1
|
Guo Y, Li P, Guo X, Yao C, Yang D. Synthetic Nanoassemblies for Regulating Organelles: From Molecular Design to Precision Therapeutics. ACS NANO 2024; 18:30224-30246. [PMID: 39441007 DOI: 10.1021/acsnano.4c10194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Each organelle referring to a complex multiorder architecture executes respective biological processes via its distinct spatial organization and internal microenvironment. As the assembly of biomolecules is the structural basis of living cells, creating synthetic nanoassemblies with specific physicochemical and morphological properties in living cells to interfere or couple with the natural organelle architectures has attracted great attention in precision therapeutics of cancers. In this review, we give an overview of the latest advances in the synthetic nanoassemblies for precise organelle regulation, including the formation mechanisms, triggering strategies, and biomedical applications in precision therapeutics. We summarize the emerging material systems, including polymers, peptides, and deoxyribonucleic acids (DNAs), and their respective intermolecular interactions for intercellular synthetic nanoassemblies, and highlight their design principles in constructing precursors that assemble into synthetic nanoassemblies targeting specific organelles in the complex cellular environment. We further showcase the developed intracellular synthetic nanoassemblies targeting specific organelles including mitochondria, the endoplasmic reticulum, lysosome, Golgi apparatus, and nucleus and describe their underlying mechanisms for organelle regulation and precision therapeutics for cancer. Last, the essential challenges in this field and prospects for future precision therapeutics of synthetic nanoassemblies are discussed. This review should facilitate the rational design of organelle-targeting synthetic nanoassemblies and the comprehensive recognition of organelles by materials and contribute to the deep understanding and application of the synthetic nanoassemblies for precision therapeutics.
Collapse
Affiliation(s)
- Yanfei Guo
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
| | - Peiran Li
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Xiaocui Guo
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| | - Dayong Yang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, College of Chemistry and Materials, Fudan University, Shanghai 200438, P.R. China
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P.R. China
| |
Collapse
|
2
|
Gaspers P, Lemke P, Delavault A, Domínguez CM, Rabe KS, Niemeyer CM. Engineering Phi29-DNAP Variants for Customized DNA Hydrogel Materials. Chemistry 2024:e202403047. [PMID: 39377743 DOI: 10.1002/chem.202403047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
DNA hydrogels, which hold potential for use in medicine, biosensors, and tissue engineering, can be produced through enzymatic rolling circle amplification (RCA) using phi29 DNA polymerase (DNAP). This paper introduces new DNAP variants designed for RCA-based DNA hydrogel production, featuring enzymes with modified DNA binding, enhanced thermostability, reduced exonuclease activity, and protein tags for fluorescence detection or specific immobilization. We evaluated these enzymes by quantifying DNA output via quantitative PCR (qPCR) and assessing hydrogel mechanical properties through micromechanical indentation. The results showed that most variants generated similar DNA amounts and hydrogels with comparable mechanical properties. Additionally, all variants successfully incorporated non-natural nucleotides, such as base-modified dGTP derivatives and 2'fluoro-dGTP, during RCA. This study's robust analytical approach offers a strong foundation for selecting new enzymes and producing DNA hydrogels with tailored material properties.
Collapse
Affiliation(s)
- Philipp Gaspers
- Institute for Biological Interfaces 1 (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Phillip Lemke
- Institute for Biological Interfaces 1 (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - André Delavault
- Institute for Biological Interfaces 1 (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Carmen M Domínguez
- Institute for Biological Interfaces 1 (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Kersten S Rabe
- Institute for Biological Interfaces 1 (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Christof M Niemeyer
- Institute for Biological Interfaces 1 (IBG 1), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Paiva WA, Alakwe SD, Marfai J, Jennison-Henderson MV, Achong RA, Duche T, Weeks AA, Robertson-Anderson RM, Oldenhuis NJ. From Bioreactor to Bulk Rheology: Achieving Scalable Production of Highly Concentrated Circular DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405490. [PMID: 38935929 DOI: 10.1002/adma.202405490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/10/2024] [Indexed: 06/29/2024]
Abstract
DNA serves as a model system in polymer physics due to its ability to be obtained as a uniform polymer with controllable topology and nonequilibrium behavior. Currently, a major obstacle in the widespread adoption of DNA is obtaining it on a scale and cost basis that accommodates bulk rheology and high-throughput screening. To address this, recent advancements in bioreactor-based plasmid DNA production is coupled with anion exchange chromatography producing a unified approach to generating gram-scale quantities of monodisperse DNA. With this method, 1.1 grams of DNA is obtained per batch to generate solutions with concentrations up to 116 mg mL-1. This solution of uniform supercoiled and relaxed circular plasmid DNA, is roughly 69 times greater than the overlap concentration. The utility of this method is demonstrated by performing bulk rheology measurements at sample volumes up to 1 mL on DNA of different lengths, topologies, and concentrations. The measured elastic moduli are orders of magnitude larger than those previously reported for DNA and allowed for the construction of a time-concentration superposition curve that spans 12 decades of frequency. Ultimately, these results can provide important insights into the dynamics of ring polymers and the nature of highly condensed DNA dynamics.
Collapse
Affiliation(s)
- Wynter A Paiva
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Somkene D Alakwe
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Juexin Marfai
- Department of Physics and Biophysics, College of Arts and Sciences, University of San Diego, Shiley Center for Science and Technology, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Madigan V Jennison-Henderson
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Rachel A Achong
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Tinotenda Duche
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - April A Weeks
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| | - Rae M Robertson-Anderson
- Department of Physics and Biophysics, College of Arts and Sciences, University of San Diego, Shiley Center for Science and Technology, 5998 Alcala Park, San Diego, CA, 92110, USA
| | - Nathan J Oldenhuis
- Department of Chemistry, College of Engineering and Physical Science, University of New Hampshire, 23 Academic Way, Parsons Hall, Durham, NH 03824, USA
| |
Collapse
|
4
|
Li Y, Chen R, Zhou B, Dong Y, Liu D. Rational Design of DNA Hydrogels Based on Molecular Dynamics of Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307129. [PMID: 37820719 DOI: 10.1002/adma.202307129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/03/2023] [Indexed: 10/13/2023]
Abstract
In recent years, DNA has emerged as a fascinating building material to engineer hydrogel due to its excellent programmability, which has gained considerable attention in biomedical applications. Understanding the structure-property relationship and underlying molecular determinants of DNA hydrogel is essential to precisely tailor its macroscopic properties at molecular level. In this review, the rational design principles of DNA molecular networks based on molecular dynamics of polymers on the temporal scale, which can be engineered via the backbone rigidity and crosslinking kinetics, are highlighted. By elucidating the underlying molecular mechanisms and theories, it is aimed to provide a comprehensive overview of how the tunable DNA backbone rigidity and the crosslinking kinetics lead to desirable macroscopic properties of DNA hydrogels, including mechanical properties, diffusive permeability, swelling behaviors, and dynamic features. Furthermore, it is also discussed how the tunable macroscopic properties make DNA hydrogels promising candidates for biomedical applications, such as cell culture, tissue engineering, bio-sensing, and drug delivery.
Collapse
Affiliation(s)
- Yujie Li
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ruofan Chen
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Bini Zhou
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Dongsheng Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
5
|
Noll K, Lambov M, Singh DP, Lehmann M. Discotic Star Mesogen with Thymine Nucleobases Exhibiting a Rare Gyroid Cubic Mesophase with 3D Conductivity. Chemistry 2024; 30:e202303375. [PMID: 37889092 DOI: 10.1002/chem.202303375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
A unique gyroid cubic phase has been discovered for a discotic star mesogen with three covalently attached DNA bases. In this cubicI a 3 ‾ d ${Ia\bar{3}d}$ phase, the conjugated core of the mesogens and the thymine pseudo guests self-assemble in mirror image continuous networks, representing a semiconducting material with three-dimensional transport pathways. The hole carrier mobilities are found to be in the typical range of poly(phenylenevinylene) scaffolds. This structure is stabilized by a weak hydrogen bonding between the thymine bases and can be switched to a columnar liquid crystal - thermally and by the addition of complementary adenine guests.
Collapse
Affiliation(s)
- Katja Noll
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Martin Lambov
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Dharmendra Pratap Singh
- Unité de Dynamique et Structure des Matériaux Moléculaires (UDSMM), Université du Littoral Côte d'Opale (ULCO), 50 Rue Ferdinand Buisson, 62100, Calais, France
| | - Matthias Lehmann
- Institut für Organische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
- Center for Nanosystems Chemsitry and Bavarian Polymer Institute, Theodor-Bovori-Weg 4, 97074, Würzburg, Germany
| |
Collapse
|
6
|
Neitz H, Höbartner C. A tolane-modified 5-ethynyluridine as a universal and fluorogenic photochemical DNA crosslinker. Chem Commun (Camb) 2023; 59:12003-12006. [PMID: 37727895 DOI: 10.1039/d3cc03796g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
We report the fluorescent nucleoside ToldU and its application as a photoresponsive crosslinker in three different DNA architectures with enhanced fluorescence emission of the crosslinked products. The fluorogenic ToldU crosslinking reaction enables the assembly of DNA polymers in a hybridization chain reaction for the concentration-dependent detection of a specific DNA sequence.
Collapse
Affiliation(s)
- Hermann Neitz
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Claudia Höbartner
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
- Center for Nanosystems Chemistry (CNC), University of Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
7
|
Athanasiadou D, Meshry N, Monteiro NG, Ervolino-Silva AC, Chan RL, McCulloch CA, Okamoto R, Carneiro KMM. DNA hydrogels for bone regeneration. Proc Natl Acad Sci U S A 2023; 120:e2220565120. [PMID: 37071684 PMCID: PMC10151614 DOI: 10.1073/pnas.2220565120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 03/21/2023] [Indexed: 04/19/2023] Open
Abstract
DNA-based biomaterials have been proposed for tissue engineering approaches due to their predictable assembly into complex morphologies and ease of functionalization. For bone tissue regeneration, the ability to bind Ca2+ and promote hydroxyapatite (HAP) growth along the DNA backbone combined with their degradation and release of extracellular phosphate, a known promoter of osteogenic differentiation, make DNA-based biomaterials unlike other currently used materials. However, their use as biodegradable scaffolds for bone repair remains scarce. Here, we describe the design and synthesis of DNA hydrogels, gels composed of DNA that swell in water, their interactions in vitro with the osteogenic cell lines MC3T3-E1 and mouse calvarial osteoblast, and their promotion of new bone formation in rat calvarial wounds. We found that DNA hydrogels can be readily synthesized at room temperature, and they promote HAP growth in vitro, as characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. Osteogenic cells remain viable when seeded on DNA hydrogels in vitro, as characterized by fluorescence microscopy. In vivo, DNA hydrogels promote the formation of new bone in rat calvarial critical size defects, as characterized by micro-computed tomography and histology. This study uses DNA hydrogels as a potential therapeutic biomaterial for regenerating lost bone.
Collapse
Affiliation(s)
| | - Nadeen Meshry
- Faculty of Dentistry, University of Toronto, Toronto, OntarioM5G 1G6, Canada
| | - Naara G. Monteiro
- Department of Basic Sciences, Universidade Estadual Paulista Júlio de Mesquita Filho, School of Dentistry at Araçatuba, Araçatuba, SP16018-805, Brazil
| | - Ana C. Ervolino-Silva
- Department of Basic Sciences, Universidade Estadual Paulista Júlio de Mesquita Filho, School of Dentistry at Araçatuba, Araçatuba, SP16018-805, Brazil
| | - Ryan Lee Chan
- Institute of Biomedical Engineering, University of Toronto, Toronto, OntarioM5S 3E2, Canada
| | | | - Roberta Okamoto
- Department of Basic Sciences, Universidade Estadual Paulista Júlio de Mesquita Filho, School of Dentistry at Araçatuba, Araçatuba, SP16018-805, Brazil
| | - Karina M. M. Carneiro
- Faculty of Dentistry, University of Toronto, Toronto, OntarioM5G 1G6, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, OntarioM5S 3E2, Canada
| |
Collapse
|
8
|
Dai X, Zhu Z, Li Y, Yang B, Xu JF, Dong Y, Zhou X, Yan LT, Liu D. "Shutter" Effects Enhance Protein Diffusion in Dynamic and Rigid Molecular Networks. J Am Chem Soc 2022; 144:19017-19025. [PMID: 36197334 DOI: 10.1021/jacs.2c07830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogels have been widely applied to understand the fundamental functions and mechanism of a natural extracellular matrix (ECM). However, revealing the high permeability of ECM through synthetic hydrogels is still challenged by constructing analogue networks with rigid and dynamic properties. Here, in this study, taking advantage of the rigidity and dynamic binding of DNA building blocks, we have designed a model hydrogel system with structural similarity to ECM, leading to enhanced diffusion for proteins compared with a synthetic polyacrylamide (PAAm) hydrogel. The molecular diffusion behaviors in such a rigid and dynamic network have been investigated both in experiments and simulations, and the dependence of diffusion coefficients with respect to molecular size exhibits a unique transition from a power law to an exponential function. A "shutter" model based on the rigid and dynamic molecular network has been proposed, which has successfully revealed how the rigidity and dynamic bond exchange determine the diffusion mechanism, potentially providing a novel perspective to understand the possible mechanism of enhanced diffusion behaviors in ECM.
Collapse
Affiliation(s)
- Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Zhichao Zhu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Yujie Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Bo Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Jiang-Fei Xu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing100190, China
| | - Xin Zhou
- School of Physical Science, University of Chinese Academy of Sciences, Beijing100049, China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing100084, China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, Beijing100084, China
| |
Collapse
|
9
|
Yang B, Zhou B, Li C, Li X, Shi Z, Li Y, Zhu C, Li X, Hua Y, Pan Y, He J, Cao T, Sun Y, Liu W, Ge M, Yang YR, Dong Y, Liu D. A Biostable l-DNA Hydrogel with Improved Stability for Biomedical Applications. Angew Chem Int Ed Engl 2022; 61:e202202520. [PMID: 35445515 DOI: 10.1002/anie.202202520] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Indexed: 01/20/2023]
Abstract
DNA hydrogels have attracted increasing attention owing to their excellent permeability and high mechanical strength, together with thixotropy, versatile programmability and good biocompatibility. However, the moderate biostability and immune stimulation of DNA have arisen as big concerns for future potential clinical applications. Herein, we report the self-assembly of a novel l-DNA hydrogel, which inherited the extraordinary physical properties of a d-DNA hydrogel. With the mirror-isomer deoxyribose, this hydrogel exhibited improved biostability, withstanding fetal bovine serum (FBS) for at least 1 month without evident decay of its mechanical properties. The low inflammatory response of the l-DNA hydrogel has been verified both in vitro and in vivo. Hence, this l-DNA hydrogel with outstanding biostability and biocompatibility can be anticipated to serve as an ideal 3D cell-culture matrix and implanted bio-scaffold for long-term biomedical applications.
Collapse
Affiliation(s)
- Bo Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Cuifeng Li
- School of Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Xiaowei Li
- Zenji Research Laboratories (Nanjing) Ltd., Building 9, Phase 2, Zifeng Research and Development Center, Qiaolin Tablet, Economic Development Zone, Pukou District, Nanjing, 211806 Jiangsu, China
| | - Ziwei Shi
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Yuxin Li
- School of Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, 100084, Beijing, China
| | - Chenyou Zhu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Xin Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yi Hua
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yufan Pan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Jian He
- Zenji Research Laboratories (Nanjing) Ltd., Building 9, Phase 2, Zifeng Research and Development Center, Qiaolin Tablet, Economic Development Zone, Pukou District, Nanjing, 211806 Jiangsu, China
| | - Tianyang Cao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| | - Yawei Sun
- College of Chemical Engineering, China University of Petroleum (East China), 258000, Qingdao, China
| | - Wanli Liu
- School of Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, 100084, Beijing, China.,Tsinghua-Peking Center for Life Sciences, 100084, Beijing, China
| | - Min Ge
- Zenji Research Laboratories (Nanjing) Ltd., Building 9, Phase 2, Zifeng Research and Development Center, Qiaolin Tablet, Economic Development Zone, Pukou District, Nanjing, 211806 Jiangsu, China
| | - Yuhe R Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 100190, Beijing, China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
10
|
Yao C, Ou J, Tang J, Yang D. DNA Supramolecular Assembly on Micro/Nanointerfaces for Bioanalysis. Acc Chem Res 2022; 55:2043-2054. [PMID: 35839123 DOI: 10.1021/acs.accounts.2c00170] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusFacing increasing demand for precision medicine, materials chemistry systems for bioanalysis with accurate molecular design, controllable structure, and adjustable biological activity are required. As a genetic biomacromolecule, deoxyribonucleic acid (DNA) is created via precise, efficient, and mild processes in life systems and can in turn precisely regulate life activities. From the perspective of materials chemistry, DNA possesses the characteristics of sequence programmability and can be endowed with customized functions by the rational design of sequences. In recent years, DNA has been considered to be a potential biomaterial for analysis and has been applied in the fields of bioseparation, biosensing, and detection imaging. To further improve the precision of bioanalysis, the supramolecular assembly of DNA on micro/nanointerfaces is an effective strategy to concentrate functional DNA modules, and thus the functions of DNA molecules for bioanalysis can be enriched and enhanced. Moreover, the new modes of DNA supramolecular assembly on micro/nanointerfaces enable the integration of DNA with the introduced components, breaking the restriction of limited functions of DNA materials and achieving more precise regulation and manipulation in bioanalysis. In this Account, we summarize our recent work on DNA supramolecular assembly on micro/nanointerfaces for bioanalysis from two main aspects. In the first part, we describe DNA supramolecular assembly on the interfaces of microscale living cells. The synthesis strategy of DNA is based on rolling-circle amplification (RCA), which generates ultralong DNA strands according to circular DNA templates. The templates can be designed with complementary sequences of functional modules such as aptamers, which allow DNA to specifically bind with cellular interfaces and achieve efficient cell separation. In the second part, we describe DNA supramolecular assembly on the interfaces of nanoscale particles. DNA sequences are designed with functional modules such as targeting, drug loading, and gene expression and then are assembled on interfaces of particles including upconversion nanoparticles (UCNPs), gold nanoparticles (AuNPs), and magnetic nanoparticle (MNPs). The integration of DNA with these functional particles achieves cell manipulation, targeted tumor imaging, and cellular regulation. The processes of interfacial assembly are well controlled, and the functions of the obtained bioanalytical materials can be flexibly regulated. We envision that the work on DNA supramolecular assembly on micro/nanointerfaces will be a typical paradigm for the construction of more bioanalytical materials, which we hope will facilitate the development of precision medicine.
Collapse
Affiliation(s)
- Chi Yao
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Junhan Ou
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jianpu Tang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Dayong Yang
- Frontiers Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Institute of Biomolecular and Biomedical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
11
|
Yang B, Zhou B, Li C, Li X, Shi Z, Li Y, Zhu C, Li X, Hua Y, Pan Y, He J, Cao T, Sun Y, Liu W, Ge M, Yang YR, Dong Y, Liu D. A Biostable
l
‐DNA Hydrogel with Improved Stability for Biomedical Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bo Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University 100084 Beijing China
| | - Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University 100084 Beijing China
| | - Cuifeng Li
- School of Life Sciences, Institute for Immunology Ministry of Education Key Laboratory of Protein Sciences Beijing Advanced Innovation Center for Structural Biology Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases Beijing Key Lab for Immunological Research on Chronic Diseases Tsinghua University 100084 Beijing China
- Tsinghua-Peking Center for Life Sciences 100084 Beijing China
| | - Xiaowei Li
- Zenji Research Laboratories (Nanjing) Ltd. Building 9, Phase 2, Zifeng Research and Development Center, Qiaolin Tablet, Economic Development Zone, Pukou District Nanjing 211806 Jiangsu China
| | - Ziwei Shi
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences University of Chinese Academy of Sciences 100190 Beijing China
| | - Yuxin Li
- School of Life Sciences, Institute for Immunology Ministry of Education Key Laboratory of Protein Sciences Beijing Advanced Innovation Center for Structural Biology Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases Beijing Key Lab for Immunological Research on Chronic Diseases Tsinghua University 100084 Beijing China
| | - Chenyou Zhu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University 100084 Beijing China
| | - Xin Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University 100084 Beijing China
| | - Yi Hua
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University 100084 Beijing China
| | - Yufan Pan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University 100084 Beijing China
| | - Jian He
- Zenji Research Laboratories (Nanjing) Ltd. Building 9, Phase 2, Zifeng Research and Development Center, Qiaolin Tablet, Economic Development Zone, Pukou District Nanjing 211806 Jiangsu China
| | - Tianyang Cao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University 100084 Beijing China
| | - Yawei Sun
- College of Chemical Engineering China University of Petroleum (East China) 258000 Qingdao China
| | - Wanli Liu
- School of Life Sciences, Institute for Immunology Ministry of Education Key Laboratory of Protein Sciences Beijing Advanced Innovation Center for Structural Biology Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases Beijing Key Lab for Immunological Research on Chronic Diseases Tsinghua University 100084 Beijing China
- Tsinghua-Peking Center for Life Sciences 100084 Beijing China
| | - Min Ge
- Zenji Research Laboratories (Nanjing) Ltd. Building 9, Phase 2, Zifeng Research and Development Center, Qiaolin Tablet, Economic Development Zone, Pukou District Nanjing 211806 Jiangsu China
| | - Yuhe R. Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology 100190 Beijing China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences University of Chinese Academy of Sciences 100190 Beijing China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology Department of Chemistry Tsinghua University 100084 Beijing China
| |
Collapse
|