1
|
Feng Y, Wang L, Gao H, Zhou J, Stolte M, Qiu H, Liu L, Adebayo V, Boggio-Pasqua M, Würthner F, Gierschner J, Xie Z. Fluorescence Modulation through the Inverted Energy Gap Law in Triply N-B←N-Containing Windmill-Shaped Triazines. Angew Chem Int Ed Engl 2025; 64:e202416425. [PMID: 39480224 DOI: 10.1002/anie.202416425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
A series of windmill-shape heterocyclic molecules containing three N-B←N units, TBN and its derivatives, with quasi-planar C3 symmetric backbone, are synthesized. The parent TBN exhibits a strongly allowed, doubly degenerate lowest excited state but suffers from very low fluorescence, due to very fast nonradiative decay rate through a conical intersection (CI) as revealed by femtosecond transient absorption spectroscopy and quantum-chemical calculations. Introducing peripheral phenyl- or thienyl-groups (Ph-TBN or Th-TBN) induces pronounced bathochromic shifts and enhances fluorescence, which is beneficial from inhibited nonradiative pathway by the increased energy barriers to access the CI at excited state. The understanding of this rather uncommon behaviour may open routes for the design of novel fluorescence materials.
Collapse
Affiliation(s)
- Yi Feng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology (SCUT), No. 381 Wushan Road, 510640, Guangzhou, P. R. China
| | - Liangxuan Wang
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/Faraday 9, Ciudad Universitaria Cantoblanco, 28049, Madrid, Spain
- Institute of Physical and Theoretical Chemistry, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Hongcheng Gao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology (SCUT), No. 381 Wushan Road, 510640, Guangzhou, P. R. China
| | - Jiadong Zhou
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology (SCUT), No. 381 Wushan Road, 510640, Guangzhou, P. R. China
| | - Matthias Stolte
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Honglin Qiu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology (SCUT), No. 381 Wushan Road, 510640, Guangzhou, P. R. China
| | - Linlin Liu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology (SCUT), No. 381 Wushan Road, 510640, Guangzhou, P. R. China
| | - Victor Adebayo
- Laboratoire de Chimie et Physique Quantiques, FeRMI, Université Toulouse III-Paul Sabatier, CNRS, 31062, Toulouse, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, FeRMI, Université Toulouse III-Paul Sabatier, CNRS, 31062, Toulouse, France
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Gierschner
- Madrid Institute for Advanced Studies, IMDEA Nanoscience, C/Faraday 9, Ciudad Universitaria Cantoblanco, 28049, Madrid, Spain
| | - Zengqi Xie
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Guangdong Basic Research Center of Excellence for Energy and Information Polymer Materials, South China University of Technology (SCUT), No. 381 Wushan Road, 510640, Guangzhou, P. R. China
| |
Collapse
|
2
|
Li R, Lin X, Ding C, Xu B, Tan Q. Heterocoronenes Containing Pyridine and 1,2-Azaborine Units. Org Lett 2024; 26:11028-11033. [PMID: 39652784 DOI: 10.1021/acs.orglett.4c04211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Several coronenes containing pyridine and azaborine units have been readily prepared and structurally confirmed by X-ray crystallographic analysis. The codoping results in interesting findings and properties such as the first observation of BN-H---NPy hydrogen bonds in crystals of BN-PAHs, short π-π stacking distances, lowered HOMO-LUMO levels, narrow band gap, and unique dual response to fluoride ion and proton in solution.
Collapse
Affiliation(s)
- Ruili Li
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaohong Lin
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Changhua Ding
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Chorbacher J, Klopf J, Friedrich A, Fest M, Schneider JS, Engels B, Helten H. Regioregular Poly(p-phenylene iminoborane): A Strictly Alternating BN-Isostere of Poly(p-phenylene vinylene) with Stimuli-Responsive Behavior. Angew Chem Int Ed Engl 2024:e202416088. [PMID: 39614780 DOI: 10.1002/anie.202416088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Indexed: 12/12/2024]
Abstract
Incorporation of BN units into π-conjugated organic compounds, as substitutes for specific CC couples, often leads to new hybrid materials with modified physical and chemical properties. Poly(p-phenylene iminoborane)s are derived from well-known poly(p-phenylene vinylene) (PPV) by replacement of the vinylene groups by B=N linking units. Herein, an unprecedented poly(p-phenylene iminoborane) is presented that features a strictly alternating sequence of BN units along the main chain. The synthesis thereof was achieved by AB-type polymerization of a monomer featuring an N and a B terminus. Monodisperse oligomers with up to three BN units in the chain were additionally prepared and structurally characterized. Associated with the introduction of a dipole in the regioregular backbone structure, they display notable fluorescence already in solution and large Stokes shifts, distinct from their previously reported BBNN-sequenced congeners. All compounds show aggregation-induced emission enhancement (AIEE) properties. Computational studies provided evidence for emission from either locally excited (LE) or twisted intramolecular charge transfer (TICT) states. These processes can be optionally addressed by various stimuli, giving rise to dual emission, solvatochromic, thermochromic, and reversible mechanochromic behavior.
Collapse
Affiliation(s)
- Johannes Chorbacher
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Jonas Klopf
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Alexandra Friedrich
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Maximilian Fest
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Johannes S Schneider
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| | - Bernd Engels
- Julius-Maximilians-Universität Würzburg, Institute for Physical and Theoretical Chemistry, Emil-Fischer-Strasse 42, 97074, Würzburg, Germany
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
4
|
Zhu HT, Bao JY, Kang JW, Wang AJ, Yuan PX, Feng JJ. Hydrogen-Bond-Induced Melem Assemblies to Resist Aggregation-Caused Quenching for Ultrasensitive ECL Detection of COVID-19 Antigen. Anal Chem 2024. [PMID: 39560124 DOI: 10.1021/acs.analchem.4c04016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Nowadays, aggregation-caused quenching (ACQ) of organic molecules in aqueous media seriously restricts their analytical and biomedical applications. In this work, hydrogen bond (H-bond) was utilized to resist the ACQ effect of 2,5,8-triamino-1,3,4,6,7,9,9b-heptaazaphenalene (Melem) as an advanced electrochemiluminescence (ECL) luminophore, whose ECL process was carefully studied in an aqueous K2S2O8 system coupled with electron paramagnetic resonance (EPR) measurements. Notably, the H-bond-induced Melem assemblies (Melem-H) showed 16.6-fold enhancement in the ECL signals as compared to the Melem aggregates (Melem-A), combined by elaborating the enhanced mechanism. On such basis, the effective ECL signal transduction was in situ achieved through the specific recognition of the double-stranded DNA embedded in Melem-H assemblies (Me-dsDNA) with spike protein (SP) of coronavirus disease 2019 (COVID-19). For that, such an ECL biosensor showed a wider linear range (1.0-125.0 pg mL-1) with a lower limit of detection (LOD) down to 0.45 pg mL-1, which also displayed acceptable results in analysis of human nasal swab samples. Therefore, the work provides a distinctive insight on addressing the ACQ effect and broadening the application scope of the organic emitter and offers a simple platform for biomedical detection.
Collapse
Affiliation(s)
- Hao-Tian Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jing-Yi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jin-Wei Kang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
5
|
Schneider JS, Helten H. Hybrid materials comprising ferrocene and diaminoborane moieties: linear concatenation versus macrocyclization. Chem Commun (Camb) 2024; 60:11706-11709. [PMID: 39228359 DOI: 10.1039/d4cc03813d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Combination of borane and diaminoferrocene monomers by Si/B exchange condensation reactions afforded either diazabora-[3]ferrocenophanes or, via stepwise processes, larger macrocycles and a series of linear oligomers. Additional incorporation of p-phenylene moieties in the backbone yielded alternating concatenation.
Collapse
Affiliation(s)
- Johannes S Schneider
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074 Würzburg, Germany.
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
6
|
Scholz AS, Massoth JG, Stoess L, Bolte M, Braun M, Lerner HW, Mewes JM, Wagner M, Froitzheim T. NBN- and BNB-Phenalenyls: the Yin and Yang of Heteroatom-doped π Systems. Chemistry 2024; 30:e202400320. [PMID: 38426580 DOI: 10.1002/chem.202400320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/02/2024]
Abstract
NBN- and BNB-doped phenalenyls are isoelectronic to phenalenyl anions and cations, respectively. They represent a pair of complementary molecules that have essentially identical structures but opposite properties as electron donors and acceptors. The NBN-phenalenyls 1-4 considered here were prepared from N,N'-dimethyl-1,8-diaminonaphthalene and readily available boron-containing building blocks (i. e., BH3⋅SMe2 (1), p-CF3-C6H4B(OH)2 (2), C6H5B(OH)2 (3), or MesBCl2/iPr2NEt (4)). Treatment of 1 with 4-Me2N-2,6-Me2-C6H2Li gave the corresponding NBN derivative 5. The BNB-phenalenyl 6 was synthesized from 1,8-naphthalenediyl-bridged diborane(6), PhNH2, and MesMgBr. A computational study reveals that the photoemission of 1, 4, and 5 originates from locally excited (LE) states at the NBN-phenalenyl fragments, while that of 2 is dominated by charge transfer (CT) from the NBN-phenalenyl to the p-CF3-C6H4 fragment. Depending on the dihedral angle θ between its Ph and NBN planes, compound 3 emits mainly from a less polar LE (θ >55°) or more polar CT state (θ <55°). In turn, the energetic preference for either state is governed by the polarity of the solvent used. An equimolar aggregate of the NBN- and BNB-phenalenyls 3 and 6 (in THF/H2O) shows a distinct red-shifted emission compared to that of the individual components, which originates from an intermolecular CT state.
Collapse
Affiliation(s)
- Alexander S Scholz
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Julian G Massoth
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Lennart Stoess
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Michael Bolte
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Markus Braun
- Institut für Physikalische und Theoretische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Hans-Wolfram Lerner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Jan-M Mewes
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich Wilhelms-Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Matthias Wagner
- Institut für Anorganische und Analytische Chemie, Goethe-Universität Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Thomas Froitzheim
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich Wilhelms-Universität Bonn, Beringstr. 4, 53115, Bonn, Germany
| |
Collapse
|
7
|
Zhao M, Chen S, He C, Zhou Y. Synthesis, Structure, and Properties of a Nitrogen-Boron-Nitrogen-Embedded Polycyclic π-System Containing a Pleiaheptalene Framework. Org Lett 2023. [PMID: 38015797 DOI: 10.1021/acs.orglett.3c03311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A novel polycyclic π-system (1) featuring both a pleiaheptalene framework (a three-fused heptagon system) and nitrogen-boron-nitrogen (NBN) unit was constructed by electrophilic borylation. A combined experimental and computational study demonstrated that 1 has a highly twisted π-backbone with approximate C2 symmetry, which can undergo conformational isomerization at room temperature in contrast to pleiaheptalene. It was also found that 1 can bind the fluoride ion in the solution, which induces changes in the absorption and emission spectra.
Collapse
Affiliation(s)
- Mengna Zhao
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Shuaishuai Chen
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Chun He
- Apeloa Pharmaceutical Co., Ltd., Dongyang, Zhejiang 322118, China
| | - Yifeng Zhou
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
8
|
Ma T, Dong J, Yang DT. Heteroatom-boron-heteroatom-doped π-conjugated systems: structures, synthesis and photofunctional properties. Chem Commun (Camb) 2023; 59:13679-13689. [PMID: 37901914 DOI: 10.1039/d3cc04302a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
The potency of heteroatom-doping in reshaping optoelectronic properties arises from the distinct electronegativity variations between heteroatoms and carbon atoms. By incorporating two heteroatoms with differing electronegativities (e.g., B = N), not only is the architectural coherence of π-conjugated systems retained, but also dipolar traits are introduced, accompanied by unique intermolecular interactions absent in their all-carbon analogs. Another burgeoning doping strategy, featuring the heteroatom-boron-heteroatom motif (X-B-X, where X = N, O), has captured growing attention. This configuration's coexistence of the boron-heteroatom unit and an isolated heteroatom stimulates mutual modulation in the dipole of the boron-heteroatom unit and the heteroatom's electronegativity. In this Feature article, we present an encompassing survey of XBX-doped π-conjugated systems, elucidating how the integration of the X-B-X unit induces transformative structural and property changes within π-conjugated systems.
Collapse
Affiliation(s)
- Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
| | - Jiaqi Dong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, 710072 Xi'an, Shaanxi, China.
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, 430056 Wuhan, China
| |
Collapse
|
9
|
Zeh V, Schneider JS, Bachmann J, Krummenacher I, Braunschweig H, Helten H. Poly(ferrocenylene iminoborane): an inorganic-organic hybrid polymer comprising a backbone of moderately interacting ferrocenes. Chem Commun (Camb) 2023; 59:13723-13726. [PMID: 37909177 DOI: 10.1039/d3cc03523a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The first poly(ferrocenylene iminoborane), that is, a polyferrocene-based metallopolymer featuring CC-isoelectronic/-isosteric BN linking units, and a series of monodisperse ferrocenylene iminoborane oligomers are presented. Our studies provide important insight into the structural and electronic nature of this novel class of hybrid materials.
Collapse
Affiliation(s)
- Vivien Zeh
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Johannes S Schneider
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Jonas Bachmann
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Ivo Krummenacher
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Holger Braunschweig
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| | - Holger Helten
- Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, Würzburg 97074, Germany.
| |
Collapse
|
10
|
Chorbacher J, Maier M, Klopf J, Fest M, Helten H. Poly(thiophene iminoborane): A Poly(thiophene vinylene) (PTV) Analogue with a Fully BN-Doped Backbone. Macromol Rapid Commun 2023; 44:e2300278. [PMID: 37265120 DOI: 10.1002/marc.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Indexed: 06/03/2023]
Abstract
An unprecedented poly(thiophene iminoborane)-a boron-nitrogen analogue of the well-established conjugated organic polymer poly(thiophene vinylene)-is presented. The polymer synthesis is achieved by selective Si/B exchange polycondensation of a 2,5-diborylthiophene with a 2,5-diaminothiophene derivative. For the latter, a facile synthetic strategy is devised, which makes this versatile, strongly electron-releasing building block easily accessible. The novel polymer and a series of monodisperse thiophene iminoborane oligomers reveal systematic bathochromic shifts in their absorption with increasing chain length, and thus extended π-conjugation over the BN units along the backbone, which is further supported by TD-DFT calculations.
Collapse
Affiliation(s)
- Johannes Chorbacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Matthias Maier
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jonas Klopf
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Maximilian Fest
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry and Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
11
|
Maier M, Chorbacher J, Hellinger A, Klopf J, Günther J, Helten H. Poly(arylene iminoborane)s, Analogues of Poly(arylene vinylene) with a BN-Doped Backbone: A Comprehensive Study. Chemistry 2023:e202302767. [PMID: 37724629 DOI: 10.1002/chem.202302767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/21/2023]
Abstract
Despite the great success of the concept of doping organic compounds with BN units to access new materials with tailored properties, its use in polymer chemistry has only been realized quite recently. Herein, we present a comprehensive study of oligo- and poly(arylene iminoborane)s comprising a backbone of phenylene or thiophene moieties, as well as combinations thereof, linked via B=N units. The novel polymers can be regarded as BN analogues of poly(p-phenylene vinylene) (PPV) or poly(thiophene vinylene) (PTV) or their copolymers. Our modular synthetic approach allowed us to prepare four polymers and 12 monodisperse oligomers with modulated electronic properties. Alternating electron-releasing diaminoarylene and electron-accepting diborylarylene building blocks gave rise to a pronounced donor-acceptor character. Effective π-conjugation over the arylene iminoborane backbone is evidenced by systematic bathochromic shifts of the low-energy UV-vis absorption maximum with increasing chain length, which is furthermore supported by crystallographic and computational investigations. Furthermore, all compounds investigated show emission of visible light in the solid state and aggregation-induced emission (AIE) behavior, due to the presence of partially flexible linear B=N linkages in the backbone.
Collapse
Affiliation(s)
- Matthias Maier
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Chorbacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Anna Hellinger
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Jonas Klopf
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Julian Günther
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
12
|
Yang CC, Tian WQ. Electronic Structure Modulation of Nanographenes for Second Order Nonlinear Optical Molecular Materials. Chempluschem 2023; 88:e202300279. [PMID: 37515505 DOI: 10.1002/cplu.202300279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Nanographenes (NGs) have drawn extensive attention as promising candidates for next-generation optoelectronic and nonlinear optical (NLO) materials, owing to its unique optoelectronic properties and high thermal stability. However, the weak polarity or even non-polarity of NGs (resulting in weak even order NLO properties) and the high chemical reactivity of zigzag edged NGs hinder their further applications in nonlinear optics, thus stabilization (lowering the chemical reactivity) and polarizing the charge distribution in NGs are necessary for such applications of NGs. The fusion of heptagon and pentagon endows the azulene with the character of donor-acceptor, and the B=N unit is isoelectronic to C=C unit. The introduction of polar azulene and BN are idea to polarize and stabilize the electronic structure of NGs for NLO applications. In the present review, a survey on the functionalization and applications of NGs in nonlinear optics is conducted. The engineering of the electronic structure of NGs by topological defects, doping and edge modulation is summarized. Finally, a summary of challenges and perspectives for carbon-based NLO nanomaterials is presented.
Collapse
Affiliation(s)
- Cui-Cui Yang
- College of Science, Chongqing University of Technology, No. 69 Hongguang Avenue, Banan, Chongqing, 400054, P. R. China
- College of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| | - Wei Quan Tian
- College of Chemistry and Chemical Engineering, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing, 401331, P. R. China
| |
Collapse
|
13
|
Schneider JS, Krummenacher I, Braunschweig H, Helten H. Linear and macrocyclic oligo( p-phenylene iminoboranes) with ferrocenyl side groups - observation of selective, non-templated macrocyclization. Chem Commun (Camb) 2023. [PMID: 37326423 DOI: 10.1039/d3cc01825c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A series of linear oligo(p-phenylene iminoboranes), which are BN-modified congeners of oligo(p-phenylene vinylenes), featuring pendent ferrocene groups have been prepared. Stoichiometric reaction of a bis-silylamine with a bisborane led to selective formation of an unprecedented macrocycle, without the use of a template.
Collapse
Affiliation(s)
- Johannes S Schneider
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| |
Collapse
|
14
|
Zhang Y, Wang Y, Gao C, Ni Z, Zhang X, Hu W, Dong H. Recent advances in n-type and ambipolar organic semiconductors and their multi-functional applications. Chem Soc Rev 2023; 52:1331-1381. [PMID: 36723084 DOI: 10.1039/d2cs00720g] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Organic semiconductors have received broad attention and research interest due to their unique integration of semiconducting properties with structural tunability, intrinsic flexibiltiy and low cost. In order to meet the requirements of organic electronic devices and their integrated circuits, p-type, n-type and ambipolar organic semiconductors are all necessary. However, due to the limitation in both material synthesis and device fabrication, the development of n-type and ambipolar materials is quite behind that of p-type materials. Recent development in synthetic methods of organic semiconductors greatly enriches the range of n-type and ambipolar materials. Moreover, the newly developed materials with multiple functions also put forward multi-functional device applications, including some emerging research areas. In this review, we give a timely summary on these impressive advances in n-type and ambipolar organic semiconductors with a special focus on their synthesis methods and advanced materials with enhanced properties of charge carrier mobility, integration of high mobility and strong emission and thermoelectric properties. Finally, multi-functional device applications are further demonstrated as an example of these developed n-type and ambipolar materials.
Collapse
Affiliation(s)
- Yihan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongshuai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhenjie Ni
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Zhang
- Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University & Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China.,Department of Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.,Joint School of National University of Singapore and Tianjin University, Fuzhou International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Franceschini M, Crosta M, Ferreira RR, Poletto D, Demitri N, Zobel JP, González L, Bonifazi D. peri-Acenoacene Ribbons with Zigzag BN-Doped Peripheries. J Am Chem Soc 2022; 144:21470-21484. [DOI: 10.1021/jacs.2c06803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Marco Franceschini
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Martina Crosta
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Rúben R. Ferreira
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Daniele Poletto
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| | - Nicola Demitri
- Elettra − Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza, Trieste, Italy
| | - J. Patrick Zobel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090, Vienna, Austria
| | - Davide Bonifazi
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090, Vienna, Austria
| |
Collapse
|
16
|
Chen X, Tan D, Dong J, Ma T, Duan Y, Yang DT. [4]Triangulenes Modified by Three Oxygen-Boron-Oxygen (OBO) Units: Synthesis, Characterizations, and Anti-Kasha Emissions. J Phys Chem Lett 2022; 13:10085-10091. [PMID: 36269151 DOI: 10.1021/acs.jpclett.2c02986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Modification of π-conjugated systems using a boron atom as the dopant has become a powerful approach to create new structures and new properties. Herein, we report a facile synthesis of replacing the carbon edges of [4]triangulene by three oxygen-boron-oxygen (OBO) units. The OBO-modified [4]triangulenes are structurally similar to [4]triangulene and isoelectronic to the trianion of [4]triangulene. The structure of OBO-modified [4]triangulene is confirmed by single-crystal X-ray diffraction analysis, revealing an off-plane core with three edge-modified OBO units. These OBO-modified [4]triangulenes exhibit excellent thermal stability. These compounds have phosphorescence with lifetime longer than 1 s at 77 K. Both theoretical calculations and photophysical investigation of OBO-modified [4]triangulenes indicate that this kind of molecules display a rare anti-Kasha fluorescence and phosphorescence emissions from multiple higher excited states.
Collapse
Affiliation(s)
- Xiaobin Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Dehui Tan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Jiaqi Dong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Yi Duan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| |
Collapse
|
17
|
Sun Z, Yu C, Zhang N, Li L, Jiao Y, Thiruvengadam P, Wu D, Zhang F. Divergent Synthesis of Double Heterohelicenes as Strong Chiral Double Hydrogen-Bonding Donors. Org Lett 2022; 24:6670-6675. [PMID: 36054286 DOI: 10.1021/acs.orglett.2c02734] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed a very efficient and expandable divergent approach initiated by a direct electrophilic borylation at phenyl rings to synthesize a series of double heterohelicenes. Their π-extended structures with pristine zigzag nitrogen (N)-boron (B)-nitrogen (N) edges offer them substantial physical properties and strong double hydrogen-bond donating capability. The isolated (P,P) and (M,M) enantiomers exhibit circularly polarized luminescence in response to hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Zuobang Sun
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chunyang Yu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Ningjin Zhang
- Instrumental Analytical Center, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Lingling Li
- Instrumental Analytical Center, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yang Jiao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Palani Thiruvengadam
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Dongqing Wu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
18
|
Yang CC, Zheng XL, Chen J, Tian WQ, Li WQ, Yang L. Spin engineering of triangulenes and application for nano nonlinear optical materials design. Phys Chem Chem Phys 2022; 24:18529-18542. [PMID: 35899847 DOI: 10.1039/d2cp02915d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The recently synthesized triangulenes with non-bonding edge states could have broad potential applications in magnetics, spintronics and electro-optics if they have appropriate electronic structure modulation. In the present work, strategies based on molecular orbital theory through heteroatom doping are proposed to redistribute, reduce or eliminate the spin of triangulenes for novel functional materials design, and the role of B, N, NBN, and BNB in such intended electronic structure manipulation is scrutinized. π-Extended triangulenes with tunable electronic properties could be potential nonlinear optical (NLO) materials with appropriate inhibition of their polyradical nature. The elimination of spin is achieved by B, N, NBN, and BNB doping with the intended geometric arrangement for enhanced polarity. Intended doping of BNB results in an optimal structure with large static first hyperpolarizability (〈β0〉) as well as strong Hyper-Rayleigh scattering (HRS) βHRS(-2ω; ω, ω) (ω = 1064.0 nm), TG7-BNB-ba with a large 〈β0〉 (18.85 × 10-30 esu per heavy atom) and βHRS (1.15 × 10-28 esu per heavy atom) much larger than that of a synthesized triangular molecule (1.12 × 10-30 esu of 〈β0〉 per heavy atom and 5.04 × 10-30 esu of βHRS per heavy atom). The strong second order NLO responses in the near-infrared and visible regions, particularly the strong sum frequency generation, make these B or (and) N doped triangulenes promising candidates for the fabrication of novel carbon-based optoelectronic devices and micro-NLO devices.
Collapse
Affiliation(s)
- Cui-Cui Yang
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Huxi Campus, Chongqing 401331, China.
| | - Xue-Lian Zheng
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Huxi Campus, Chongqing 401331, China.
| | - Jiu Chen
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Huxi Campus, Chongqing 401331, China.
| | - Wei Quan Tian
- Chongqing Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Huxi Campus, Chongqing 401331, China.
| | - Wei-Qi Li
- Department of Physics, Harbin Institute of Technology, Harbin 150001, China.,Technology Innovation Center of Materials and Devices at Extreme Environment, School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China. .,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, P. R. China
| | - Ling Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, 1 Jinlian Street, Wenzhou 325001, China.
| |
Collapse
|
19
|
Jiang L, Wang Y, Tan D, Chen X, Ma T, Zhang B, Yang DT. Access to tetracoordinate boron-doped polycyclic aromatic hydrocarbons with delayed fluorescence and aggregation-induced emission under mild conditions. Chem Sci 2022; 13:5597-5605. [PMID: 35694347 PMCID: PMC9116330 DOI: 10.1039/d2sc01722a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022] Open
Abstract
Boron-doped polycyclic aromatic hydrocarbons (PAHs) have attracted ongoing attention in the field of optoelectronic materials due to their unique optical and redox properties. To investigate the effect of tetracoordinate boron in PAHs bearing N-heterocycles (indole and carbazole), a facile approach to four-coordinate boron-doped PAHs was developed, which does not require elevated temperature and pre-synthesized functionalized boron reactants. Five tetracoordinate boron-doped PAHs (NBNN-1–NBNN-5) were synthesized with different functional groups. Two of them (NBNN-1 and NBNN-2) could further undergo oxidative coupling reactions to form fused off-plane tetracoordinate boron-doped PAHs NBNN-1f and NBNN-2f. The investigation of photophysical properties showed that the UV/vis absorption and fluorescence emission are significantly red-shifted compared to those of the three-coordinate boron-doped counterparts. In addition, the emission of NBNN-1–NBNN-3 consisted of prompt fluorescence and delayed fluorescence. The compounds NBNN-1f and NBNN-2f showed aggregation-induced emission. A series of tetracoordinate boron-doped polycyclic aromatic hydrocarbons have been synthesized under mild conditions, featuring delayed fluorescence and aggregation-induced emission.![]()
Collapse
Affiliation(s)
- Long Jiang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shanxi 710072 China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Dehui Tan
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shanxi 710072 China
| | - Xiaobin Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shanxi 710072 China
| | - Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shanxi 710072 China
| | - Baoliang Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shanxi 710072 China
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University Xi'an Shanxi 710072 China
| |
Collapse
|
20
|
Jiang Z, Zhou S, Jin W, Zhao C, Liu Z, Yu X. Synthesis, Structure, and Photophysical Properties of BN-Embedded Analogue of Coronene. Org Lett 2022; 24:1017-1021. [PMID: 35072476 DOI: 10.1021/acs.orglett.1c04161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two BN-embedded benzo[ghi]perylene (Bzp) and coronene derivatives (BN-Bzp and BN-Cor) have been successfully synthesized from binaphthyl precursors by new efficient one-pot-multibond routes, and their single crystal structures were analyzed. Both experimental spectra and DFT theoretical calculations indicated that the absorption and emission of these BN-embedded polycyclic aromatic hydrocarbons are significantly enhanced comparing with those of their all carbon analogues. Especially, the fluorescence quantum yield of BN-Cor is nearly 20 times higher than that of ordinary coronene.
Collapse
Affiliation(s)
- Zhen Jiang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Shimin Zhou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Wendong Jin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Cuihua Zhao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Zhiqiang Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.,Shenzhen Research Institute of Shandong University, Shenzhen 518057, China
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
| |
Collapse
|