise and without applying radio-frequency pulses when placing spins with sufficient population inversion in a weak magnetic field gradient. Small local differences in initial population inversion density can create stronger image contrast than conventional MRI. This different contrast mechanism is based on the cooperative nonlinear interaction between all slices. On the other hand, the cooperative nonlinear interaction gives rise to imaging artifacts, such as amplitude distortions and side lobes outside of the imaging domain. Contrast mechanism and artifacts are explored experimentally and predicted by simulations on the basis of a proposed RASER MRI theory.
Collapse
Affiliation(s)
- Sören Lehmkuhl
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA
| | - Simon Fleischer
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Lars Lohmann
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Matthew S. Rosen
- Massachusetts General Hospital, A. A. Martinos Center for Biomedical Imaging, Boston, MA 02129, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Eduard Y. Chekmenev
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, MI 48202, USA
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| | - Alina Adams
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056 Aachen, Germany
| | - Thomas Theis
- Department of Chemistry, North Carolina State University, Raleigh, NC 27606, USA
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC 27695, USA
| | - Stephan Appelt
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, 52056 Aachen, Germany
- Central Institute for Engineering, Electronics and Analytics – Electronic Systems (ZEA-2), Forschungszentrum Jülich GmbH, D-52425 Jülich, Germany
| |
Collapse
|
9
|
Joalland B, Chekmenev EY. Scanning Nuclear Spin Level Anticrossings by Constant-Adiabaticity Magnetic Field Sweeping of Parahydrogen-Induced 13C Polarization. J Phys Chem Lett 2022; 13:1925-1930. [PMID: 35180341 DOI: 10.1021/acs.jpclett.2c00029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The polarization transfer between 1H protons and 13C heteronuclei is of central importance in the development of parahydrogen-based hyperpolarization techniques dedicated to the production of 13C-hyperpolarized molecular probes. Here we unveil the spin conversion efficiency in the polarization transfer between parahydrogen-derived protons and 13C nuclei of an ethyl acetate biomolecule, formed by the homogeneous hydrogenation of vinyl acetate with parahydrogen, obtained by applying constant-adiabaticity sweep profiles at ultralow magnetic fields. The experiments employed natural C-13 abundance. Spin level anticrossings can be detected experimentally using a scanning approach and are selected to improve the polarization transfer efficiency. 13C polarization of up to 12% is readily achieved on the carbonyl center. The results demonstrate the simplicity, reproducibility, and high conversion efficiency of the technique, opening the door for a refined manipulation of hyperpolarized spins in both basic science experiments (e.g., state-selected spectroscopy in the strong-coupling regime) and biomedical nuclear magnetic resonance applications.
Collapse
Affiliation(s)
- Baptiste Joalland
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit, Michigan 48202, United States
- Russian Academy of Sciences, Leninskiy Prospekt 14, Moscow 119991, Russia
| |
Collapse
|
10
|
Schmidt AB, Bowers CR, Buckenmaier K, Chekmenev EY, de Maissin H, Eills J, Ellermann F, Glöggler S, Gordon JW, Knecht S, Koptyug IV, Kuhn J, Pravdivtsev AN, Reineri F, Theis T, Them K, Hövener JB. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal Chem 2022; 94:479-502. [PMID: 34974698 PMCID: PMC8784962 DOI: 10.1021/acs.analchem.1c04863] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Andreas B. Schmidt
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - C. Russell Bowers
- Department of Chemistry, University of Florida, 2001 Museum Road, Gainesville, Florida 32611, USA
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Drive, Tallahassee, Florida 32310, USA
| | - Kai Buckenmaier
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Max-Planck-Ring 11, 72076, Tübingen, Germany
| | - Eduard Y. Chekmenev
- Intergrative Biosciences (Ibio), Department of Chemistry, Karmanos Cancer Institute (KCI), Wayne State University, 5101 Cass Ave, Detroit, MI 48202, United States
- Russian Academy of Sciences (RAS), Leninskiy Prospect, 14, 119991 Moscow, Russia
| | - Henri de Maissin
- Department of Radiology – Medical Physics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, Freiburg 79106, Germany
- German Cancer Consortium (DKTK), partner site Freiburg and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany
| | - James Eills
- Institute for Physics, Johannes Gutenberg University, D-55090 Mainz, Germany
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Helmholtz-Institut Mainz, 55128 Mainz, Germany
| | - Frowin Ellermann
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Stefan Glöggler
- NMR Signal Enhancement Group Max Planck Institutefor Biophysical Chemistry Am Fassberg 11, 37077 Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration of UMG Von-Siebold-Str. 3A, 37075 Göttingen, Germany
| | - Jeremy W. Gordon
- Department of Radiology & Biomedical Imaging, University of California San Francisco, 185 Berry St., San Francisco, CA, 94158, USA
| | | | - Igor V. Koptyug
- International Tomography Center, SB RAS, 3A Institutskaya St., Novosibirsk 630090, Russia
| | - Jule Kuhn
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Andrey N. Pravdivtsev
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Francesca Reineri
- Dept. Molecular Biotechnology and Health Sciences, Via Nizza 52, University of Torino, Italy
| | - Thomas Theis
- Departments of Chemistry, Physics and Biomedical Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Kolja Them
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| | - Jan-Bernd Hövener
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Kiel, Kiel University, Am Botanischen Garten 14, 24118, Kiel, Germany
| |
Collapse
|