1
|
Shinde GH, Ghotekar GS, Sundén H. Ortho Arylation of N-Aryl Amides and the Construction of Diagonal Tetraarylbenzenediamines and N-Doped Fulminenes via BBr 3-Derived Dibromoboracycles. Chemistry 2024:e202403938. [PMID: 39513957 DOI: 10.1002/chem.202403938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The synthesis of biaryl amides, which are prevalent motifs in bioactive molecules, often necessitates lengthy and inefficient procedures. To address these limitations, catalytic C-H activation protocols have emerged, enabling the direct ortho-arylation of aryl amides. However, these protocols often suffer from issues such as lack of selectivity, reliance on stoichiometric oxidants, and the requirement for excess reagents and harsh reaction conditions. To overcome these challenges, we present a novel and highly selective protocol for the ortho-arylation of N-aryl amides and ureas. The high selectivity originates from the directed installation of BBr3 to form a boracycle, which then undergoes cross-coupling with an aryl halide. Our method offers significant advantages, including mild reaction conditions, excellent site-specificity, and scalability. The protocol demonstrates broad compatibility with a diverse range of readily accessible functionalized anilides and aryl iodides, as evidenced by 55 successful examples yielding products in the 30-95 % range. Furthermore, our methodology surpasses conventional approaches by facilitating the one-pot selective diagonal diarylation of dianilides. This capability unlocks the construction of previously unattainable diagonal aryl systems, which serve as valuable precursors for the synthesis of diagonal tetraarylbenzenediamines and N-doped fulminenes, two crucial compound classes in materials science.
Collapse
Affiliation(s)
- Ganesh H Shinde
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-41296, Sweden
| | - Ganesh S Ghotekar
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-41296, Sweden
| | - Henrik Sundén
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, SE-41296, Sweden
| |
Collapse
|
2
|
Zuo J, Liu K, Harrell J, Fang L, Piotrowiak P, Shimoyama D, Lalancette RA, Jäkle F. Near-IR Emissive B-N Lewis Pair-Functionalized Anthracenes via Selective LUMO Extension in Conjugated Dimer and Polymer. Angew Chem Int Ed Engl 2024; 63:e202411855. [PMID: 38976519 DOI: 10.1002/anie.202411855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Acenes are attractive as building blocks for low gap organic materials with applications, for example, in organic light emitting diodes, solar cells, bioimaging and diagnostics. Previously, we have shown that modification of dipyridylanthracene via B-N Lewis pair fusion (BDPA) strongly redshifts the emission, while facilitating self-sensitized reactivity toward O2 to reversibly generate the corresponding endoperoxides. Herein, we report on the further expansion of the π-system of BDPA to a vinyl-substituted monomer, vinylene-bridged dimer, and a polymer with an average of 20 chromophores. The extension of π-conjugation results in largely reduced band gaps of 1.8 eV for the dimer and 1.7 eV for the polymer, the latter giving rise to NIR emission with a maximum at 731 nm and an appreciable quantum yield of 7 %. Electrochemical and computational studies reveal efficient delocalization of the lowest unoccupied molecular orbital (LUMO) along the pyridyl-anthracene-pyridyl axis, which results in effective electronic communication between BDPA units, selectively lowers the LUMO, and ultimately narrows the band gap. Time-resolved emission and transient absorption (TA) measurements offer insights into the pertinent photophysical processes. Extension of π-conjugation also slows down the self-sensitized formation of endoperoxides, while significantly accelerating the thermal release of singlet oxygen to regenerate the parent acenes.
Collapse
Affiliation(s)
- Jingyao Zuo
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Kanglei Liu
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Jaren Harrell
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Lujia Fang
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Piotr Piotrowiak
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Daisuke Shimoyama
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Roger A Lalancette
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| | - Frieder Jäkle
- Department of Chemistry, Rutgers, The State University-Newark, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Maji S, Rawal P, Ghosh A, Pidiyar K, Al-Thabaiti SA, Gupta P, Maiti D. Metal-free Borylation of α-Naphthamides and Phenylacetic Acid Drug. JACS AU 2024; 4:3679-3689. [PMID: 39328765 PMCID: PMC11423307 DOI: 10.1021/jacsau.4c00660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Site-selective C-H borylation is an important strategy for constructing molecular diversity in arenes and heteroarenes. Although transition-metal-catalyzed borylation is well explored, developing metal-free strategies remains scarce. Herein, we developed a straightforward approach for BBr3-mediated selective C-H borylation of naphthamide and phenyl acetamide derivatives under metal-free conditions. This methodology appears to be economical and cost-effective. Successful borylation of drug molecules such as ibuprofen and indoprofen demonstrates the versatility and utility of this metal-free borylation. An exclusive monoselectivity was observed without a trace of diboration. Despite the possibility of forming a 5-membered boronated intermediate at the ortho-position, the selectively 6-membered intermediate paved the way for the formation of the peri-product, which was further supported by detailed computational investigation.
Collapse
Affiliation(s)
- Suman Maji
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Parveen Rawal
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Animesh Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Karishma Pidiyar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Shaeel A Al-Thabaiti
- Department of Chemistry, Faculty of Science, King Abdulaziz University institution, P.O. Box : 80203, Jeddah, 21589, Saudi Arabia
| | - Puneet Gupta
- Computational Catalysis Center, Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
- Department of Chemistry, Faculty of ScienceCenter for Sustainable Energy, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Kang S, Lv J, Wang T, Wu B, Wang M, Shi Z. Transforming cyclopropanes to enamides via σ-C-C bond eliminative borylation. Nat Commun 2024; 15:7380. [PMID: 39191737 PMCID: PMC11350172 DOI: 10.1038/s41467-024-51484-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Recent strides in C-H borylation have significantly expanded our toolkit for the preparation of organoboronates. Nevertheless, avenues alternative to obtain these compounds via σ-C-C cleavage, thereby facilitating molecular scaffold editing, remain scarce. Several methodologies have been proposed for hydroboration of cyclopropanes by activating C-C bonds, conventionally relying on noble and hazardous metal catalysts to control reaction outcomes. Here, we present a strategy for crafting stereochemically precise γ-borylenamides through ring-opening of cyclopropanes avoiding any metallic entities. Boryl species, generated through a ternary reaction with BCl3, cyclopropanes, and a tertiary amine, selectively undergo C-C bond eliminative borylation under the directing of N-acyl group, thereby ensuring enhanced selectivity and efficiency along the reaction pathway. Such inherently stereoconvergent approach accommodates precursors of diverse geometries, including cis/trans isomeric blends.
Collapse
Affiliation(s)
- Shuyu Kang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Jiahang Lv
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
| | - Tianhang Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Bingcheng Wu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, China.
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, Jiangsu, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
5
|
Wang R, Feng X, Feng B, Chen Y. Boron-mediated one-pot access to salicylaldehydes via ortho-C-H hydroxylation of benzaldehydes. RSC Adv 2024; 14:19922-19925. [PMID: 38903668 PMCID: PMC11187805 DOI: 10.1039/d4ra02994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
A novel protocol has been devised for the ortho-C-H hydroxylation of benzaldehydes. Directed by a transient imine group, the borylation of benzaldehydes, sequentially followed by the hydroxylation, furnishes diverse salicylaldehydes in a one-pot manner. The resultant salicylaldehydes could be readily applied in the downstream synthesis to produce bioactive molecules.
Collapse
Affiliation(s)
- Ruiyang Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen) Nanjing 210014 China
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen) Nanjing 210014 China
| | - Boya Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen) Nanjing 210014 China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen) Nanjing 210014 China
| |
Collapse
|
6
|
Lv J, Liang Y, Ouyang Y, Zhang H. Metal-Free ortho C-H Borylation of Thiobenzamides. Org Lett 2024; 26:3709-3714. [PMID: 38691629 DOI: 10.1021/acs.orglett.4c00691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A BBr3-mediated S-directed ortho C-H borylation of thiobenzamides was developed. A variety of ortho-borylated thiobenzamides were obtained in moderate to good yields with a wide functional group tolerance under simple and metal-free conditions. This transformation provided a convenient and practical route to important functionalized thiobenzamides.
Collapse
Affiliation(s)
- Jianxing Lv
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Yixuan Liang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Yepeng Ouyang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China
| |
Collapse
|
7
|
Li Z, Shi Z. Late-Stage Diversification of Phosphines by C-H Activation: A Robust Strategy for Ligand Design and Preparation. Acc Chem Res 2024; 57:1057-1072. [PMID: 38488874 DOI: 10.1021/acs.accounts.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
ConspectusThe advent of the twenty-first century marked a golden era in the realm of synthetic chemistry, exemplified by groundbreaking advancements in the field of C-H activation, which is a concept that quickly transitioned from mere academic fascination to an essential element within the synthetic chemist's toolkit. This methodological breakthrough has given rise to a wealth of opportunities spanning a wide range of chemical disciplines. It has facilitated the late-stage diversification of elaborate organic frameworks, encompassing the spectrum from simple methane to complex polymers, thus refining the lead optimization process and easing the production of diverse molecular analogues. Among these strides forward, the development of phosphorus(III)-directed C-H activation stands out as an increasingly significant and inventive approach for the design and synthesis of ligands, substantially redefining the contours of synthetic methodology.Phosphines, renowned for their roles as ligands and organocatalysts, have become fundamentally important in modern organic chemistry. Their efficiency as ligands is significantly affected by coordination with transition metals, which is essential for their involvement in catalytic processes, influencing both the catalytic activity and the selectivity. Historically, the fabrication of phosphines predominantly relied on synthesis employing complex, multistep procedures. Addressing this limitation, our research has delved into ligand design and synthesis through innovative catalytic P(III)-directed C-H activation strategies. In this Account, we have explored a spectrum of procedures, including direct arylation using metal catalysis, and ventured further into domains such as C-H alkylation, alkenylation, aminocarbonylation, alkynylation, borylation, and silylation. These advances have enriched the field by providing efficient methods for the late-stage diversification of biaryl-type monophosphines as well as enabled the C-H activation of triphenylphosphine and its derivatives. Moreover, we have successfully constructed libraries of diverse axially chiral binaphthyl phosphine ligands, showcasing their potency in asymmetric catalysis. Through this Account, we aim to illuminate the exciting possibilities presented by P(III)-directed C-H activation in propelling the boundaries of organic synthesis. By highlighting our pioneering work, we hope to inspire further developments in this promising field of chemistry.
Collapse
Affiliation(s)
- Zexian Li
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
8
|
Shinde GH, Ghotekar GS, Amombo Noa FM, Öhrström L, Norrby PO, Sundén H. Regioselective ortho halogenation of N-aryl amides and ureas via oxidative halodeboronation: harnessing boron reactivity for efficient C-halogen bond installation. Chem Sci 2023; 14:13429-13436. [PMID: 38033885 PMCID: PMC10685333 DOI: 10.1039/d3sc04628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
The installation of the C-halogen bond at the ortho position of N-aryl amides and ureas represents a tool to prepare motifs that are ubiquitous in biologically active compounds. To construct such prevalent bonds, most methods require the use of precious metals and a multistep process. Here we report a novel protocol for the long-standing challenge of regioselective ortho halogenation of N-aryl amides and ureas using an oxidative halodeboronation. By harnessing the reactivity of boron over nitrogen, we merge carbonyl-directed borylation with consecutive halodeboronation, enabling the precise introduction of the C-X bond at the desired ortho position of N-aryl amides and ureas. This method offers an efficient, practical, and scalable solution for synthesizing halogenated N-heteroarenes under mild conditions, highlighting the superiority of boron reactivity in directing the regioselectivity of the reaction.
Collapse
Affiliation(s)
- Ganesh H Shinde
- Department of Chemistry and Molecular Biology, University of Gothenburg SE-41296 Gothenburg Sweden
| | - Ganesh S Ghotekar
- Department of Chemistry and Molecular Biology, University of Gothenburg SE-41296 Gothenburg Sweden
| | - Francoise M Amombo Noa
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology SE-41296 Gothenburg Sweden
| | - Lars Öhrström
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology SE-41296 Gothenburg Sweden
| | - Per-Ola Norrby
- Data Science and Modelling, Pharmaceutical Sciences, R&D, AstraZeneca Gothenburg Pepparedsleden 1 Mölndal SE-43183 Sweden
| | - Henrik Sundén
- Department of Chemistry and Molecular Biology, University of Gothenburg SE-41296 Gothenburg Sweden
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology SE-41296 Gothenburg Sweden
| |
Collapse
|
9
|
Wang T, Wang ZJ, Wang M, Wu L, Fang X, Liang Y, Lv J, Shi Z. Metal-Free Stereoconvergent C-H Borylation of Enamides. Angew Chem Int Ed Engl 2023; 62:e202313205. [PMID: 37721200 DOI: 10.1002/anie.202313205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/19/2023]
Abstract
Enamides, functional derivatives of enamines, play a significant role as synthetic targets. However, the stereoselective synthesis of these molecules has posed a longstanding challenge in organic chemistry, particularly for acyclic enamides that are less thermodynamically stable. In this study, we present a general strategy for constructing β-borylenamides by C-H borylation, which provides a versatile platform for generating the stereodefined enamides. Our approach involves the utilization of metalloid borenium cation, generated through the reaction of BBr3 and enamides in the presence of two different additives, avoiding any exogenous catalyst. Importantly, the stereoconvergent nature of this methodology allows for the use of starting materials with mixed E/Z configurations, thus highlighting the unique advantage of this chemistry. Mechanistic investigations have shed light on the pivotal roles played by the two additives, the reactive boron species, and the phenomenon of stereoconvergence.
Collapse
Affiliation(s)
- Tianhang Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zheng-Jun Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
- Wenzhou Key Lab of Advanced Energy Storage and Conversion, Zhejiang Province Key Lab of Leather Engineering, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Lei Wu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaowu Fang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jiahang Lv
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
10
|
Stehrer P, Spannenberg A, Hapke M. Atroposelective Ir-Catalyzed C-H Borylation of Phthalazine Heterobiaryls. J Org Chem 2023; 88:14222-14226. [PMID: 37751525 PMCID: PMC10563123 DOI: 10.1021/acs.joc.3c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Indexed: 09/28/2023]
Abstract
The atroposelective iridium-catalyzed borylation of menthyloxy-substituted phthalazine heterobiaryls with diborons is reported. Utilizing [Ir(OMe)(COD)]2/2-aminopyridine as a rarely used efficient catalyst system, the heterobiaryls were selectively borylated in the 2-position of the carbocycle, exclusively yielding only one of the atropisomers, depending on the substitution of the phthalazine with (+)-menthyl or (-)-menthyl moieties. Exemplary further functionalization of a borylated atropisomer demonstrated that nickel-catalyzed Suzuki-Miyaura cross-coupling with an aryl halide was able to provide stereoretention to a certain degree (up to 75% de).
Collapse
Affiliation(s)
- Paul Stehrer
- Institute
for Catalysis (INCA), Johannes Kepler University
Linz (JKU), Altenberger
Strasse 69, 4040 Linz, Austria
| | - Anke Spannenberg
- Leibniz
Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Strasse 29a, 18069 Rostock, Germany
| | - Marko Hapke
- Institute
for Catalysis (INCA), Johannes Kepler University
Linz (JKU), Altenberger
Strasse 69, 4040 Linz, Austria
- Leibniz
Institute for Catalysis e.V. (LIKAT), Albert-Einstein-Strasse 29a, 18069 Rostock, Germany
| |
Collapse
|
11
|
Iqbal SA, Uzelac M, Nawaz I, Wang Z, Jones TH, Yuan K, Millet CRP, Nichol GS, Chotana GA, Ingleson MJ. Amides as modifiable directing groups in electrophilic borylation. Chem Sci 2023; 14:3865-3872. [PMID: 37035693 PMCID: PMC10074396 DOI: 10.1039/d2sc06483a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/14/2023] [Indexed: 03/17/2023] Open
Abstract
Amide directed C-H borylation using ≥two equiv. of BBr3 forms borenium cations containing a R2N(R')C[double bond, length as m-dash]O→B(Ar)Br unit which has significant Lewis acidity at the carbonyl carbon. This enables reduction of the amide unit to an amine using hydrosilanes. This approach can be applied sequentially in a one-pot electrophilic borylation-reduction process, which for phenyl-acetylamides generates ortho borylated compounds that can be directly oxidised to the 2-(2-aminoethyl)-phenol. Other substrates amenable to the C-H borylation-reduction sequence include mono and diamino-arenes and carbazoles. This represents a simple method to make borylated molecules that would be convoluted to access otherwise (e.g. N-octyl-1-BPin-carbazole). Substituent variation is tolerated at boron as well as in the amide unit, with diarylborenium cations also amenable to reduction. This enables a double C-H borylation-reduction-hydrolysis sequence to access B,N-polycyclic aromatic hydrocarbons (PAHs), including an example where both the boron and nitrogen centres contain functionalisable handles (N-H and B-OH). This method is therefore a useful addition to the metal-free borylation toolbox for accessing useful intermediates (ArylBPin) and novel B,N-PAHs.
Collapse
Affiliation(s)
- Saqib A Iqbal
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Marina Uzelac
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Ismat Nawaz
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Zhongxing Wang
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - T Harri Jones
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Kang Yuan
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Clement R P Millet
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Gary S Nichol
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| | - Ghayoor Abbas Chotana
- Department of Chemistry and Chemical Engineering, Lahore University of Management Sciences Lahore 54792 Pakistan
| | - Michael J Ingleson
- EaStCHEM School of Chemistry, The University of Edinburgh David Brewster Road Edinburgh EH9 3FJ UK
| |
Collapse
|
12
|
Luo L, Tang S, Wu J, Jin S, Zhang H. Transition Metal-Free Aromatic C-H, C-N, C-S and C-O Borylation. CHEM REC 2023; 23:e202300023. [PMID: 36850026 DOI: 10.1002/tcr.202300023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Aromatic organoboron compounds are highly valuable building blocks in organic chemistry. They were mainly synthesized through aromatic C-H and C-Het borylation, in which transition metal-catalysis dominate. In the past decade, with increasing attention to sustainable chemistry, numerous transition metal-free C-H and C-Het borylation transformations have been developed and emerged as efficient methods towards the synthesis of aromatic organoboron compounds. This account mainly focuses on recent advances in transition metal-free aromatic C-H, C-N, C-S, and C-O borylation transformations and provides insights to where further developments are required.
Collapse
Affiliation(s)
- Lu Luo
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shuai Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Jiangyue Wu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science & Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, 430074, China.,Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
13
|
Shinde GH, Sundén H. Boron-Mediated Regioselective Aromatic C-H Functionalization via an Aryl BF 2 Complex. Chemistry 2023; 29:e202203505. [PMID: 36383388 DOI: 10.1002/chem.202203505] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/17/2022]
Abstract
An efficient regioselective functionalization of 2-aryl-heteroarenes and aryl aldehydes via an azaaryl BF2 complex has been developed. Mechanistically the reaction comprises fluoride to bromide ligand exchange on an aryl boron species and consecutive C-B bond cleavage to deliver a broad range of functionalized products. The reaction is high yielding, has a broad substrate scope where several different heteroarenes can be functionalized with chloro, bromo, iodo, hydroxyl, amine and BF2 in a highly regioselective fashion. The method can be applied for late-stage functionalization or for rapid skeleton remodeling with for instance cross-couplings.
Collapse
Affiliation(s)
- Ganesh H Shinde
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden
| | - Henrik Sundén
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96, Gothenburg, Sweden.,Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| |
Collapse
|
14
|
Zhang X, Rauch F, Niedens J, da Silva RB, Friedrich A, Nowak-Król A, Garden SJ, Marder TB. Electrophilic C–H Borylation of Aza[5]helicenes Leading to Bowl-Shaped Quasi-[7]Circulenes with Switchable Dynamics. J Am Chem Soc 2022; 144:22316-22324. [DOI: 10.1021/jacs.2c10865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaolei Zhang
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Florian Rauch
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jan Niedens
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ramon B. da Silva
- Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alexandra Friedrich
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Simon J. Garden
- Instituto de Química, Centro de Tecnologia, Universidade Federal do Rio de Janeiro, 21941-909 Rio de Janeiro, Rio de Janeiro, Brazil
| | - Todd B. Marder
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
15
|
Yu H, Wang ZX. Rhodium(I)-Catalyzed P(III)-Directed Aromatic C–H Acylation with Amides. J Org Chem 2022; 87:14384-14393. [DOI: 10.1021/acs.joc.2c01826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hang Yu
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhong-Xia Wang
- CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
16
|
Berionni G. Regioselective Transition‐Metal‐Free Arene C−H Borylations: From Directing Groups to Borylation Template Reagents. Angew Chem Int Ed Engl 2022; 61:e202210284. [DOI: 10.1002/anie.202210284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Guillaume Berionni
- Chemistry Department— Namur Institute of Structured Matter University of Namur 61 rue de Bruxelles 5000 Namur Belgium
| |
Collapse
|
17
|
Rej S, Chatani N. Regioselective Transition‐Metal‐Free C(sp
2
)−H Borylation: A Subject of Practical and Ongoing Interest in Synthetic Organic Chemistry. Angew Chem Int Ed Engl 2022; 61:e202209539. [DOI: 10.1002/anie.202209539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry Faculty of Engineering and Research Center for Environmental Preservation Osaka University Suita, Osaka 565-0871 Japan
- Institut für Chemie Technische Universität Berlin Strasse des 17. Juni 115 10623 Berlin Germany
| | - Naoto Chatani
- Department of Applied Chemistry Faculty of Engineering and Research Center for Environmental Preservation Osaka University Suita, Osaka 565-0871 Japan
| |
Collapse
|
18
|
Deng H, Bengsch M, Tchorz N, Neumann CN. Sterically Controlled Late-Stage Functionalization of Bulky Phosphines. Chemistry 2022; 28:e202202074. [PMID: 35789048 PMCID: PMC9544633 DOI: 10.1002/chem.202202074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 11/07/2022]
Abstract
The fine-tuning of metal-phosphine-catalyzed reactions relies largely on accessing ever more precisely tuned phosphine ligands by de-novo synthesis. Late-stage C-H functionalization and diversification of commercial phosphines offers rapid access to entire libraries of derivatives based on privileged scaffolds. But existing routes, relying on phosphorus-directed transformations, only yield functionalization of Csp 2 -H bonds in a specific position relative to phosphorus. In contrast to phosphorus-directed strategies, herein we disclose an orthogonal functionalization strategy capable of introducing a range of substituents into previously inaccessible positions on arylphosphines. The strongly coordinating phosphine group acts solely as a bystander in the sterically controlled borylation of bulky phosphines, and the resulting borylated phosphines serve as the supporting ligands for palladium during diversification through phosphine self-assisted Suzuki-Miyaura reactions.
Collapse
Affiliation(s)
- Hao Deng
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Marco Bengsch
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Nico Tchorz
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Constanze N. Neumann
- Department of Heterogeneous CatalysisMax-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|
19
|
Berionni G. Regioselective Transition‐Metal‐Free Arene C−H Borylations: From Directing Groups to Borylation Template Reagents. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guillaume Berionni
- Chemistry Department— Namur Institute of Structured Matter University of Namur 61 rue de Bruxelles 5000 Namur Belgium
| |
Collapse
|
20
|
Rej S, Chatani N. Regio‐Selective Transition‐Metal‐Free C(sp2)‒H Borylation: A Subject of Practical and Ongoing Interest in Synthetic Organic Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Supriya Rej
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Applied Chemistry JAPAN
| | - Naoto Chatani
- Osaka University School of Engineering Graduate School of Engineering: Osaka Daigaku Kogakubu Daigakuin Kogaku Kenkyuka Applied Chemistry 2-1 Yamadaoka 566-0871 Suita, Osaka JAPAN
| |
Collapse
|
21
|
Pahl J, Noone E, Uzelac M, Yuan K, Ingleson MJ. Borylation Directed Borylation of Indoles Using Pyrazabole Electrophiles: A One-Pot Route to C7-Borylated-Indolines. Angew Chem Int Ed Engl 2022; 61:e202206230. [PMID: 35686751 PMCID: PMC9401042 DOI: 10.1002/anie.202206230] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 12/23/2022]
Abstract
Pyrazabole (1) is a readily accessible diboron compound that can be transformed into ditopic electrophiles. In 1 (and derivatives), the B⋅⋅⋅B separation is ca. 3 Å, appropriate for one boron centre bonding to N and one to the C7 of indoles and indolines. This suitable B⋅⋅⋅B separation enables double E-H (E=N/C) functionalisation of indoles and indolines. Specifically, the activation of 1 with HNTf2 generates an electrophile that transforms N-H indoles and indolines into N/C7-diborylated indolines, with N-H borylation directing subsequent C7-H borylation. Indole reduction to indoline occurs before C-H borylation and our studies indicate this proceeds via hydroboration-C3-protodeboronation to produce an intermediate that then undergoes C7 borylation. The borylated products can be converted in situ into C7-BPin-N-H-indolines. Overall, this represents a transient directed C-H borylation to form useful C7-BPin-indolines.
Collapse
Affiliation(s)
- Jürgen Pahl
- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Emily Noone
- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Marina Uzelac
- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Kang Yuan
- School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | | |
Collapse
|
22
|
Pahl J, Noone E, Uzelac M, Yuan K, Ingleson M. Borylation Directed Borylation of Indoles Using Pyrazabole Electrophiles: A One‐Pot Route to C7‐Borylated‐Indolines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- J. Pahl
- University of Edinburgh Chemistry UNITED KINGDOM
| | - E. Noone
- University of Edinburgh Chemistry UNITED KINGDOM
| | - M. Uzelac
- University of Edinburgh Chemistry UNITED KINGDOM
| | - K. Yuan
- University of Edinburgh Chemistry UNITED KINGDOM
| | - Michael Ingleson
- University of Edinburgh Chemistry South Bridge EH8 9YL Edinburgh UNITED KINGDOM
| |
Collapse
|
23
|
Fukuda K, Harada T, Iwasawa N, Takaya J. Facile Synthesis and Utilization of Bis(o-phosphinophenyl)zinc as Isolable PZnP-pincer Ligands Enabled by Boron-Zinc Double Transmetallation. Dalton Trans 2022; 51:7035-7039. [DOI: 10.1039/d2dt01222g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bis(o-phosphinophenyl)zinc derivatives were successfully synthesized by the reaction of o-phosphinophenylboronates with dimethylzinc via boron-zinc double transmetallation. The transmetallation was significantly accelerated by the presence of the ortho PR2 substituent to...
Collapse
|
24
|
Thongpaen J, Manguin R, Kittikool T, Camy A, Roisnel T, Dorcet V, Yotphan S, Canac Y, Mauduit M, Baslé O. Ruthenium–NHC complex-catalyzed P( iii)-directed C–H borylation of arylphosphines. Chem Commun (Camb) 2022; 58:12082-12085. [DOI: 10.1039/d2cc03909e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bidentate NHC-based ruthenium catalyst for P(III)-directed ortho C–H borylation of arylphosphines.
Collapse
Affiliation(s)
- Jompol Thongpaen
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Romane Manguin
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Tanakorn Kittikool
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Aurèle Camy
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Vincent Dorcet
- Univ Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Sirilata Yotphan
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Yves Canac
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Marc Mauduit
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR – UMR 6226, F-35000 Rennes, France
| | - Olivier Baslé
- LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
25
|
Yamazaki K, Rej S, Ano Y, Chatani N. Origin of the Enhanced Reactivity in the ortho C-H Borylation of Benzaldehydes with BBr 3. Org Lett 2021; 24:213-217. [PMID: 34939820 DOI: 10.1021/acs.orglett.1c03829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The metal-free ortho C-H borylation of benzaldehyde derivatives using a transient imine directing group was recently developed by our group, providing an efficient strategy for the synthesis of organoboron reagents. Herein, we report on an extensive investigation of the reaction mechanism using density functional theory (DFT) calculations. Computations for the reaction pathway with various imine substrates, as well as the effect of an added base were examined, and the experimentally observed reactivity enhancement is proposed to originate from the tunability of the destabilizing strain energies that results in a reversible complexation process with BBr3.
Collapse
Affiliation(s)
- Ken Yamazaki
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yusuke Ano
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|