1
|
Azaiza-Dabbah D, Wang F, Haddad E, Solé-Daura A, Carmieli R, Poblet JM, Vogt C, Neumann R. Heterometallic Transition Metal Oxides Containing Lewis Acids as Molecular Catalysts for the Reduction of Carbon Dioxide to Carbon Monoxide with Bimodal Activity. J Am Chem Soc 2024; 146:27871-27885. [PMID: 39326444 PMCID: PMC11468775 DOI: 10.1021/jacs.4c10412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Electrocatalytic CO2 reduction (e-CO2RR) to CO is replete with challenges including the need to carry out e-CO2RR at low overpotentials. Previously, a tricopper-substituted polyoxometalate was shown to reduce CO2 to CO with a very high faradaic efficiency albeit at -2.5 V versus Fc/Fc+. It is now demonstrated that introducing a nonredox metal Lewis acid, preferably GaIII, as a binding site for CO2 in the first coordination sphere of the polyoxometalate, forming heterometallic polyoxometalates, e.g., [SiCuIIFeIIIGaIII(H2O)3W9O37]8-, leads to bimodal activity optimal both at -2.5 and -1.5 V versus Fc/Fc+; reactivity at -1.5 V being at an overpotential of ∼150 mV. These results were observed by cyclic voltammetry and quantitative controlled potential electrolysis where high faradaic efficiency and chemoselectivity were obtained at -2.5 and -1.5 V. A reaction with 13CO2 revealed that CO2 disproportionation did not occur at -1.5 V. EPR spectroscopy showed reduction, first of CuII to CuI and FeIII to FeII and then reduction of a tungsten atom (WVI to WV) in the polyoxometalate framework. IR spectroscopy showed that CO2 binds to [SiCuIIFeIIIGaIII(H2O)3W9O37]8- before reduction. In situ electrochemical attenuated total reflection surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) with pulsed potential modulated excitation revealed different observable intermediate species at -2.5 and -1.5 V. DFT calculations explained the CV, the formation of possible activated CO2 species at both -2.5 and -1.5 V through series of electron transfer, proton-coupled electron transfer, protonation and CO2 binding steps, the active site for reduction, and the role of protons in facilitating the reactions.
Collapse
Affiliation(s)
- Dima Azaiza-Dabbah
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Fei Wang
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Elias Haddad
- Schulich
Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion−Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Albert Solé-Daura
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Raanan Carmieli
- Department
of Chemical Research Support, Weizmann Institute
of Science, Rehovot 7610001, Israel
| | - Josep M. Poblet
- Department
de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Charlotte Vogt
- Schulich
Faculty of Chemistry and Resnick Sustainability Center for Catalysis, Technion−Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | - Ronny Neumann
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
2
|
Kawakami K, Yabe T, Amano F, Yamaguchi K, Suzuki K. Pd-incorporated polyoxometalate catalysts for electrochemical CO 2 reduction. Chem Sci 2024:d4sc04304a. [PMID: 39184297 PMCID: PMC11342151 DOI: 10.1039/d4sc04304a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Polyoxometalates (POMs), representing anionic metal-oxo clusters, display diverse properties depending on their structures, constituent elements, and countercations. These characteristics position them as promising catalysts or catalyst precursors for electrochemical carbon dioxide reduction reaction (CO2RR). This study synthesized various salts-TBA+ (tetra-n-butylammonium), Cs+, Sr2+, and Ba2+-of a dipalladium-incorporated POM (Pd2, [γ-H2SiW10O36Pd2(OAc)2]4-) immobilized on a carbon support (Pd2/C). The synthesized catalysts-TBAPd2/C, CsPd2/C, SrPd2/C, and BaPd2/C-were deposited on a gas-diffusion carbon electrode, and the CO2RR performance was subsequently evaluated using a gas-diffusion flow electrolysis cell. Among the catalysts tested, BaPd2/C exhibited high selectivity toward carbon monoxide (CO) production (ca. 90%), while TBAPd2/C produced CO and hydrogen (H2) with moderate selectivity (ca. 40% for CO and ca. 60% for H2). Moreover, BaPd2/C exhibited high selectivity toward CO production over 12 h, while palladium acetate, a precursor of Pd2, showed a significant decline in CO selectivity during the CO2RR. Although both BaPd2/C and TBAPd2/C transformed into Pd nanoparticles and WO x nanospecies during the CO2RR, the influence of countercations on their product selectivity was significant. These results highlight that POMs and their countercations can effectively modulate the catalytic performance of POM-based electrocatalysts in CO2RR.
Collapse
Affiliation(s)
- Kimitake Kawakami
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Fumiaki Amano
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University 1-1 Minami-Osawa Hachioji Tokyo 192-0397 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry, School of Engineering, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| |
Collapse
|
3
|
Ma T, Yan R, Wu X, Wang M, Yin B, Li S, Cheng C, Thomas A. Polyoxometalate-Structured Materials: Molecular Fundamentals and Electrocatalytic Roles in Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310283. [PMID: 38193756 DOI: 10.1002/adma.202310283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Polyoxometalates (POMs), a kind of molecular metal oxide cluster with unique physical-chemical properties, have made essential contributions to creating efficient and robust electrocatalysts in renewable energy systems. Due to the fundamental advantages of POMs, such as the diversity of molecular structures and large numbers of redox active sites, numerous efforts have been devoted to extending their application areas. Up to now, various strategies of assembling POM molecules into superstructures, supporting POMs on heterogeneous substrates, and POMs-derived metal compounds have been developed for synthesizing electrocatalysts. From a multidisciplinary perspective, the latest advances in creating POM-structured materials with a unique focus on their molecular fundamentals, electrocatalytic roles, and the recent breakthroughs of POMs and POM-derived electrocatalysts, are systematically summarized. Notably, this paper focuses on exposing the current states, essences, and mechanisms of how POM-structured materials influence their electrocatalytic activities and discloses the critical requirements for future developments. The future challenges, objectives, comparisons, and perspectives for creating POM-structured materials are also systematically discussed. It is anticipated that this review will offer a substantial impact on stimulating interdisciplinary efforts for the prosperities and widespread utilizations of POM-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Arne Thomas
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
4
|
Cobb SJ, Rodríguez‐Jiménez S, Reisner E. Connecting Biological and Synthetic Approaches for Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202310547. [PMID: 37983571 PMCID: PMC11497245 DOI: 10.1002/anie.202310547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 11/22/2023]
Abstract
Electrocatalytic CO2 reduction has developed into a broad field, spanning fundamental studies of enzymatic 'model' catalysts to synthetic molecular catalysts and heterogeneous gas diffusion electrodes producing commercially relevant quantities of product. This diversification has resulted in apparent differences and a disconnect between seemingly related approaches when using different types of catalysts. Enzymes possess discrete and well understood active sites that can perform reactions with high selectivity and activities at their thermodynamic limit. Synthetic small molecule catalysts can be designed with desired active site composition but do not yet display enzyme-like performance. These properties of the biological and small molecule catalysts contrast with heterogeneous materials, which can contain multiple, often poorly understood active sites with distinct reactivity and therefore introducing significant complexity in understanding their activities. As these systems are being better understood and the continuously improving performance of their heterogeneous active sites closes the gap with enzymatic activity, this performance difference between heterogeneous and enzymatic systems begins to close. This convergence removes the barriers between using different types of catalysts and future challenges can be addressed without multiple efforts as a unified picture for the biological-synthetic catalyst spectrum emerges.
Collapse
Affiliation(s)
- Samuel J. Cobb
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
5
|
Zhang Y, Zhang X, Jiao L, Meng Z, Jiang HL. Conductive Covalent Organic Frameworks of Polymetallophthalocyanines as a Tunable Platform for Electrocatalysis. J Am Chem Soc 2023; 145:24230-24239. [PMID: 37890005 DOI: 10.1021/jacs.3c08594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Developing an electrocatalyst platform that can control the interplay among activity, selectivity, and stability at atomic precision remains a grand challenge. Here, we have synthesized highly crystalline polymetallophthalocyanines (pMPcs, M = Fe, Co, Ni, and Cu) through the annulation of tetracyanobenzene in the presence of transition metals. The conjugated, conductive, and stable backbones with precisely installed metal sites render pMPcs a unique platform in electrochemical catalysis, where tunability emerges from long-range interactions. The construction of pCoNiPc with a Co and Ni dual-site integrates the advantageous features of pCoPc and pNiPc in electrocatalytic CO2 reduction through electronic communication of the dual-site with an unprecedented long atomic separation of ≥14 chemical bonds. This integration provides excellent activity (current density, j = -16.0 and -100 mA cm-2 in H-type and flow cell, respectively), selectivity (CO Faraday efficiency, FECO = 94%), and stability (>10 h), making it one of the best-performing reticular materials.
Collapse
Affiliation(s)
- Yi Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiyuan Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Long Jiao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, People's Republic of China
| | - Zheng Meng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, People's Republic of China
| |
Collapse
|
6
|
Wang M, Xu B, He R, Bai G, Luo X, Shao R, Li L, Wu K, Qiao J. Nickel oxide/copper nanocluster anchored in carbon-nitride nanosheets realizing ultrahigh stability and broad potential range for zero-gap membrane flow reactor towards CO 2-into-CO electroreduction. J Colloid Interface Sci 2023; 654:1146-1153. [PMID: 39491904 DOI: 10.1016/j.jcis.2023.10.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/10/2023] [Accepted: 10/17/2023] [Indexed: 11/05/2024]
Abstract
CO2 electrochemical reduction is a sustainable approach to achieve chemical fixation of CO2 and storage of renewable energy. However, the catalyst which has the ability of mediating CO2 to a single product with a relatively high current density is highly demand. Herein, we reported a metallic nitrogen-carbon catalyst based on two kinds of metal phthalocyanines by a facile synthesis method. The synergistic effect of Cu and Ni and the active sites of nickel oxide/copper nanocluster endow the catalyst excellent performance towards CO2-into-CO electroreduction. Typically, the Cu-Ni bimetallic catalyst achieves high selectivity (85.2 %) at positive potential (-0.72 VRHE), with the stability of current density and product selectivity beyond 72 h. The volume ratio of CO/H2 can be effectively tuned (from 2:1, 1:1 to 1:2) by controlling the electrolysis potential, which is promising for synthesis gas in the Fischer-Tropsch reactions and methanol synthesis. Furthermore, the advantages are further amplified by applying it to zero-gap membrane flow reactor, which can enhance the selectivity over 90 % at a broad potential range (-2.5 ∼ -2.7 V) and achieve an current density of 9-fold of H-type cell. Our work proves a way for optimizing the CO2 electrocatalyst and electrolyzers.
Collapse
Affiliation(s)
- Min Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Bingqing Xu
- Shanghai Institute of Pollution Control and Ecological Security, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ruinan He
- Shanghai Institute of Pollution Control and Ecological Security, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ge Bai
- Shanghai Institute of Pollution Control and Ecological Security, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xi Luo
- Shanghai Institute of Pollution Control and Ecological Security, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Rong Shao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China.
| | - Lulu Li
- Shanghai Institute of Pollution Control and Ecological Security, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Kai Wu
- College of Materials and Textile Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China.
| | - Jinli Qiao
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; Shanghai Institute of Pollution Control and Ecological Security, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
7
|
Kuramochi S, Cameron JM, Fukui T, Jones KD, Argent SP, Kusaka S, Shiraishi R, Tamaki Y, Yatsu T, Shiga T, Ishitani O, Oshio H, Newton GN. Selective electrochemical CO 2 conversion with a hybrid polyoxometalate. Chem Commun (Camb) 2023; 59:10801-10804. [PMID: 37594189 DOI: 10.1039/d3cc02138f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
A multi-component coordination compound, in which ruthenium antenna complexes are connected to a polyoxotungstate core is presented. This hybrid cluster effectively promotes the electrochemical conversion of CO2 to C1 feedstocks, the selectivity of which can be controlled by the acidity of the media.
Collapse
Affiliation(s)
- Satoshi Kuramochi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Jamie M Cameron
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry, University of Nottingham, Nottingham, NG7 2TU, UK.
| | - Tomoya Fukui
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Kieran D Jones
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry, University of Nottingham, Nottingham, NG7 2TU, UK.
| | - Stephen P Argent
- School of Chemistry, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Shinpei Kusaka
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Ryo Shiraishi
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Yusuke Tamaki
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, meguro-ku, Tokyo, 152-8550, Japan
| | - Taiki Yatsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, meguro-ku, Tokyo, 152-8550, Japan
| | - Takuya Shiga
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Osamu Ishitani
- Department of Chemistry, School of Science, Tokyo Institute of Technology, O-okayama, meguro-ku, Tokyo, 152-8550, Japan
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739 8526, Japan
| | - Hiroki Oshio
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Graham N Newton
- GSK Carbon Neutral Laboratories for Sustainable Chemistry, School of Chemistry, University of Nottingham, Nottingham, NG7 2TU, UK.
| |
Collapse
|
8
|
Zhou JL, Xiang XY, Xu LT, Wang JL, Li SM, Yu YT, Mei H, Xu Y. Two bimetal-doped (Fe/Co, Mn) polyoxometalate-based hybrid compounds for visible-light-driven CO 2 reduction. Dalton Trans 2023. [PMID: 37366139 DOI: 10.1039/d3dt01296d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Two polyoxometalate (POM)-based hybrid compounds have been successfully designed and constructed by the hydrothermal method with molecular formulas [K(H2O)2FeII0.33Co0.67(H2O)2(DAPSC)]2{[FeII0.33Co0.67(H2O)(DAPSC)]2[FeII0.33Co0.67(H2O)4]2[Na2FeIII4P4W32O120]}·21.5H2O (1), and [Na(H2O)2FeII0.33Mn0.67(H2O)2(DAPSC)]2{[FeII0.33Mn0.67(H2O)(DAPSC)]2[FeII0.33Mn0.67(H2O)4]2[Na2FeIII4P4W32O120(H2O)2]}·24H2O (2) (DAPSC = 2,6-diacetylpyridine bis-(semicarbazone)), respectively. Structural analysis revealed that 1 and 2 consisted of metal-organic complexes containing DAPSC ligands with dumbbell-type inorganic clusters, iron-cobalt (iron-manganese) and some other ions. By utilizing a combination of strongly reducing {P2W12} units and bimetal-doped centres the CO2 photoreduction catalytic capacity of 1 and 2 was improved. Notably, the photocatalytic performance of 1 was much better than that of 2. In CO2 photoreduction, 1 exhibited CO selectivity as high as 90.8%. Furthermore, for 1, the CO generation rate reached 6885.1 μmol g-1 h-1 at 8 h with 3 mg, and its better photocatalytic performance was presumably due to the introduction of cobalt and iron elements to give 1 a more appropriate energy band structure. Further recycling experiments indicated that 1 was a highly efficient CO2 photoreduction catalyst, which could still possess catalytic activity after several cycles.
Collapse
Affiliation(s)
- Jiu-Lin Zhou
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Xin-Ying Xiang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ling-Tong Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ji-Lei Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Si-Man Li
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Ya-Ting Yu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Hua Mei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| | - Yan Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211800, P. R. China.
| |
Collapse
|
9
|
|
10
|
Abstract
Catalysis is at the core of chemistry and has been essential to make all the goods surrounding us, including fuels, coatings, plastics and other functional materials. In the near future, catalysis will also be an essential tool in making the shift from a fossil-fuel-based to a more renewable and circular society. To make this reality, we have to better understand the fundamental concept of the active site in catalysis. Here, we discuss the physical meaning - and deduce the validity and, therefore, usefulness - of some common approaches in heterogeneous catalysis, such as linking catalyst activity to a 'turnover frequency' and explaining catalytic performance in terms of 'structure sensitivity' or 'structure insensitivity'. Catalytic concepts from the fields of enzymatic and homogeneous catalysis are compared, ultimately realizing that the struggle that one encounters in defining the active site in most solid catalysts is likely the one we must overcome to reach our end goal: tailoring the precise functioning of the active sites with respect to many different parameters to satisfy our ever-growing needs. This article ends with an outlook of what may become feasible within the not-too-distant future with modern experimental and theoretical tools at hand.
Collapse
|