1
|
Gong X, Qin S, Li T, Wei X, Liu S, Liu Y, Ma X, Li Q, Xia C. Novel Insight into the Synergistic Mechanism for Pd and Rh Promoting the Hydro-Defluorination of 4-Fluorophenol over Bimetallic Rh-Pd/C Catalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:43474-43488. [PMID: 39113533 DOI: 10.1021/acsami.4c06180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study explores the synergistic effect between the Rh and Pd of bimetallic Rh-Pd/C catalysts for the catalytic hydro-defluorination (HDF) of 4-fluorophenol (4-FP). It was found that 4-FP could not be efficiently hydro-defluorinated over 6% Pd/C and 6% Rh/C due to the inherent properties of Pd and Rh species in the dissociation of H2 and the activation of C-F bonds. Compared with 6% Pd/C and 6% Rh/C, bimetallic Rh-Pd/C catalysts, especially 1% Rh-5% Pd/C, exhibited much higher catalytic activity in the HDF of 4-FP, suggesting that the synergistic effect between the Rh and Pd of the catalyst was much more positive. Catalyst characterizations (BET, XRD, TEM, and XPS) were introduced to clarify the mechanism for the synergistic effect between the Rh and Pd of the catalyst in the HDF reaction and revealed that it was mainly attributed to the bifunctional mechanism: Pd species were favorable for the dissociation of H2, and Rh species were beneficial to the activation of C-F bonds in the HDF reaction. Meanwhile, the interaction between Rh and Pd species enabled Rh and Pd to exhibit a more positive synergistic effect, which promoted the migration of atomic H* from Pd to Rh species and thus enhanced the HDF of 4-FP. Furthermore, 1% Rh-5% Pd/C prepared using 20-40 equiv NaBH4 exhibited the best performance in the catalytic HDF of 4-FP. Catalysis characterizations suggested that appropriate Rh3+/Rh0 and Pd2+/Pd0 ratios were beneficial to the dissociation of H2 and the activation of C-F bonds, which caused the more positive synergistic effect between the Rh and Pd of Rh-Pd/C in the HDF reaction. This work offers a valuable strategy for enhancing the performance of catalytic HDF catalysts via promoting synergistic effects.
Collapse
Affiliation(s)
- Xutao Gong
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Shuting Qin
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Tong Li
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Xinghua Wei
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Sujing Liu
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Ying Liu
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Xuanxuan Ma
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| | - Qing Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chuanhai Xia
- The Institute for Advanced Study of Coastal Ecology, Ludong University, Yantai 264025, China
- School of Resources and Environmental Engineering, Ludong University, Yantai 264025, China
| |
Collapse
|
2
|
Suarez Orduz HA, Bugarin L, Heck SL, Dolcet P, Casapu M, Grunwaldt JD, Glatzel P. L 3-edge X-ray spectroscopy of rhodium and palladium compounds. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:733-740. [PMID: 38920268 PMCID: PMC11226176 DOI: 10.1107/s1600577524004673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/20/2024] [Indexed: 06/27/2024]
Abstract
L3-edge high-energy-resolution fluorescence-detection X-ray absorption near-edge structure (XANES) spectra for palladium and rhodium compounds are presented, with focus on their electronic structures. The data are compared with transmission XANES spectra recorded at the K-edge. A correlation between the absorption edge energy and the metal ion oxidation state is not observed. Despite the different filling of the 4d orbitals and different local coordination, the Rh and Pd compounds show remarkably similar spectral shapes. Calculation of the density of states and of the L3-XANES data reproduce the experimental results.
Collapse
Affiliation(s)
- Hugo Alexander Suarez Orduz
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000Grenoble, France
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of TechnologyEngesserstr. 18/2076131KarlsruheGermany
| | - Luca Bugarin
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000Grenoble, France
- Ecole Doctorale de PhysiqueGrenoble Alpes University38400Saint-Martin-d’HèresFrance
| | - Sarina-Lena Heck
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of TechnologyEngesserstr. 18/2076131KarlsruheGermany
| | - Paolo Dolcet
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of TechnologyEngesserstr. 18/2076131KarlsruheGermany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of TechnologyEngesserstr. 18/2076131KarlsruheGermany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of TechnologyEngesserstr. 18/2076131KarlsruheGermany
- Institute of Catalysis Research and Technology (IKFT)Karlsruhe Institute of Technology76344Eggenstein-LeopoldshafenGermany
| | - Pieter Glatzel
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38000Grenoble, France
| |
Collapse
|
3
|
Liu X, Chen G, Guo Y, Li T, Huang J, Chen W, Ostrikov KK. Fabric-like rhodium-nickel-tungsten oxide nanosheets for highly-efficient electrocatalytic H 2 generation in an alkaline electrolyte. J Colloid Interface Sci 2024; 659:895-904. [PMID: 38219308 DOI: 10.1016/j.jcis.2024.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Transition-metal based oxides with custom-designed phases are effective oxygen evolution reaction (OER) electrocatalysts. However, their applications in water splitting are limited because of insufficient catalytic performance in hydrogen evolution reaction (HER) in alkaline media. In this work, we engineer fabric-like rhodium-nickel-tungsten oxide nanosheets (Rh2O3-NiWO4) on plasma-treated nickel foam (PNF) with a one-step hydrothermal approach for potential applications as industry-grade HER electrocatalysts. Benefiting from rich active sites exposed on the heterostructure, low hydrogen binding energy on Rh, and enhanced charge delivery rates, Rh2O3-NiWO4/PNF catalyst exhibits superior HER activity than that achieved by a commercially available Pt/C catalyst. This is evidenced by the fact that the overpotentials of Rh2O3-NiWO4/PNF for delivering current densities of 10 (j10) and 1000 (j1000) mA cm-2 in 1.0 M KOH are merely 19 and 293 mV, respectively. Meanwhile, the small Tafel slope (18 mV dec-1) of the optimized catalyst manifests the fast HER kinetics. In addition, Rh2O3-NiWO4/PNF exhibits ultra-stable HER performance, and the current density (j100) only decrease 7.69 % after 100 h chronoamperometric curves (I-t) test. The present work provides a new approach for designing high-performance, low-cost 2D electrocatalysts for H2 production and other clean energy-related applications.
Collapse
Affiliation(s)
- Xin Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, PR China
| | - Guangliang Chen
- Department of Materials Engineering, Huzhou University, Huzhou 313000, PR China.
| | - Yingchun Guo
- Department of Materials Engineering, Huzhou University, Huzhou 313000, PR China
| | - Tongtong Li
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Jun Huang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi 341000, PR China
| | - Wei Chen
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi 341000, PR China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics, Centre for Materials Science, Centre for Clean Energy Technologies and Practices, Centre for Waste-free World, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
4
|
Wang Y, Zhao W, Chen X, Ji Y, Zhu X, Chen X, Mei D, Shi H, Lercher JA. Methane-H 2S Reforming Catalyzed by Carbon and Metal Sulfide Stabilized Sulfur Dimers. J Am Chem Soc 2024; 146:8630-8640. [PMID: 38488522 PMCID: PMC10979457 DOI: 10.1021/jacs.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
H2S reforming of methane (HRM) provides a potential strategy to directly utilize sour natural gas for the production of COx-free H2 and sulfur chemicals. Several carbon allotropes were found to be active and selective for HRM, while the additional presence of transition metals led to further rate enhancements and outstanding stability (e.g., Ru supported on carbon black). Most metals are transformed to sulfides, but the carbon supports prevent sintering under the harsh reaction conditions. Supported by theoretical calculations, kinetic and isotopic investigations with representative catalysts showed that H2S decomposition and the recombination of surface H atoms are quasi-equilibrated, while the first C-H bond scission is the kinetically relevant step. Theory and experiments jointly establish that dynamically formed surface sulfur dimers are responsible for methane activation and catalytic turnovers on sulfide and carbon surfaces that are otherwise inert without reaction-derived active sites.
Collapse
Affiliation(s)
- Yong Wang
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wenru Zhao
- School
of Materials Science and Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Xiaofeng Chen
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Yinjie Ji
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| | - Xilei Zhu
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Xiaomai Chen
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Donghai Mei
- School
of Materials Science and Engineering, Tiangong
University, Tianjin 300387, P. R. China
| | - Hui Shi
- School
of Chemistry and Chemical Engineering, Yangzhou
University, Yangzhou 225002, P. R. China
| | - Johannes A. Lercher
- Department
of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstrasse 4, 85748 Garching, Germany
- Institute
for Integrated Catalysis, Pacific Northwest
National Laboratory, P.O. Box 999, Richland, Washington 99352, United States
| |
Collapse
|
5
|
Unraveling oxygen vacancy site mechanism of Rh-doped RuO 2 catalyst for long-lasting acidic water oxidation. Nat Commun 2023; 14:1412. [PMID: 36918568 PMCID: PMC10015077 DOI: 10.1038/s41467-023-37008-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Exploring durable electrocatalysts with high activity for oxygen evolution reaction (OER) in acidic media is of paramount importance for H2 production via polymer electrolyte membrane electrolyzers, yet it remains urgently challenging. Herein, we report a synergistic strategy of Rh doping and surface oxygen vacancies to precisely regulate unconventional OER reaction path via the Ru-O-Rh active sites of Rh-RuO2, simultaneously boosting intrinsic activity and stability. The stabilized low-valent catalyst exhibits a remarkable performance, with an overpotential of 161 mV at 10 mA cm-2 and activity retention of 99.2% exceeding 700 h at 50 mA cm-2. Quasi in situ/operando characterizations demonstrate the recurrence of reversible oxygen species under working potentials for enhanced activity and durability. It is theoretically revealed that Rh-RuO2 passes through a more optimal reaction path of lattice oxygen mediated mechanism-oxygen vacancy site mechanism induced by the synergistic interaction of defects and Ru-O-Rh active sites with the rate-determining step of *O formation, breaking the barrier limitation (*OOH) of the traditional adsorption evolution mechanism.
Collapse
|
6
|
Zhang X, Shen Y, Liu Y, Zheng J, Deng J, Yan T, Cheng D, Zhang D. Unraveling the Unique Promotion Effects of a Triple Interface in Ni Catalysts for Methane Dry Reforming. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.3c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Affiliation(s)
- Xiaoyu Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Yongjie Shen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Yuying Liu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Jiajia Zheng
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Jiang Deng
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Tingting Yan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Danhong Cheng
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| |
Collapse
|
7
|
Opalade AA, Tang Y, Tao FF. Integrated in situ spectroscopic studies on syngas production from partial oxidation of methane catalyzed by atomically dispersed rhodium cations on ceria. Phys Chem Chem Phys 2023; 25:4070-4080. [PMID: 36651173 DOI: 10.1039/d2cp03216c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Catalytic reforming of methane to produce syngas is an important strategy for producing value-added chemicals. The conventional reforming catalyst relies on supported nickel nanoparticles. In this work, we investigated singly dispersed Rh cations anchored on a CeO2 catalyst (Rh1/CeO2) for high activity and selectivity towards the production of syngas via partial oxidation of methane (POM) in the temperature range of 600-700 °C. The yields of H2 and CO at 700 °C are 83% and 91%, respectively. The anchored Rh1 atoms on CeO2 of Rh1/CeO2 are in the cationic state, and on an average each Rh1 atom coordinates with 4-5 surface lattice oxygen atoms of CeO2. Compared to inert CeO2 for POM, via the incorporation of single-atom sites, Rh1 modifies the electronic state of oxygen atoms proximal to the Rh1 atoms and thus triggers the catalytic activity of CeO2. The high activity of single-atom catalyst Rh1/CeO2 suggests that the incorporation of single atoms of transition metals to the surface of a reducible oxide can modulate the electronic state of proximal anions of the oxide support toward forming an electronic state favorable for the selective formation of ideal products.
Collapse
Affiliation(s)
- Adedamola A Opalade
- Department of Chemical and Petroleum Engineering, University of Kansas, KS 66045, USA. .,Department of Chemistry, University of Kansas, KS 66045, USA
| | - Yu Tang
- Department of Chemical and Petroleum Engineering, University of Kansas, KS 66045, USA.
| | - Franklin Feng Tao
- Department of Chemical and Petroleum Engineering, University of Kansas, KS 66045, USA.
| |
Collapse
|
8
|
Kang S, Cha J, Jo YS, Lee YJ, Sohn H, Kim Y, Song CK, Kim Y, Lim DH, Park J, Yoon CW. Heteroepitaxial Growth of B 5 -Site-Rich Ru Nanoparticles Guided by Hexagonal Boron Nitride for Low-Temperature Ammonia Dehydrogenation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203364. [PMID: 35853218 DOI: 10.1002/adma.202203364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Ruthenium is one of the most active catalysts for ammonia dehydrogenation and is essential for the use of ammonia as a hydrogen storage material. The B5 -type site on the surface of ruthenium is expected to exhibit the highest catalytic activity for ammonia dehydrogenation, but the number of these sites is typically low. Here, a B5 -site-rich ruthenium catalyst is synthesized by exploiting the crystal symmetry of a hexagonal boron nitride support. In the prepared ruthenium catalyst, ruthenium nanoparticles are formed epitaxially on hexagonal boron nitride sheets with hexagonal planar morphologies, in which the B5 sites predominate along the nanoparticle edges. By activating the catalyst under the reaction condition, the population of B5 sites further increases as the facets of the ruthenium nanoparticles develop. The electron density of the Ru nanoparticles also increases during catalyst activation. The synthesized catalyst shows superior catalytic activity for ammonia dehydrogenation compared to previously reported catalysts. This work demonstrates that morphology control of a catalyst via support-driven heteroepitaxy can be exploited for synthesizing highly active heterogeneous catalysts with tailored atomic structures.
Collapse
Affiliation(s)
- Sungsu Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Junyoung Cha
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Young Suk Jo
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Yu-Jin Lee
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Hyuntae Sohn
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Younhwa Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Chyan Kyung Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Yongmin Kim
- Center for Hydrogen and Fuel Cell Research, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Dong-Hee Lim
- Department of Environmental Engineering, Chungbuk National University, Chungbuk, 28644, Republic of Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Republic of Korea
| | - Chang Won Yoon
- Hydrogen and Low Carbon Research Laboratories, Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
- Hydrogen and Low Carbon Energy R&D Laboratories, POSCO N.EX.T Hub, Seoul, 06194, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
9
|
Zhang X, Deng J, Lan T, Shen Y, Qu W, Zhong Q, Zhang D. Coking- and Sintering-Resistant Ni Nanocatalysts Confined by Active BN Edges for Methane Dry Reforming. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25439-25447. [PMID: 35604327 DOI: 10.1021/acsami.2c04149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Methane dry reforming (MDR) has attracted significant attention for effectively consuming greenhouse gases and producing valuable syngas. The development of coking- and sintering-resistant catalysts is still a challenge. Herein, highly active Ni nanocatalysts confined by the active edges of boron nitride have been originally developed, and the coking- and sintering-resistant MDR mechanism has also been unraveled. The active edges of boron nitride consisted of boundary BOx species interact with Ni nanoparticles (NPs), which can contribute to the activation of both CH4 and CO2. The etching of BN is restrained under the buffer of boundary BOx species. Operando spectra reveal that the formation and conversion of active bicarbonate species is accelerated by the boundary BOx species. The complete decomposition of CH4 is suppressed, and thus the coke formation is restricted. The functional groups of active BN edges are confirmed to stabilize the Ni NPs and facilitate the MDR reaction. This work provides a novel approach for the development of coking- and sintering-resistant catalysts for MDR.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Jiang Deng
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Tianwei Lan
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Yongjie Shen
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Wenqiang Qu
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Qingdong Zhong
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| | - Dengsong Zhang
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, International Joint Laboratory of Catalytic Chemistry, Department of Chemistry, College of Sciences, Shanghai University, 200444 Shanghai, China
| |
Collapse
|