1
|
Xu Y, Yan X, Zheng H, Li J, Wu X, Xu J, Zhen Z, Du C. The application of encapsulation technology in the food Industry: Classifications, recent Advances, and perspectives. Food Chem X 2024; 21:101240. [PMID: 38434690 PMCID: PMC10907187 DOI: 10.1016/j.fochx.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024] Open
Abstract
Encapsulation technology has been extensively used to enhance the stability, specificity, and bioavailability of essential food ingredients. Additionally, it plays a vital role in improving product quality and reducing production costs. This study presents a comprehensive classification of encapsulation techniques based on the state of different cores (solid, liquid, and gaseous) and offers a detailed description and analysis of these encapsulation methods. Specifically, it introduces the diverse applications of encapsulation technology in food, encompassing areas such as antioxidant, protein activity, physical stability, controlled release, delivery, antibacterial, and probiotics. The potential impact of encapsulation technology is expected to make encapsulation technology a major process and research hotspot in the food industry. Future research directions include applications of encapsulation for enzymes, microencapsulation of biosensors, and novel technologies such as self-assembly. This study provides a valuable theoretical reference for the in-depth research and wide application of encapsulation technology in the food industry.
Collapse
Affiliation(s)
- Yaguang Xu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xinxin Yan
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Haibo Zheng
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jingjun Li
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xiaowei Wu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Jingjing Xu
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Zongyuan Zhen
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- The Institute of Functional Agriculture (Food) Science and Technology at Yangtze River Delta (iFAST), Chuzhou 239000, China
- Anhui Provincial Key Laboratory of Functional Agriculture and Functional Food, Chuzhou 233100, China
| | - Chuanlai Du
- College of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
- Anhui Provincial Key Laboratory of Functional Agriculture and Functional Food, Chuzhou 233100, China
| |
Collapse
|
2
|
Faber T, McConville JT, Lamprecht A. Focused ion beam-scanning electron microscopy provides novel insights of drug delivery phenomena. J Control Release 2024; 366:312-327. [PMID: 38161031 DOI: 10.1016/j.jconrel.2023.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Scanning electron microscopy (SEM) has long been a standard tool for morphological analyses, providing sub micrometer resolution of pharmaceutical formulations. However, analysis of internal morphologies of such formulations can often be biased due to the introduction of artifacts that originate from sample preparation. A recent advancement in SEM, is the focused ion beam scanning electron microscopy (FIB-SEM). This technique uses a focused ion beam (FIB) to remove material with nanometer precision, to provide virtually sample-independent access to sub-surface structures. The FIB can be combined with SEM imaging capabilities within the same instrumentation. As a powerful analytical tool, electron microscopy and FIB-milling are performed sequentially to produce high-resolution 3D models of structural peculiarities of diverse drug delivery systems or their behavior in a biological environment, i.e. intracellular or -tissue distribution. This review paper briefly describes the technical background of the method, outlines a wide array of potential uses within the drug delivery field, and focuses on intracellular transport where high-resolution images are an essential tool for mechanistical insights.
Collapse
Affiliation(s)
- Thilo Faber
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany
| | - Jason T McConville
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | - Alf Lamprecht
- Department of Pharmaceutics, Institute of Pharmacy, University of Bonn, Bonn, Germany; Université de Franche-Comté, INSERM UMR1098 Right, Besançon, France.
| |
Collapse
|
3
|
Zhang P, Liu Y, Feng G, Li C, Zhou J, Du C, Bai Y, Hu S, Huang T, Wang G, Quan P, Hirvonen J, Fan J, Santos HA, Liu D. Controlled Interfacial Polymer Self-Assembly Coordinates Ultrahigh Drug Loading and Zero-Order Release in Particles Prepared under Continuous Flow. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211254. [PMID: 36802103 DOI: 10.1002/adma.202211254] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/11/2023] [Indexed: 06/02/2023]
Abstract
Microparticles are successfully engineered through controlled interfacial self-assembly of polymers to harmonize ultrahigh drug loading with zero-order release of protein payloads. To address their poor miscibility with carrier materials, protein molecules are transformed into nanoparticles, whose surfaces are covered with polymer molecules. This polymer layer hinders the transfer of cargo nanoparticles from oil to water, achieving superior encapsulation efficiency (up to 99.9%). To control payload release, the polymer density at the oil-water interface is enhanced, forming a compact shell for microparticles. The resultant microparticles can harvest up to 49.9% mass fraction of proteins with zero-order release kinetics in vivo, enabling an efficient glycemic control in type 1 diabetes. Moreover, the precise control of engineering process offered through continuous flow results in high batch-to-batch reproducibility and, ultimately, excellent scale-up feasibility.
Collapse
Affiliation(s)
- Pei Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Yingxin Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Guobing Feng
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Cong Li
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Jun Zhou
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Chunyang Du
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuancheng Bai
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuai Hu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Tianhe Huang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Guan Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
| | - Peng Quan
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
| | - Jin Fan
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Dongfei Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutical Science, NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing, 210009, China
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, 00014, Finland
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, 401135, China
| |
Collapse
|
4
|
Hoyt ALM, Staiger M, Schweinbeck M, Cölfen H. Penetration Coefficients of Commercial Nanolimes and a Liquid Mineral Precursor for Pore-Imitating Test Systems-Predictability of Infiltration Behavior. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2506. [PMID: 36984386 PMCID: PMC10058312 DOI: 10.3390/ma16062506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Nanolimes have been commercially available for over a decade as a remineralization agent for natural stone to combat deterioration. While they have been applied successfully and studied extensively, their penetration abilities in different materials have not yet been readily quantifiable in situ and in real time. Using two transparent pore-imitating test systems (acrylic glass (PMMA) and polydimethylsiloxane (PDMS)) and light microscopy, the penetration coefficients (PCs) of two nanolimes (CaLoSiL (CLS) and Nanorestore Plus (NRP)), as well as their solvents, were determined experimentally in square channels of about 100 µm diameter. Their PCs and those for a previously published glass-resin-based test system were also predicted based on measurable material parameters or literature values using the Lucas-Washburn equation. Additionally, a liquid mineral precursor (LMP) of calcium carbonate based on complex coacervation (CC) was investigated as an alternative to the solid particle dispersions of nanolime. In general, the dispersions behaved like their pure solvents. Overall, trends could be reasonably well predicted with both literature and experimentally determined properties using the Lucas-Washburn equation. In absolute terms, the prediction of observed infiltration behavior was satisfactory for alcohols and nanolimes but deviated substantially for water and the aqueous LMP. The commercially available PMMA chips and newly designed PDMS devices were mostly superior to the previously published glass-resin-based test system, except for the long-term monitoring of material deposition. Lastly, the transfer of results from these investigated systems to a different, nontransparent mineral, calcite, yielded similar PC values independently of the original data when used as the basis for the conversion (all PC types and all material/liquid combinations except aqueous solutions in PDMS devices). This knowledge can be used to improve the targeted design of tailor-made remineralization treatments for different application cases by guiding solvent choice, and to reduce destructive sampling by providing a micromodel for pretesting, if transferability to real stone samples proves demonstrable in the future.
Collapse
|
5
|
Li B, Chen X, Zhou Y, Zhao Y, Song T, Wu X, Shi W. Liquid-liquid phase separation of immiscible polymers at double emulsion interfaces for configurable microcapsules. J Colloid Interface Sci 2023; 641:299-308. [PMID: 36934577 DOI: 10.1016/j.jcis.2023.03.072] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/05/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023]
Abstract
Liquid-liquid phase separation at complex interfaces is a common phenomenon in biological systems and is also a fundamental basis to create synthetic materials in multicomponent mixtures. Understanding the liquid-liquid phase separation in well-defined macromolecular systems is anticipated to shed light on similar behaviors in cross-disciplinary areas. Here we study a series of immiscible polymers and reveal a generic phase diagram of liquid-liquid phase separation at double emulsion interfaces, which depicts the equilibrium structures by interfacial tension and polymer fraction. We further reveal that the interfacial tensions in various systems fall on a linear relationship with spreading coefficients. Based on this theoretical guideline, the liquid-liquid phase separation can be modulated by a low fraction of amphiphilic block copolymers, leading the double emulsion droplets configurable between compartments and anisotropic shapes. The solidified anisotropic microcapsules could provide unique orientation-sensitive optical properties and thermomechanical responses. The theoretical analysis and experimental protocol in this study yield a generalizable strategy to prepare multiphase double emulsions with controlled structures and desired properties.
Collapse
Affiliation(s)
- Baihui Li
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaotong Chen
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Zhou
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yue Zhao
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tiantian Song
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiaoxue Wu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weichao Shi
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300071, China.
| |
Collapse
|
6
|
Nagler F, Schiller C, Kropf C, Schacher FH. Amphiphilic Graft Copolymers for Time-Delayed Release of Hydrophobic Fragrances. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56087-56096. [PMID: 36475582 DOI: 10.1021/acsami.2c16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
When a controlled or retarded release of perfumes is required such as in cosmetics or cleaning products, polymers can be applied as encapsulation agents. With regard to such applications, we investigated two amphiphilic graft copolymers featuring a polydehydroalanine (PDha) backbone and different hydrophobic side chains. Hereby, grafting of aliphatic octyl side chains (PDha-g-EOct) enabled the adsorption of the aliphatic fragrance tetrahydrolinalool with moderate loads, whereas benzyl side chains (PDha-g-BGE) allowed taking up aromatic fragrances, for example, amylsalicylate-n with exceptionally high loads of up to 8 g g-1. The side-chain density was studied as well but had no significant influence on the loading. In addition, the characterization and quantification of the load by NMR and thermogravimetric analysis were compared, and it was also possible to load the aromatic model fragrance into the graft copolymer with aliphatic side chains. After 3 months, the load had decreased by 40-50% and, hence, such systems are of interest for a long-term release of perfumes over months. Although this study is a proof-of-concept, we foresee that such polyampholytic graft copolymers can be tailored for the adsorption of a variety of hydrophobic perfumes simply by altering polarity and chemistry of the side chain.
Collapse
Affiliation(s)
- Frieda Nagler
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743Jena, Germany
| | - Christine Schiller
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743Jena, Germany
| | - Christian Kropf
- Henkel AG & Co. KGaA, Henkelstraße 67, D-40589Düsseldorf, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Lessingstraße 8, D-07743Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Philosophenweg 7, D-07743Jena, Germany
| |
Collapse
|
7
|
Zhu J, Jiang L. Liquid-Liquid Phase Separation Bridges Physics, Chemistry, and Biology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9043-9049. [PMID: 35856491 DOI: 10.1021/acs.langmuir.2c01358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
There is a fundamental gap between the inherent complexity of biology and the simplicity that physicists and chemists often seek. In this Perspective, we reason that liquid-liquid phase separation (LLPS) could be utilized to (partially) fill this gap and to bridge different disciplines because LLPS can produce condensed droplets with simplicity and complexity at the same time. Specifically, the droplets are often compositionally simple (made of, for example, proteins and polyelectrolytes) and structurally uniform (not so different from an oil droplet in water). Contrary to this simplicity is their functional complexity─the droplets can perform various physiological activities with subcellular precision. This spatiotemporal precision further stimulates an ongoing endeavor in the synthetic realm to develop regulatory strategies that may ultimately match or even surpass their biological counterparts. We envision the phase-separated droplets to open a window of simplicity for us to peek into the complexity of biology, and we foresee that joined forces across different disciplines would substantially advance our understanding of LLPS in biotic and abiotic contexts.
Collapse
|
8
|
Zhang C, Cai Y, Zhao Q. Coacervation between two positively charged poly(ionic liquid)s. Macromol Rapid Commun 2022; 43:e2200191. [PMID: 35632991 DOI: 10.1002/marc.202200191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/22/2022] [Indexed: 11/09/2022]
Abstract
Complex coacervates are usually formed through electrostatic attraction between oppositely charged polyelectrolytes, with a few of exceptions such as coacervates of like-charge proteins and polyelectrolytes, both in vivo and in vitro. Understanding of the preparation and mechanism of these coacervates is limited. Here we design a positively charged poly(ionic liquid) poly(1-vinyl-3-benzylimidazolium chloride) (PILben) that bears benzene rings in repeating units. Fluidic coacervates were prepared by mixing the PILben aqueous solution with a like-charge poly(ionic liquid) named poly(dimethyl diallyl ammonium chloride) (PDDA). The effects of polymer concentration, temperature and ionic strength in the PILben-PDDA coacervate were studied. Raman spectroscopy and two-dimensional 1 H-13 C heteronuclear single quantum coherence (1 H-13 C HSQC) characterizations verify that the coacervate formation benefits from the cation-π interaction between PILben and PDDA. This work provides principles and understandings of designing coacervates derived from like-charge poly(ionic liquids) with high charge density. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chongrui Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yinmin Cai
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiang Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|