1
|
Zhou Y, Limbu I, Garson MJ, Krenske EH. Conformational Sampling in Computational Studies of Natural Products: Why Is It Important? JOURNAL OF NATURAL PRODUCTS 2024; 87:2543-2549. [PMID: 39315508 DOI: 10.1021/acs.jnatprod.4c00852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Conformational sampling is a vital component of a reliable computational chemistry investigation. With the aim of illustrating the importance of conformational sampling, and building awareness among new practitioners, we present a series of case studies that show how the quality and reliability of computational studies depend on undertaking a thorough conformer search. The examples are drawn from the most common types of research questions in natural products chemistry, but the fundamental principles apply more generally to computational studies of molecular structure and behavior in any field of chemistry.
Collapse
Affiliation(s)
- Yuchen Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Ingso Limbu
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Mary J Garson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Elizabeth H Krenske
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Queensland, Australia
| |
Collapse
|
2
|
Tabekoueng GB, Li H, Goldfuss B, Schnakenburg G, Dickschat JS. Skeletal Rearrangements in the Enzyme-Catalysed Biosynthesis of Coral-Type Diterpenes from Chitinophaga pinensis. Angew Chem Int Ed Engl 2024:e202413860. [PMID: 39195349 DOI: 10.1002/anie.202413860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
Two diterpene synthases from the bacterium Chitinophaga pinensis were characterised. The first enzyme mainly produced the rearranged diterpene palmatol, a compound known from octocorals, while the second enzyme made the new coral-type eunicellane chitinol. The mechanisms of both enzymes were deeply studied through isotopic labelling experiments, DFT calculations, and with a substrate analog containing a saturated double bond, resulting in the formation of derailment products that gave additional insights into the nature of the cyclisation cascade intermediates. The formation of coral-type diterpenes poses interesting questions on the functions of these compounds in organisms as different as bacteria and corals.
Collapse
Affiliation(s)
- Georges B Tabekoueng
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Heng Li
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Bernd Goldfuss
- Department for Chemistry, University of Cologne, Greinstraße 4, 50939, Cologne, Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| | - Jeroen S Dickschat
- Kekulé Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
3
|
Li J, Chen B, Fu Z, Mao J, Liu L, Chen X, Zheng M, Wang CY, Wang C, Guo YW, Xu B. Discovery of a terpene synthase synthesizing a nearly non-flexible eunicellane reveals the basis of flexibility. Nat Commun 2024; 15:5940. [PMID: 39009563 PMCID: PMC11250809 DOI: 10.1038/s41467-024-50209-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
Eunicellane diterpenoids, containing a typical 6,10-bicycle, are bioactive compounds widely present in marine corals, but rarely found in bacteria and plants. The intrinsic macrocycle exhibits innate structural flexibility resulting in dynamic conformational changes. However, the mechanisms controlling flexibility remain unknown. The discovery of a terpene synthase, MicA, that is responsible for the biosynthesis of a nearly non-flexible eunicellane skeleton, enable us to propose a feasible theory about the flexibility in eunicellane structures. Parallel studies of all eunicellane synthases in nature discovered to date, including 2Z-geranylgeranyl diphosphate incubations and density functional theory-based Boltzmann population computations, reveale that a trans-fused bicycle with a 2Z-configuration alkene restricts conformational flexibility resulting in a nearly non-flexible eunicellane skeleton. The catalytic route and the enzymatic mechanism of MicA are also elucidated by labeling experiments, density functional theory calculations, structural analysis of the artificial intelligence-based MicA model, and mutational studies.
Collapse
Affiliation(s)
- Jinfeng Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Bao Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Zunyun Fu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Jingjing Mao
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Shanghai, 200031, China
- Department of Pathogen Biology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lijun Liu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Xiaochen Chen
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China
| | - Mingyue Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China
| | - Chang-Yun Wang
- Key Laboratory of Marine Drugs, The Ministry of Education of China, Institute of Evolution & Marine Biodiversity, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Chengyuan Wang
- CAS Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Shanghai, 200031, China.
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Baofu Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, 264117, China.
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhangjiang Hi-Tech Park, Shanghai, 201203, China.
| |
Collapse
|
4
|
Li Z, Jindani S, Kojasoy V, Ortega T, Marshall EM, Abboud KA, Loesgen S, Tantillo DJ, Rudolf JD. Computation-guided scaffold exploration of 2 E,6 E-1,10- trans/cis-eunicellanes. Beilstein J Org Chem 2024; 20:1320-1326. [PMID: 38887579 PMCID: PMC11181210 DOI: 10.3762/bjoc.20.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Eunicellane diterpenoids are a unique family of natural products containing a foundational 6/10-bicyclic framework and can be divided into two main classes, cis and trans, based on the configurations of their ring fusion at C1 and C10. Previous studies on two bacterial diterpene synthases, Bnd4 and AlbS, revealed that these enzymes form cis- and trans-eunicellane skeletons, respectively. Although the structures of these diterpenes only differed in their configuration at a single position, C1, they displayed distinct chemical and thermal reactivities. Here, we used a combination of quantum chemical calculations and chemical transformations to probe their intrinsic properties, which result in protonation-initiated cyclization, Cope rearrangement, and atropisomerism. Finally, we exploited the reactivity of the trans-eunicellane skeleton to generate a series of 6/6/6 gersemiane-type diterpenes via electrophilic cyclization.
Collapse
Affiliation(s)
- Zining Li
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Sana Jindani
- Department of Chemistry, University of California–Davis, 1 Shields Ave., Davis, CA 95616, USA
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Volga Kojasoy
- Department of Chemistry, University of California–Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Teresa Ortega
- Department of Chemistry, University of California–Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Erin M Marshall
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Ocean Shore Blvd., St. Augustine, FL 32080, USA
| | - Khalil A Abboud
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| | - Sandra Loesgen
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
- Whitney Laboratory for Marine Bioscience, University of Florida, 9505 N Ocean Shore Blvd., St. Augustine, FL 32080, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California–Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, PO Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
5
|
Wang Z, Yang Q, He J, Li H, Pan X, Li Z, Xu HM, Rudolf JD, Tantillo DJ, Dong LB. Cytochrome P450 Mediated Cyclization in Eunicellane Derived Diterpenoid Biosynthesis. Angew Chem Int Ed Engl 2023; 62:e202312490. [PMID: 37735947 PMCID: PMC11212149 DOI: 10.1002/anie.202312490] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/23/2023]
Abstract
Terpene cyclization, one of the most complex chemical reactions in nature, is generally catalyzed by two classes of terpene cyclases (TCs). Cytochrome P450s that act as unexpected TC-like enzymes are known but are very rare. In this study, we genome-mined a cryptic bacterial terpenoid gene cluster, named ari, from the thermophilic actinomycete strain Amycolatopsis arida. By employing a heterologous production system, we isolated and characterized three highly oxidized eunicellane derived diterpenoids, aridacins A-C (1-3), that possess a 6/7/5-fused tricyclic scaffold. In vivo and in vitro experiments systematically established a noncanonical two-step biosynthetic pathway for diterpene skeleton formation. First, a class I TC (AriE) cyclizes geranylgeranyl diphosphate (GGPP) into a 6/10-fused bicyclic cis-eunicellane skeleton. Next, a cytochrome P450 (AriF) catalyzes cyclization of the eunicellane skeleton into the 6/7/5-fused tricyclic scaffold through C2-C6 bond formation. Based on the results of quantum chemical computations, hydrogen abstraction followed by electron transfer coupled to barrierless carbocation ring closure is shown to be a viable mechanism for AriF-mediated cyclization. The biosynthetic logic of skeleton construction in the aridacins is unprecedented, expanding the catalytic capacity and diversity of P450s and setting the stage to investigate the inherent principles of carbocation generation by P450s in the biosynthesis of terpenoids.
Collapse
Affiliation(s)
- Zengyuan Wang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Qian Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingyi He
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Haixin Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xingming Pan
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Zining Li
- Department of Chemistry, University of Florida, Gainesville, FL-32611, USA
| | - Hui-Min Xu
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, 211198, China
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL-32611, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, CA-95616, USA
| | - Liao-Bin Dong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
6
|
Li Z, Xu B, Alsup TA, Wei X, Ning W, Icenhour DG, Ehrenberger MA, Ghiviriga I, Giang BD, Rudolf JD. Cryptic Isomerization in Diterpene Biosynthesis and the Restoration of an Evolutionarily Defunct P450. J Am Chem Soc 2023; 145:22361-22365. [PMID: 37813821 PMCID: PMC11209839 DOI: 10.1021/jacs.3c09446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Biosynthetic modifications of the 6/10-bicyclic hydrocarbon skeletons of the eunicellane family of diterpenoids are unknown. We explored the biosynthesis of a bacterial trans-eunicellane natural product, albireticulone A (3), and identified a novel isomerase that catalyzes cryptic isomerization in the biosynthetic pathway. We also assigned functions of two cytochromes P450 that oxidize the eunicellane skeleton, one of which was a naturally evolved non-functional P450 that, when genetically repaired, catalyzes allylic oxidation. Finally, we described the chemical susceptibility of the trans-eunicellane skeleton to undergo Cope rearrangement to yield inseparable atropisomers.
Collapse
Affiliation(s)
- Zining Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, United States
| | | | - Tyler A. Alsup
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, United States
| | - Xiuting Wei
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, United States
| | - Wenbo Ning
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, United States
| | - Daniel G. Icenhour
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, United States
| | - Michelle A. Ehrenberger
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, United States
| | - Ion Ghiviriga
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, United States
| | - Bao-Doan Giang
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, United States
| | - Jeffrey D. Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, United States
| |
Collapse
|
7
|
Li C, Wang S, Yin X, Guo A, Xie K, Chen D, Sui S, Han Y, Liu J, Chen R, Dai J. Functional Characterization and Cyclization Mechanism of a Diterpene Synthase Catalyzing the Skeleton Formation of Cephalotane-Type Diterpenoids. Angew Chem Int Ed Engl 2023; 62:e202306020. [PMID: 37326357 DOI: 10.1002/anie.202306020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/17/2023]
Abstract
CsCTS, a new diterpene synthase from Cephalotaxus sinensis responsible for forming cephalotene, the core skeleton of cephalotane-type diterpenoids with a highly rigid 6/6/5/7 tetracyclic ring system, was functionally characterized. The stepwise cyclization mechanism is proposed mainly based on structural investigation of its derailment products, and further demonstrated through isotopic labeling experiments and density functional theory calculations. Homology modeling and molecular dynamics simulation combined with site-directed mutagenesis revealed the critical amino acid residues for the unique carbocation-driven cascade cyclization mechanism of CsCTS. Altogether, this study reports the discovery of the diterpene synthase that catalyzes the first committed step of cephalotane-type diterpenoid biosynthesis and delineates its cyclization mechanism, laying the foundation to decipher and artificially construct the complete biosynthetic pathway of this type diterpenoids.
Collapse
Affiliation(s)
- Changkang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuai Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252000, Shandong, China
| | - Xinxin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Aobo Guo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kebo Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Dawei Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Songyang Sui
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yaotian Han
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jimei Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ridao Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, CAMS Key Laboratory of Enzyme and Biocatalysis of Natural Drugs, NHC Key Laboratory of Biosynthesis of Natural Products, and Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
8
|
Li Z, Zhang L, Xu K, Jiang Y, Du J, Zhang X, Meng LH, Wu Q, Du L, Li X, Hu Y, Xie Z, Jiang X, Tang YJ, Wu R, Guo RT, Li S. Molecular insights into the catalytic promiscuity of a bacterial diterpene synthase. Nat Commun 2023; 14:4001. [PMID: 37414771 PMCID: PMC10325987 DOI: 10.1038/s41467-023-39706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023] Open
Abstract
Diterpene synthase VenA is responsible for assembling venezuelaene A with a unique 5-5-6-7 tetracyclic skeleton from geranylgeranyl pyrophosphate. VenA also demonstrates substrate promiscuity by accepting geranyl pyrophosphate and farnesyl pyrophosphate as alternative substrates. Herein, we report the crystal structures of VenA in both apo form and holo form in complex with a trinuclear magnesium cluster and pyrophosphate group. Functional and structural investigations on the atypical 115DSFVSD120 motif of VenA, versus the canonical Asp-rich motif of DDXX(X)D/E, reveal that the absent second Asp of canonical motif is functionally replaced by Ser116 and Gln83, together with bioinformatics analysis identifying a hidden subclass of type I microbial terpene synthases. Further structural analysis, multiscale computational simulations, and structure-directed mutagenesis provide significant mechanistic insights into the substrate selectivity and catalytic promiscuity of VenA. Finally, VenA is semi-rationally engineered into a sesterterpene synthase to recognize the larger substrate geranylfarnesyl pyrophosphate.
Collapse
Affiliation(s)
- Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Lilan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Kangwei Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China
| | - Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Jieke Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Xingwang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ling-Hong Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Nanhai Road 7, Qingdao, Shandong, 266071, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| | - Qile Wu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Lei Du
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Xiaoju Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Yuechan Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Zhenzhen Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China
| | - Xukai Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Ruibo Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, Guangdong, 510006, China.
| | - Rey-Ting Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, Hubei, 430062, China.
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China.
| |
Collapse
|
9
|
Tarasova EV, Luchnikova NA, Grishko VV, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals (Basel) 2023; 16:872. [PMID: 37375819 PMCID: PMC10301674 DOI: 10.3390/ph16060872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Terpenes and their derivatives (terpenoids and meroterpenoids, in particular) constitute the largest class of natural compounds, which have valuable biological activities and are promising therapeutic agents. The present review assesses the biosynthetic capabilities of actinomycetes to produce various terpene derivatives; reports the main methodological approaches to searching for new terpenes and their derivatives; identifies the most active terpene producers among actinomycetes; and describes the chemical diversity and biological properties of the obtained compounds. Among terpene derivatives isolated from actinomycetes, compounds with pronounced antifungal, antiviral, antitumor, anti-inflammatory, and other effects were determined. Actinomycete-produced terpenoids and meroterpenoids with high antimicrobial activity are of interest as a source of novel antibiotics effective against drug-resistant pathogenic bacteria. Most of the discovered terpene derivatives are produced by the genus Streptomyces; however, recent publications have reported terpene biosynthesis by members of the genera Actinomadura, Allokutzneria, Amycolatopsis, Kitasatosporia, Micromonospora, Nocardiopsis, Salinispora, Verrucosispora, etc. It should be noted that the use of genetically modified actinomycetes is an effective tool for studying and regulating terpenes, as well as increasing productivity of terpene biosynthesis in comparison with native producers. The review includes research articles on terpene biosynthesis by Actinomycetes between 2000 and 2022, and a patent analysis in this area shows current trends and actual research directions in this field.
Collapse
Affiliation(s)
- Ekaterina V. Tarasova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Natalia A. Luchnikova
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Victoria V. Grishko
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
| | - Irina B. Ivshina
- Perm Federal Research Center, Ural Branch of the Russian Academy of Sciences, 13A Lenina Str., 614990 Perm, Russia; (N.A.L.); (V.V.G.); (I.B.I.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
10
|
Li Z, Xu B, Kojasoy V, Ortega T, Adpressa DA, Ning W, Wei X, Liu J, Tantillo DJ, Loesgen S, Rudolf JD. First trans-eunicellane terpene synthase in bacteria. Chem 2023; 9:698-708. [PMID: 36937101 PMCID: PMC10022577 DOI: 10.1016/j.chempr.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Terpenoids are the largest family of natural products, but prokaryotes are vastly underrepresented in this chemical space. However, genomics supports vast untapped biosynthetic potential for terpenoids in bacteria. We discovered the first trans-eunicellane terpene synthase (TS), AlbS from Streptomyces albireticuli NRRL B-1670, in nature. Mutagenesis, deuterium labeling studies, and quantum chemical calculations provided extensive support for its cyclization mechanism. In addition, parallel stereospecific labeling studies with Bnd4, a cis-eunicellane TS, revealed a key mechanistic distinction between these two enzymes. AlbS highlights bacteria as a valuable source of novel terpenoids, expands our understanding of the eunicellane family of natural products and the enzymes that biosynthesize them, and provides a model system to address fundamental questions about the chemistry of 6,10-bicyclic ring systems.
Collapse
Affiliation(s)
- Zining Li
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Volga Kojasoy
- Department of Chemistry, University of California–Davis, Davis, CA, United States
| | - Teresa Ortega
- Department of Chemistry, University of California–Davis, Davis, CA, United States
| | | | - Wenbo Ning
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Xiuting Wei
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Jamin Liu
- Department of Chemistry, University of Florida, Gainesville, FL, United States
| | - Dean J. Tantillo
- Department of Chemistry, University of California–Davis, Davis, CA, United States
| | - Sandra Loesgen
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- Whitney Laboratory for Marine Biosciences, University of Florida, St. Augustine, FL, United States
| | - Jeffrey D. Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL, United States
- Lead contact
| |
Collapse
|
11
|
Li Z, Rudolf JD. Biosynthesis, enzymology, and future of eunicellane diterpenoids. J Ind Microbiol Biotechnol 2023; 50:kuad027. [PMID: 37673680 PMCID: PMC10548852 DOI: 10.1093/jimb/kuad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Eunicellane diterpenoids are a remarkable family of terpene natural products and have been of high interest for over five decades. Widely distributed in soft corals and rare in plants, eunicellanes were also recently identified in actinobacteria. These terpenoids have foundational 6/10-bicyclic frameworks that are frequently oxidized into structures containing transannular ether bridges. Interest in their unique structures and promising biological activities, such as the paclitaxel-like activities of eleutherobin and the sarcodictyins, has led to advancements in natural product isolation, total synthesis, medicinal chemistry, and drug lead development. Until recently, however, there was little known about the biosynthesis and enzymology of these natural products, but several recent studies in both bacteria and coral have opened up the field. This review summarizes recent advancements in the biosynthesis and enzymology of eunicellane diterpenoids and highlights future research prospects in the field. ONE-SENTENCE SUMMARY A summary of recent advancements in the biosynthesis and enzymology of eunicellane diterpenoids, a structurally unique and biologically active family of natural products found in coral, plants, and bacteria.
Collapse
Affiliation(s)
- Zining Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7011, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, FL 32611-7011, USA
| |
Collapse
|
12
|
Xu B, Ning W, Wei X, Rudolf JD. Mutation of the eunicellane synthase Bnd4 alters its product profile and expands its prenylation ability. Org Biomol Chem 2022; 20:8833-8837. [PMID: 36321628 PMCID: PMC9841812 DOI: 10.1039/d2ob01931k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bnd4 catalyzes the first committed step in the biosynthesis of the bacterial diterpenoid benditerpenoic acid and was the first eunicellane synthase identified from nature. We investigated the catalytic roles of the aromatic residues in the active site of Bnd4 through a series of mutation studies. These experiments revealed that large hydrophobic or aromatic side chains are required at F162 and Y197 for eunicellane formation and that selected mutations at W316 converted Bnd4 into a cembrane synthase. In addition, the Bnd4Y197A variant expanded the native prenylation ability of Bnd4 from accepting C5 and C10 prenyl donors to C15. This study supports the mechanism of eunicellane formation by Bnd4 and encourages further engineering of terpene synthases into practical and efficient prenyltransferases.
Collapse
Affiliation(s)
- Baofu Xu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, USA.
| | - Wenbo Ning
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, USA.
| | - Xiuting Wei
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, USA.
| | - Jeffrey D Rudolf
- Department of Chemistry, University of Florida, Gainesville, Florida 32611-7011, USA.
| |
Collapse
|
13
|
Gong K, Yong D, Fu J, Li A, Zhang Y, Li R. Diterpenoids from Streptomyces: Structures, Biosyntheses and Bioactivities. Chembiochem 2022; 23:e202200231. [PMID: 35585772 DOI: 10.1002/cbic.202200231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Indexed: 11/09/2022]
Abstract
Bacteria, especially Streptomyces spp., have been emerging as rich sources of natural diterpenoids with diverse structures and broad bioactivities. Here, we review diterpenoids biosynthesized by Streptomyces , with an emphasis on their structures, biosyntheses, and bioactivities. Although diterpenoids from Streptomyces are relatively rare compared to those from plants and fungi, their novel skeletons, biosyntheses and bioactivities present opportunities for discovering new drugs, enzyme mechanisms, and applications in bio-catalysis and metabolic pathway engineering.
Collapse
Affiliation(s)
- Kai Gong
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Daojing Yong
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Jun Fu
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Aiying Li
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Youming Zhang
- Shandong University, State Key Laboratory of Microbial Technology, CHINA
| | - Ruijuan Li
- Shandong University, State Key Laboratory of Microbial Technology, Binhai Road 72, 266237, Qingdao, CHINA
| |
Collapse
|
14
|
Mechanistic investigations of hirsutene biosynthesis catalyzed by a chimeric sesquiterpene synthase from Steccherinum ochraceum. Fungal Genet Biol 2022; 161:103700. [DOI: 10.1016/j.fgb.2022.103700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/24/2022] [Indexed: 11/21/2022]
|
15
|
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as asporychalasin from Aspergillus oryzae.
Collapse
Affiliation(s)
- Robert A Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK.
| | | |
Collapse
|