1
|
Zhou Y, Liu Y, Sun H, Lu Y. Creating novel metabolic pathways by protein engineering for bioproduction. Trends Biotechnol 2024:S0167-7799(24)00308-1. [PMID: 39632163 DOI: 10.1016/j.tibtech.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024]
Abstract
A diverse array of natural products has been produced by cell biofactories through metabolic engineering, in which enzymes play essential roles in the complex metabolic network. However, the scope of such biotransformation can be limited by the capacities of natural enzymes. To broaden their scope, many natural enzymes have recently been engineered to activate non-native substrates and/or to employ new-to-nature reaction mechanisms, but most of these systems are only demonstrated for in vitro applications. To bridge the gap between in vitro and in vivo biocatalysis, we highlight recent progress in engineering enzymes with non-native substrates or new-to-nature mechanisms that have been successfully applied in living cells to create novel metabolic pathways.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Yiwei Liu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| | - Haoran Sun
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
2
|
Morita I, Ward TR. Recent advances in the design and optimization of artificial metalloenzymes. Curr Opin Chem Biol 2024; 81:102508. [PMID: 39098211 DOI: 10.1016/j.cbpa.2024.102508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/27/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Embedding a catalytically competent transition metal into a protein scaffold affords an artificial metalloenzyme (ArM). Such hybrid catalysts display features that are reminiscent of both homogeneous and enzymatic catalysts. Pioneered by Whitesides and Kaiser in the late 1970s, this field of ArMs has expanded over the past two decades, marked by ever-increasing diversity in reaction types, cofactors, and protein scaffolds. Recent noteworthy developments include i) the use of earth-abundant metal cofactors, ii) concurrent cascade reactions, iii) synergistic catalysis, and iv) in vivo catalysis. Thanks to significant progress in computational protein design, ArMs based on de novo-designed proteins and tailored chimeric proteins promise a bright future for this exciting field.
Collapse
Affiliation(s)
- Iori Morita
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland
| | - Thomas R Ward
- Department of Chemistry, University of Basel, Basel CH-4058, Switzerland.
| |
Collapse
|
3
|
Guo J, Qian J, Cai D, Huang J, Yang X, Sun N, Zhang J, Pang T, Zhao W, Wu G, Chen X, Zhong F, Wu Y. Chemogenetic Evolution of Diversified Photoenzymes for Enantioselective [2 + 2] Cycloadditions in Whole Cells. J Am Chem Soc 2024; 146:19030-19041. [PMID: 38976645 DOI: 10.1021/jacs.4c03087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Artificial photoenzymes with novel catalytic modes not found in nature are in high demand; yet, they also present significant challenges in the field of biocatalysis. In this study, a chemogenetic modification strategy is developed to facilitate the rapid diversification of photoenzymes. This strategy integrates site-specific chemical conjugation of various artificial photosensitizers into natural protein cavities and the iterative mutagenesis in cell lysates. Through rounds of directed evolution, prominent visible-light-activatable photoenzyme variants were developed, featuring a thioxanthone chromophore. They successfully enabled the enantioselective [2 + 2] photocycloaddition of 2-carboxamide indoles, a class of UV-sensitive substrates that are traditionally challenging for known photoenzymes. Furthermore, the versatility of this photoenzyme is demonstrated in enantioselective whole-cell photobiocatalysis, enabling the efficient synthesis of enantioenriched cyclobutane-fused indoline tetracycles. These findings significantly expand the photophysical properties of artificial photoenzymes, a critical factor in enhancing their potential for harnessing excited-state reactivity in stereoselective transformations.
Collapse
Affiliation(s)
- Juan Guo
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Junyi Qian
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Daihong Cai
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Jianjian Huang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Xinjie Yang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
- Longgang Institute of Zhejiang Sci-Tech University, Wenzhou 325802, China
| | - Ningning Sun
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Junshuai Zhang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Tengfei Pang
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Guojiao Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
4
|
Xu Y, Li F, Xie H, Liu Y, Han W, Wu J, Cheng L, Wang C, Li Z, Wang L. Directed evolution of Escherichia coli surface-displayed Vitreoscilla hemoglobin as an artificial metalloenzyme for the synthesis of 5-imino-1,2,4-thiadiazoles. Chem Sci 2024; 15:7742-7748. [PMID: 38784746 PMCID: PMC11110144 DOI: 10.1039/d4sc00005f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Artificial metalloenzymes (ArMs) are constructed by anchoring organometallic catalysts to an evolvable protein scaffold. They present the advantages of both components and exhibit considerable potential for the in vivo catalysis of new-to-nature reactions. Herein, Escherichia coli surface-displayed Vitreoscilla hemoglobin (VHbSD-Co) that anchored the cobalt porphyrin cofactor instead of the original heme cofactor was used as an artificial thiourea oxidase (ATOase) to synthesize 5-imino-1,2,4-thiadiazoles. After two rounds of directed evolution using combinatorial active-site saturation test/iterative saturation mutagenesis (CAST/ISM) strategy, the evolved six-site mutation VHbSD-Co (6SM-VHbSD-Co) exhibited significant improvement in catalytic activity, with a broad substrate scope (31 examples) and high yields with whole cells. This study shows the potential of using VHb ArMs in new-to-nature reactions and demonstrates the applicability of E. coli surface-displayed methods to enhance catalytic properties through the substitution of porphyrin cofactors in hemoproteins in vivo.
Collapse
Affiliation(s)
- Yaning Xu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Fengxi Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Hanqing Xie
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Yuyang Liu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Weiwei Han
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Junhao Wu
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Lei Cheng
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University Changchun 130023 P. R. China
| | - Zhengqiang Li
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| | - Lei Wang
- Key Laboratory of Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University Changchun 130023 P. R. China
| |
Collapse
|
5
|
Chen Y, Zhang R, Chen Z, Liao J, Song X, Liang X, Wang Y, Dong J, Singh CV, Wang D, Li Y, Toste FD, Zhao J. Heterogeneous Rhodium Single-Atom-Site Catalyst Enables Chemoselective Carbene N-H Bond Insertion. J Am Chem Soc 2024; 146:10847-10856. [PMID: 38583085 PMCID: PMC11027138 DOI: 10.1021/jacs.4c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
Transition-metal-catalyzed carbene insertion reactions of a nitrogen-hydrogen bond have emerged as robust and versatile methods for the construction of C-N bonds. While significant progress of homogeneous catalytic metal carbene N-H insertions has been achieved, the control of chemoselectivity in the field remains challenging due to the high electrophilicity of the metal carbene intermediates. Herein, we present an efficient strategy for the synthesis of a rhodium single-atom-site catalyst (Rh-SA) that incorporates a Rh atom surrounded by three nitrogen atoms and one phosphorus atom doped in a carbon support. This Rh-SA catalyst, with a catalyst loading of only 0.15 mol %, exhibited exceptional catalytic performance for heterogeneous carbene insertion with various anilines and heteroaryl amines in combination with diazo esters. Importantly, the heterogeneous catalyst selectively transformed aniline derivatives bearing multiple nucleophilic moieties into single N-H insertion isomers, while the popular homogeneous Rh2(OAc)4 catalyst produced a mixture of overfunctionalized side products. Additionally, similar selectivities for N-H bond insertion with a set of stereoelectronically diverse diazo esters were obtained, highlighting the general applicability of this heterogeneous catalysis approach. On the basis of density functional theory calculations, the observed selectivity of the Rh-SA catalyst was attributed to the insertion barriers and the accelerated proton transfer assisted by the phosphorus atom in the support. Overall, this investigation of heterogeneous metal-catalyzed carbene insertion underscores the potential of single-atom-site catalysis as a powerful and complementary tool in organic synthesis.
Collapse
Affiliation(s)
- Yuanjun Chen
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai, 200237, People’s Republic of China
- Department
of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Ruixue Zhang
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Zhiwen Chen
- Department
of Materials Science and Engineering, University
of Toronto, Toronto, Ontario M5S3E4, Canada
| | - Jiangwen Liao
- Beijing
Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Xuedong Song
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai, 200237, People’s Republic of China
| | - Xiao Liang
- Department
of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Yu Wang
- Shanghai
Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced
Research Institute, Chinese Academy of Sciences, Shanghai, 201204, People’s Republic of China
| | - Juncai Dong
- Beijing
Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Chandra Veer Singh
- Department
of Materials Science and Engineering, University
of Toronto, Toronto, Ontario M5S3E4, Canada
| | - Dingsheng Wang
- Department
of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - Yadong Li
- Department
of Chemistry, Tsinghua University, Beijing, 100084, People’s Republic of China
| | - F. Dean Toste
- Chemical
Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jie Zhao
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, Frontiers Science Center
for Materiobiology and Dynamic Chemistry, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, Shanghai, 200237, People’s Republic of China
| |
Collapse
|
6
|
Yin HN, Wang PC, Liu Z. Recent advances in biocatalytic C-N bond-forming reactions. Bioorg Chem 2024; 144:107108. [PMID: 38244379 DOI: 10.1016/j.bioorg.2024.107108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
Molecules containing C-N bonds are of paramount importance in a diverse array of organic-based materials, natural products, pharmaceutical compounds, and agricultural chemicals. Biocatalytic C-N bond-forming reactions represent powerful strategies for producing these valuable targets, and their significance in the field of synthetic chemistry has steadily increased over the past decade. In this review, we provide a concise overview of recent advancements in the development of C-N bond-forming enzymes, with a particular emphasis on the inherent chemistry involved in these enzymatic processes. Overall, these enzymatic systems have proven their potential in addressing long-standing challenges in traditional small-molecule catalysis.
Collapse
Affiliation(s)
- Hong-Ning Yin
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Peng-Cheng Wang
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhen Liu
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Bloomer BJ, Joyner IA, Garcia-Borràs M, Hu DB, Garçon M, Quest A, Ugarte Montero C, Yu IF, Clark DS, Hartwig JF. Enantio- and Diastereodivergent Cyclopropanation of Allenes by Directed Evolution of an Iridium-Containing Cytochrome. J Am Chem Soc 2024; 146:1819-1824. [PMID: 38190322 DOI: 10.1021/jacs.3c13011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Alkylidene cyclopropanes (ACPs) are valuable synthetic intermediates because of their constrained structure and opportunities for further diversification. Although routes to ACPs are known, preparations of ACPs with control of both the configuration of the cyclopropyl (R vs S) group and the geometry of the alkene (E vs Z) are unknown. We describe enzymatic cyclopropanation of allenes with ethyl diazoacetate (EDA) catalyzed by an iridium-containing cytochrome (Ir(Me)-CYP119) that controls both stereochemical elements. Two mutants of Ir(Me)-CYP119 identified by 6-codon (6c, VILAFG) saturation mutagenesis catalyze the formation of (E)-ACPs with -93% to >99% ee and >99:1 E/Z ratio with just three rounds of 96 mutants. By four additional rounds of mutagenesis, an enzyme variant was identified that forms (Z)-ACPs with up to 94% ee and a 28:72 E/Z ratio. Computational studies show that the orientation of the carbene unit dictated by the mutated positions accounts for the stereoselectivity.
Collapse
Affiliation(s)
- Brandon J Bloomer
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Isaac A Joyner
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Derek B Hu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Martí Garçon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Andrew Quest
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Consuelo Ugarte Montero
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Isaac F Yu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Douglas S Clark
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Michailidou F. Engineering of Therapeutic and Detoxifying Enzymes. Angew Chem Int Ed Engl 2023; 62:e202308814. [PMID: 37433049 DOI: 10.1002/anie.202308814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/13/2023]
Abstract
Therapeutic enzymes present excellent opportunities for the treatment of human disease, modulation of metabolic pathways and system detoxification. However, current use of enzyme therapy in the clinic is limited as naturally occurring enzymes are seldom optimal for such applications and require substantial improvement by protein engineering. Engineering strategies such as design and directed evolution that have been successfully implemented for industrial biocatalysis can significantly advance the field of therapeutic enzymes, leading to biocatalysts with new-to-nature therapeutic activities, high selectivity, and suitability for medical applications. This minireview highlights case studies of how state-of-the-art and emerging methods in protein engineering are explored for the generation of therapeutic enzymes and discusses gaps and future opportunities in the field of enzyme therapy.
Collapse
Affiliation(s)
- Freideriki Michailidou
- Department of Health Sciences and Technology, ETH Zurich, Schmelzbergstrasse 9, 8092, Zürich, Switzerland
| |
Collapse
|
9
|
Liu F, He L, Dong S, Xuan J, Cui Q, Feng Y. Artificial Small Molecules as Cofactors and Biomacromolecular Building Blocks in Synthetic Biology: Design, Synthesis, Applications, and Challenges. Molecules 2023; 28:5850. [PMID: 37570818 PMCID: PMC10421094 DOI: 10.3390/molecules28155850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Enzymes are essential catalysts for various chemical reactions in biological systems and often rely on metal ions or cofactors to stabilize their structure or perform functions. Improving enzyme performance has always been an important direction of protein engineering. In recent years, various artificial small molecules have been successfully used in enzyme engineering. The types of enzymatic reactions and metabolic pathways in cells can be expanded by the incorporation of these artificial small molecules either as cofactors or as building blocks of proteins and nucleic acids, which greatly promotes the development and application of biotechnology. In this review, we summarized research on artificial small molecules including biological metal cluster mimics, coenzyme analogs (mNADs), designer cofactors, non-natural nucleotides (XNAs), and non-natural amino acids (nnAAs), focusing on their design, synthesis, and applications as well as the current challenges in synthetic biology.
Collapse
Affiliation(s)
- Fenghua Liu
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingling He
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Sheng Dong
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinsong Xuan
- Department of Bioscience and Bioengineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing 100083, China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingang Feng
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China
- Shandong Energy Institute, 189 Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, 189 Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Sellés Vidal L, Isalan M, Heap JT, Ledesma-Amaro R. A primer to directed evolution: current methodologies and future directions. RSC Chem Biol 2023; 4:271-291. [PMID: 37034405 PMCID: PMC10074555 DOI: 10.1039/d2cb00231k] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
Directed evolution is one of the most powerful tools for protein engineering and functions by harnessing natural evolution, but on a shorter timescale. It enables the rapid selection of variants of biomolecules with properties that make them more suitable for specific applications. Since the first in vitro evolution experiments performed by Sol Spiegelman in 1967, a wide range of techniques have been developed to tackle the main two steps of directed evolution: genetic diversification (library generation), and isolation of the variants of interest. This review covers the main modern methodologies, discussing the advantages and drawbacks of each, and hence the considerations for designing directed evolution experiments. Furthermore, the most recent developments are discussed, showing how advances in the handling of ever larger library sizes are enabling new research questions to be tackled.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| | - Mark Isalan
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
| | - John T Heap
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Life Sciences, Imperial College London London SW7 2AZ UK
- School of Life Sciences, The University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London London SW7 2AZ UK
- Department of Bioengineering, Imperial College London London SW7 2AZ UK
| |
Collapse
|
11
|
Ofori Atta L, Zhou Z, Roelfes G. In Vivo Biocatalytic Cascades Featuring an Artificial-Enzyme-Catalysed New-to-Nature Reaction. Angew Chem Int Ed Engl 2023; 62:e202214191. [PMID: 36342952 PMCID: PMC10100225 DOI: 10.1002/anie.202214191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Artificial enzymes utilizing the genetically encoded non-proteinogenic amino acid p-aminophenylalanine (pAF) as a catalytic residue are able to react with carbonyl compounds through an iminium ion mechanism to promote reactions that have no equivalent in nature. Herein, we report an in vivo biocatalytic cascade that is augmented with such an artificial enzyme-catalysed new-to-nature reaction. The artificial enzyme in this study is a pAF-containing evolved variant of the lactococcal multidrug-resistance regulator, designated LmrR_V15pAF_RMH, which efficiently converts benzaldehyde derivatives produced in vivo into the corresponding hydrazone products inside E. coli cells. These in vivo biocatalytic cascades comprising an artificial-enzyme-catalysed reaction are an important step towards achieving a hybrid metabolism.
Collapse
Affiliation(s)
- Linda Ofori Atta
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| | - Zhi Zhou
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands.,Current address: School of Life Science and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Gerard Roelfes
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747, AG Groningen, The Netherlands
| |
Collapse
|
12
|
Duan HZ, Hu C, Li YL, Wang SH, Xia Y, Liu X, Wang J, Chen YX. Genetically Encoded Phosphine Ligand for Metalloprotein Design. J Am Chem Soc 2022; 144:22831-22837. [DOI: 10.1021/jacs.2c09683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Hua-Zhen Duan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Cheng Hu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, P.R. China
| | - Yue-Lin Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Shi-Hao Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| | - Yan Xia
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, P.R. China
| | - Xiaohong Liu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, P.R. China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, Beijing 100101, P.R. China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
13
|
Spheroplasts preparation boosts the catalytic potential of a squalene-hopene cyclase. Nat Commun 2022; 13:6269. [PMID: 36271006 PMCID: PMC9586974 DOI: 10.1038/s41467-022-34030-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/11/2022] [Indexed: 12/25/2022] Open
Abstract
Squalene-hopene cyclases are a highly valuable and attractive class of membrane-bound enzymes as sustainable biotechnological tools to produce aromas and bioactive compounds at industrial scale. However, their application as whole-cell biocatalysts suffer from the outer cell membrane acting as a diffusion barrier for the highly hydrophobic substrate/product, while the use of purified enzymes leads to dramatic loss of stability. Here we present an unexplored strategy for biocatalysis: the application of squalene-hopene-cyclase spheroplasts. By removing the outer cell membrane, we produce stable and substrate-accessible biocatalysts. These spheroplasts exhibit up to 100-fold higher activity than their whole-cell counterparts for the biotransformations of squalene, geranyl acetone, farnesol, and farnesyl acetone. Their catalytic ability is also higher than the purified enzyme for all high molecular weight terpenes. In addition, we introduce a concept for the carrier-free immobilization of spheroplasts via crosslinking, crosslinked spheroplasts. The crosslinked spheroplasts maintain the same catalytic activity of the spheroplasts, offering additional advantages such as recycling and reuse. These timely solutions contribute not only to harness the catalytic potential of the squalene-hopene cyclases, but also to make biocatalytic processes even greener and more cost-efficient.
Collapse
|
14
|
Omura K, Aiba Y, Suzuki K, Ariyasu S, Sugimoto H, Shoji O. A P450 Harboring Manganese Protoporphyrin IX Generates a Manganese Analogue of Compound I by Activating Dioxygen. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keita Omura
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Yuichiro Aiba
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Kazuto Suzuki
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shinya Ariyasu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hiroshi Sugimoto
- RIKEN SPring-8 Center, Harima Institute, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Core Research for Evolutional Science and Technology (Japan), Science and Technology Agency, 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
| |
Collapse
|