1
|
Sobczak SK, Drwęska J, Gromelska W, Roztocki K, Janiak AM. Multivariate Flexible Metal-Organic Frameworks and Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402486. [PMID: 39380355 DOI: 10.1002/smll.202402486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/20/2024] [Indexed: 10/10/2024]
Abstract
Precise control of the void environment, achieved through multiple functional groups and enhanced by structural adaptations to guest molecules, stands at the forefront of scientific inquiry. Flexible multivariate open framework materials (OFMs), including covalent organic frameworks and metal-organic frameworks, meet these criteria and are expected to play a crucial role in gas storage and separation, pollutant removal, and catalysis. Nevertheless, there is a notable lack of critical evaluation of achievements in their chemistry and future prospects for their development or implementation. To provide a comprehensive historical context, the initial discussion explores into the realm of "classical" flexible OFMs, where their origin, various modes of flexibility, similarities to proteins, advanced tuning methods, and recent applications are explored. Subsequently, multivariate flexible materials, the methodologies involved in their synthesis, and horizons of their application are focussed. Furthermore, the reader to the concept of spatial distribution is introduced, providing a brief overview of the latest reports that have contributed to its elucidation. In summary, the critical review not only explores the landscape of multivariate flexible materials but also sheds light on the obstacles that the scientific community must overcome to fully unlock the potential of this fascinating field.
Collapse
Affiliation(s)
- Szymon K Sobczak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Joanna Drwęska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Wiktoria Gromelska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Kornel Roztocki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Agnieszka M Janiak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| |
Collapse
|
2
|
Zou Y, Ke F, Yang Y, Wang D, Wang M, Liu Q, Yu S, Li L, Lan Y, Yang X, Guo X, Li X, Yi D, Gao D. Construction of 2-azidacetic acid functionalized high-crystallinity fluorescent covalent organic framework: Applications in mitoxantrone and Fe 3+ sensing and adsorption. CHEMOSPHERE 2024; 366:143498. [PMID: 39393584 DOI: 10.1016/j.chemosphere.2024.143498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/20/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024]
Abstract
Due to the dual functions of fluorescence detection and adsorption, fluorescent covalent organic frameworks (COFs) have attracted significant attention. However, common fluorescent COFs often exhibit unsatisfactory fluorescence properties and selectivity, coupled with poor solution dispersibility, which limit their effectiveness in detection and adsorption applications. In response, a novel post-modified fluorescent COF (named AZC-COF) was synthesized by connecting a fluorescent COF (COF-TB) with 2-azidacetic acid through a copper-catalyzed aide-alkyne cycloaddition (CuAAC) reaction. AZC-COF demonstrated excellent solution dispersibility and robust green fluorescence, boasting an absolute fluorescence quantum yield (QY) of 7.58%, which was 13.5 times higher than that of COF-TB. Furthermore, leveraging the active carboxylic acid and triazole sites, AZC-COF exhibited remarkable binding abilities for mitoxantrone (MIX) and Fe3+, enabling sensitive detection and efficient adsorption of them. In contrast, due to the absence of these functional sites, COF-TB showed poor detection and enrichment capabilities for MIX and Fe3+. The impressive detection and adsorption efficiencies of MIX and Fe3+ in environmental water, aquatic organism (fish) and plasma samples underscore the potential of AZC-COF as a detection-adsorption platform. Additionally, AZC-COF demonstrated low toxicity and hemolytic activity, alongside promising potential for cell imaging and detection of MIX and Fe3+, highlighting its considerable application prospect in biological systems.
Collapse
Affiliation(s)
- Yuemeng Zou
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Famin Ke
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yulian Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dandan Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingyue Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Qiuyi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Sha Yu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Lingling Li
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Lan
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xilin Yang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiurong Guo
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Xiang Li
- Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan, China
| | - Dong Yi
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Die Gao
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
3
|
Han CQ, Guo JX, Sun S, Wang ZY, Wang L, Liu XY. Impact of Imine Bond Orientations and Acceptor Groups on Photocatalytic Hydrogen Generation of Donor-Acceptor Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405887. [PMID: 39248647 DOI: 10.1002/smll.202405887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Covalent organic frameworks (COFs) have emerged as one of the most studied photocatalysts owing to their adjustable structure and bandgaps. However, there is limited research on regulating the light-harvesting capabilities of acceptor building blocks in donor-acceptor (D-A) isomer COFs with different bond orientations. This investigation is crucial for elucidating the structure-property-performance relationship of COF photocatalysts. Herein, a series of D-A isostructural COFs are synthesized with different imine bond orientations using benzothiadiazole and its derivatives-based organic building units. Extended light absorption is achieved in COFs with acceptor groups that have strong electron-withdrawing capacities, although this resulted a decreased hydrogen generation efficiency. Photocatalytic experiments indicated that dialdehyde benzothiadiazole-based COFs, HIAM-0015, exhibit the highest hydrogen generation rate (17.99 mmol g-1 h-1), which is 15 times higher than its isomer. The excellent photocatalytic performance of HIAM-0015 can be attributed to its fast charge separation and migration. This work provides insights into the rational design and synthesis of D-A COFs to achieve efficient photocatalytic activity.
Collapse
Affiliation(s)
- Chao-Qin Han
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, District Nanshan, Shenzhen, 518055, P. R. China
| | - Jia-Xin Guo
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, District Nanshan, Shenzhen, 518055, P. R. China
| | - Shuai Sun
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, District Nanshan, Shenzhen, 518055, P. R. China
| | - Ze-Yang Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, District Nanshan, Shenzhen, 518055, P. R. China
| | - Lei Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, District Nanshan, Shenzhen, 518055, P. R. China
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, District Nanshan, Shenzhen, 518055, P. R. China
| |
Collapse
|
4
|
Lin C, Yang X, Zhai L, An S, Ma H, Fu Y, Han D, Xu Q, Huang N. Synergistic Modulating Interlayer Space and Electron-Transfer of Covalent Organic Frameworks for Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308143. [PMID: 38351655 DOI: 10.1002/smll.202308143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/27/2023] [Indexed: 07/13/2024]
Abstract
Covalent organic frameworks (COFs) are an ideal template to construct high-efficiency catalysts for oxygen reduction reaction (ORR) due to their predictable properties. However, the closely parallel-stacking manner and lacking intramolecular electron transfer ability of COFs limit atomic utilization efficiency and intrinsic activity. Herein, COFs are constructed with large interlayer distances and enhanced electronic transfer ability by side-chain functionalization. Long chains with electron-donating features not only enlarge interlayer distance, but also narrow the bandgap. The resulting DPPS-COF displays higher electrochemical surface areas to provide more exposed active sites, despite <1/10 surface areas. DPPS-COF exhibits excellent electrocatalytic ORR activity with half-wave potential of 0.85 V, which is 30 and 60 mV positive than those of Pt/C and DPP-COF, and is the record among the reported COFs. DPPS-COF is employed as cathode electrocatalyst for zinc-air battery with a maximum power density of 185.2 mW cm-2, which is superior to Pt/C. Theoretical calculation further reveals that longer electronic-donating chains not only facilitate the formation of intermediate OOH* from O2, but also promote intermediates desorption , and thus leading to higher activity.
Collapse
Affiliation(s)
- Chao Lin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Xiubei Yang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Shuhao An
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Huayun Ma
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Diandian Han
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Qing Xu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute (SARI), Chinese Academy of Sciences (CAS), Shanghai, 201210, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ning Huang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
5
|
Xue F, Zhang J, Ma Z, Wang Z. Copper Dispersed Covalent Organic Framework for Azide-Alkyne Cycloaddition and Fast Synthesis of Rufinamide in Water. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307796. [PMID: 38185802 DOI: 10.1002/smll.202307796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/27/2023] [Indexed: 01/09/2024]
Abstract
A crystalline porous bipyridine-based Bpy-COF with a high BET surface area (1864 m2 g-1) and uniform mesopore (4.0 nm) is successfully synthesized from 1,3,5-tris-(4'-formyl-biphenyl-4-yl)triazine and 5,5'-diamino-2,2'-bipyridine via a solvothermal method. After Cu(I)-loading, the resultant Cu(I)-Bpy-COF remained the ordered porous structure with evenly distributed Cu(I) ions at a single-atom level. Using Cu(I)-Bpy-COF as a heterogeneous catalyst, high conversions for cycloaddition reactions are achieved within a short time (40 min) at 25 °C in water medium. Moreover, Cu(I)-Bpy-COF proves to be applicable for aromatic and aliphatic azides and alkynes bearing various substituents such as ester, hydroxyl, amido, pyridyl, thienyl, bulky triphenylamine, fluorine, and trifluoromethyl groups. The high conversions remain almost constant after five cycles. Additionally, the antiepileptic drug (rufinamide) is successfully prepared by a simple one-step reaction using Cu(I)-Bpy-COF, proving its practical feasibility for pharmaceutical synthesis.
Collapse
Affiliation(s)
- Fei Xue
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Jun Zhang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Zhongcheng Ma
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| | - Zhonggang Wang
- Department of Polymer Science and Materials, School of Chemical Engineering, Dalian University of Technology, Linggong Rd. 2, Dalian, 116024, China
| |
Collapse
|
6
|
Guo Z, Zhang Z, Sun J. Topological Analysis and Structural Determination of 3D Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312889. [PMID: 38290005 DOI: 10.1002/adma.202312889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Indexed: 02/01/2024]
Abstract
3D covalent organic frameworks (3D COFs) constitute a new type of crystalline materials that consist of a range of porous structures with numerous applications in the fields of adsorption, separation, and catalysis. However, because of the complexity of the three-periodic net structure, it is desirable to develop a thorough structural comprehension, along with a means to precisely determine the actual structure. Indeed, such advancements would considerably contribute to the rational design and application of 3D COFs. In this review, the reported topologies of 3D COFs are introduced and categorized according to the configurations of their building blocks, and a comprehensive overview of diffraction-based structural determination methods is provided. The current challenges and future prospects for these materials will also be discussed.
Collapse
Affiliation(s)
- Zi'ang Guo
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Zeyue Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
7
|
Huang W, Zhang W, Yang S, Wang L, Yu G. 3D Covalent Organic Frameworks from Design, Synthesis to Applications in Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308019. [PMID: 38057125 DOI: 10.1002/smll.202308019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/13/2023] [Indexed: 12/08/2023]
Abstract
Covalent organic frameworks (COFs), a new class of crystalline materials connected by covalent bonds, have been developed rapidly in the past decades. However, the research on COFs is mainly focused on two-dimensional (2D) COFs, and the research on three-dimensional (3D) COFs is still in the initial stage. In 2D COFs, the covalent bonds exist only in the 2D flakes and can form 1D channels, which hinder the charge transport to some extent. In contrast, 3D COFs have a more complex pore structure and thus exhibit higher specific surface area and richer active sites, which greatly enhance the 3D charge carrier transport. Therefore, compared to 2D COFs, 3D COFs have stronger applicability in energy storage and conversion, sensing, and optoelectronics. In this review, it is first introduced the design principles for 3D COFs, and in particular summarize the development of conjugated building blocks in 3D COFs, with a special focus on their application in optoelectronics. Subsequently, the preparation of 3D COF powders and thin films and methods to improve the stability and functionalization of 3D COFs are summarized. Moreover, the applications of 3D COFs in electronics are outlined. Finally, conclusions and future research directions for 3D COFs are presented.
Collapse
Affiliation(s)
- Wei Huang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
8
|
Qian Y, Jiang HL. Structural Regulation of Covalent Organic Frameworks for Catalysis. Acc Chem Res 2024; 57:1214-1226. [PMID: 38552221 DOI: 10.1021/acs.accounts.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
ConspectusChemical reactions can be promoted at lower temperatures and pressures, thereby reducing the energy input, by introducing suitable catalysts. Despite its significance, the quest for efficient and stable catalysts remains a significant challenge. In this context, addressing the efficiency of catalysts stands out as a paramount concern. However, the challenges posed by the vague structure and limited tailorability of traditional catalysts would make it highly desirable to fabricate optimized catalysts based on the understanding of structure-activity relationships. Covalent organic frameworks (COFs), a subclass of fully designed crystalline materials formed by the polymerization of organic building blocks through covalent bonds have garnered widespread attention in catalysis. The precise and customizable structures of COFs, coupled with attributes such as high surface area and facile functional modification, make COFs attractive molecular platforms for catalytic applications. These inherent advantages position COFs as ideal catalysts, facilitating the elucidation of structure-performance relationships and thereby further improving the catalysis. Nevertheless, there is a lack of systematic emphasis on and summary of structural regulation at the atomic/molecular level for COF catalysis. Consequently, there is a growing need to summarize this research field and provide deep insights into COF-based catalysis to promote its further development.In this Account, we will summarize recent advances in structural regulation achieved in COF-based catalysts, placing an emphasis on the molecular design of the structures for enhanced catalysis. Considering the unique components and structural advantages of COFs, we present the fundamental principles for the rational design of structural regulation in COF-based catalysis. This Account starts by presenting an overview of catalysis and explaining why COFs are promising catalysts. Then, we introduce the molecular design principle for COF catalysis. Next, we present the following three aspects of the specific strategies for structural regulation of COF-based catalysts: (1) By designing different functional groups and integrating metal species into the organic unit, the activity and/or selectivity can be finely modulated. (2) Regulating the linkage facilitates charge transfer and/or modulates the electronic structure of catalytic metal sites, and accordingly, the intrinsic activity/selectivity can be further improved. (3) By means of pore wall/space engineering, the microenvironment surrounding catalytic metal sites can be modulated to optimize performance. Finally, the current challenges and future developments in the structural regulation of COF-based catalysts are discussed in detail. This Account provides insight into the structural regulation of COF-based catalysts at the atomic/molecular level toward improving their performance, which would provide significant inspiration for the design and structural regulation of other heterogeneous catalysts.
Collapse
Affiliation(s)
- Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
9
|
Xie Y, Wang W, Zhang Z, Li J, Gui B, Sun J, Yuan D, Wang C. Fine-tuning the pore environment of ultramicroporous three-dimensional covalent organic frameworks for efficient one-step ethylene purification. Nat Commun 2024; 15:3008. [PMID: 38589420 PMCID: PMC11001888 DOI: 10.1038/s41467-024-47377-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
The construction of functional three-dimensional covalent organic frameworks (3D COFs) for gas separation, specifically for the efficient removal of ethane (C2H6) from ethylene (C2H4), is significant but challenging due to their similar physicochemical properties. In this study, we demonstrate fine-tuning the pore environment of ultramicroporous 3D COFs to achieve efficient one-step C2H4 purification. By choosing our previously reported 3D-TPB-COF-H as a reference material, we rationally design and synthesize an isostructural 3D COF (3D-TPP-COF) containing pyridine units. Impressively, compared with 3D-TPB-COF-H, 3D-TPP-COF exhibits both high C2H6 adsorption capacity (110.4 cm3 g-1 at 293 K and 1 bar) and good C2H6/C2H4 selectivity (1.8), due to the formation of additional C-H···N interactions between pyridine groups and C2H6. To our knowledge, this performance surpasses all other reported COFs and is even comparable to some benchmark porous materials. In addition, dynamic breakthrough experiments reveal that 3D-TPP-COF can be used as a robust absorbent to produce high-purity C2H4 directly from a C2H6/C2H4 mixture. This study provides important guidance for the rational design of 3D COFs for efficient gas separation.
Collapse
Affiliation(s)
- Yang Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Zeyue Zhang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, 100871, Beijing, China
| | - Jian Li
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, 100871, Beijing, China
- Department of Materials and Environmental Chemistry, Stockholm University, 10691, Stockholm, Sweden
| | - Bo Gui
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, 100871, Beijing, China.
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| | - Cheng Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
10
|
Li M, Chen L, Du J, Gong C, Li T, Wang J, Li F, She Y, Jia J. Thiol-Ene Click Reaction Modified Triazinyl-Based Covalent Organic Framework for Pb(II) Ion Effective Removal. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8688-8696. [PMID: 38323925 DOI: 10.1021/acsami.3c16227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
As a common water pollutant, Pb2+ has harmful effects on the nervous, hematopoietic, digestive, renal, cardiovascular, and endocrine systems. Due to the drawbacks of traditional adsorbents such as structural disorder, poor stability, and difficulty in introducing adsorption active sites, the adsorption capacity is low, and it is difficult to accurately study the adsorption mechanism. Herein, vinyl-functionalized covalent organic frameworks (COFs) were synthesized at room temperature, and sulfur-containing active groups were introduced by the click reaction. By precisely tuning the chemical structure of the sulfur-containing reactive groups through the click reaction, we found that the adsorption activity of the sulfhydryl group was higher than that of the sulfur atom in the thioether. Moreover, the incorporation of flexible linking groups was observed to enhance the adsorption activity at the active site. The maximum adsorption capacity of the postmodified COF TAVA-S-Et-SH for Pb(II) reached 303.0 mg/g, which is 2.9 times higher than that of the unmodified COF. This work not only demonstrates the remarkable potential of the "thiol-ene" click reaction for the customization of active adsorption sites but also demonstrates the remarkable potential of the "thiol-alkene" click reaction to explore the structure-effect relationship between the active adsorption sites and the metal ion adsorption capacity.
Collapse
Affiliation(s)
- Mingyan Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liangjun Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jiawei Du
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Innovation Research Center for Advanced Environmental Technology, Eco-industrial Innovation Institute ZJUT, 2 Rong-chang East Road, Quzhou 324400, China
| | - Chengtao Gong
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tingting Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Feili Li
- College of Environmental, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanbin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianhong Jia
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- Innovation Research Center for Advanced Environmental Technology, Eco-industrial Innovation Institute ZJUT, 2 Rong-chang East Road, Quzhou 324400, China
| |
Collapse
|
11
|
Yue Y, Ji D, Liu Y, Wei D. Chemical Sensors Based on Covalent Organic Frameworks. Chemistry 2024; 30:e202302474. [PMID: 37843045 DOI: 10.1002/chem.202302474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
Covalent organic frameworks (COFs) are a type of crystalline porous polymer composed of light elements through strong covalent bonds. COFs have attracted considerable attention due to their unique designable structures and excellent material properties. Currently, COFs have shown outstanding potential in various fields, including gas storage, pollutant removal, catalysis, adsorption, optoelectronics, and their research in the sensing field is also increasingly flourishing. In this review, we focus on COF-based sensors. Firstly, we elucidate the fundamental principles of COF-based sensors. Then, we present the primary application areas of COF-based sensors and their recent advancements, encompassing gas, ions, organic compounds, and biomolecules sensing. Finally, we discuss the future trends and challenges faced by COF-based sensors, outlining their promising prospects in the field of sensing.
Collapse
Affiliation(s)
- Yang Yue
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Daizong Ji
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- Department of Macromolecular Science, Fudan University, Shanghai, 200433, China
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
12
|
Wang M, Zeng T, Yu Y, Wang X, Zhao Y, Xi H, Zhang YB. Flexibility On-Demand: Multivariate 3D Covalent Organic Frameworks. J Am Chem Soc 2024; 146:1035-1041. [PMID: 38152052 DOI: 10.1021/jacs.3c11944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Dynamic 3D covalent organic frameworks (dynaCOFs) have shown concerted structural transformation and responses upon adaptive guest adsorption. The multivariate (MTV) strategy incorporating multiple functionalities within a backbone is attractive for tuning the framework flexibility and dynamic responses. However, a major synthetic challenge arises from the different chemical reactivities of linkers usually resulting in phase separation. Here, we report a general synthetic protocol for making 3D MTV-COFs by balancing the linker reactivity and solvent polarity. Specifically, 15 crystalline and phase pure MTV-COF-300 isostructures are constructed by linking a tetrahedral unit with eight ditopic struts carrying various functional groups. We find that the electron-donating groups make the linker reactivity too low to allow the reaction to proceed fully, while the electron-withdrawing groups afford increased reactivity and hardly yield crystalline materials. To overcome the crystallization dilemma, the combination of polar aprotic with nonpolar solvents was used to improve the solubility of oligomers and slow the reaction kinetics in MTV-COF synthesis. We demonstrate the abilities of these MTV-COFs to tune gas dynamic behaviors and the separation of benzene and cyclohexane. These findings reveal the integration of multivariate functionalities into dynaCOFs with on-demand flexibility to achieve dynamic synergism in particular applications, outperforming their pure, monofunctional counterparts.
Collapse
Affiliation(s)
- Meng Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tengwu Zeng
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yi Yu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xun Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528225, China
| | - Yingbo Zhao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hongxia Xi
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
13
|
Burke DW, Jiang Z, Livingston AG, Dichtel WR. 2D Covalent Organic Framework Membranes for Liquid-Phase Molecular Separations: State of the Field, Common Pitfalls, and Future Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300525. [PMID: 37014260 DOI: 10.1002/adma.202300525] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/21/2023] [Indexed: 06/19/2023]
Abstract
2D covalent organic frameworks (2D COFs) are attractive candidates for next-generation membranes due to their robust linkages and uniform, tunable pores. Many publications have claimed to achieve selective molecular transport through COF pores, but reported performance metrics for similar networks vary dramatically, and in several cases the reported experiments are inadequate to support such conclusions. These issues require a reevaluation of the literature. Published examples of 2D COF membranes for liquid-phase separations can be broadly divided into two categories, each with common performance characteristics: polycrystalline COF films (most >1 µm thick) and weakly crystalline or amorphous films (most <500 nm thick). Neither category has demonstrated consistent relationships between the designed COF pore structure and separation performance, suggesting that these imperfect materials do not sieve molecules through uniform pores. In this perspective, rigorous practices for evaluating COF membrane structures and separation performance are described, which will facilitate their development toward molecularly precise membranes capable of performing previously unrealized chemical separations. In the absence of this more rigorous standard of proof, reports of COF-based membranes should be treated with skepticism. As methods to control 2D polymerization improve, precise 2D polymer membranes may exhibit exquisite and energy efficient performance relevant for contemporary separation challenges.
Collapse
Affiliation(s)
- David W Burke
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Zhiwei Jiang
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Department of Membrane Research, Exactmer Limited, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, RM10 7FN, UK
| | - Andrew G Livingston
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - William R Dichtel
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
14
|
Yu Q, Zhang W, Chen H, Wang J, Wang Z, Ding Q, Zhang L. Synthesis of stable and efficient amide-based covalent organic frameworks fiber coatings for the improved solid-phase microextraction of polar aromatic amines. Anal Chim Acta 2023; 1284:342002. [PMID: 37996159 DOI: 10.1016/j.aca.2023.342002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND Developing facile and general functionalization strategies to improve the durability of covalent organic framework (COF) coatings and their affinity for polar targets is of great significance for solid-phase microextraction (SPME) technology. RESULTS In this work, a facile and general amidation strategy was developed for conversion from reversible (imine) to irreversible (amide) linkages in COF coatings. After the amidation, the durability of the obtained amide-linked covalent organic framework (Am-P-COF) coating was greatly improved, and the adsorption efficiency for polar aromatic amines (AAs) was also significantly increased. Moreover, this strategy is also applicable to the amidation of other two COF coatings, showing good general applicability. The obtained Am-P-COF coated fiber was used for SPME, and then coupled with gas chromatography tandem mass spectrometry (GC-MS/MS) to detect AAs. Under the optimal SPME conditions (extraction temperature: 50 °C, extraction time: 30 min, stirring rate: 600 rpm, pH: 8, NaCl concentration: 5.0 mg mL-1, desorption temperature: 290 °C and desorption time: 10 min), a detection method for trace AAs was established. The established method possess wide linear ranges (0.5-500.0 ng L-1), good correlation coefficients (0.9986-0.9993) and low detection limits (0.1-0.5 ng L-1). Moreover, the established method had also been successfully applied to detection of trace AAs in bottled tea beverage and plastic bags packed tea with satisfactory recoveries (83.5 %-116.8 %). SIGNIFICANCE AND NOVELTY This research provides a facile and general pathway for increasing the durability of COF coatings and affinity to the polar AAs. The detection method based on the obtained fibers possesses high sensitivity, satisfactory reproducibility and good precision.
Collapse
Affiliation(s)
- Qidong Yu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Wenmin Zhang
- Department of Chemistry and Biotechnology, Minjiang Teachers College, Fuzhou, Fujian, 350108, China
| | - Hui Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jingyi Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhiyong Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qingqing Ding
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Lan Zhang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Province Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China.
| |
Collapse
|
15
|
Zhang Y, Qiao Z, Zhang R, Wang Z, Wang HJ, Zhao J, Cao D, Wang S. Multicomponent Synthesis of Imidazole-Linked Fully Conjugated 3D Covalent Organic Framework for Efficient Electrochemical Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2023; 62:e202314539. [PMID: 37880874 DOI: 10.1002/anie.202314539] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
The semiconducting properties and applications of three dimensional (3D) covalent organic frameworks (COFs) are greatly hampered because of their long-ranged non-conjugated skeletons and relatively unstable linkages. Here, a robust imidazole-linked fully conjugated 3D covalent organic framework (BUCT-COF-7) is synthesized through the one-pot multicomponent Debus-Radziszewski reaction of the saddle-shaped aldehyde-substituted cyclooctatetrathiophene, pyrene-4,5,9,10-tetraone, and ammonium acetate. The semiconducting BUCT-COF-7, as a metal-free catalyst, shows excellent two electron oxygen reduction reaction (ORR) activity in alkaline medium with high hydrogen peroxide (H2 O2 ) selectivity of 83.4 %. When the BUCT-COF-7 as cathode catalyst is assembled into the electrolyzer, the devices showed high electrochemical production rate of H2 O2 up to 326.9 mmol g-1 h-1 . The accumulative amount of H2 O2 could totally degrade the dye methylene blue via Fenton reaction for wastewater treatment. This is the first report about intrinsic 3D COFs for efficient electrochemical synthesis of H2 O2 , revealing the promising applications of fully conjugated 3D COFs in the environment-related field.
Collapse
Affiliation(s)
- Yuting Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Rui Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhengqi Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Hui-Juan Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jie Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
16
|
Xia Y, Zhang W, Yang S, Wang L, Yu G. Research Progress in Donor-Acceptor Type Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301190. [PMID: 37094607 DOI: 10.1002/adma.202301190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Covalent organic frameworks (COFs) are new organic porous materials constructed by covalent bonds, with the advantages of pre-designable topology, adjustable pore size, and abundant active sites. Many research studies have shown that COFs exhibit great potential in gas adsorption, molecular separation, catalysis, drug delivery, energy storage, etc. However, the electrons and holes of intrinsic COF are prone to compounding in transport, and the carrier lifetime is short. The donor-acceptor (D-A) type COFs, which are synthesized by introducing D and A units into the COFs backbone, combine separated electron and hole migration pathway, tunable band gap and optoelectronic properties of D-A type polymers with the unique advantages of COFs and have made great progress in related research in recent years. Here, the synthetic strategies of D-A type COFs are first outlined, including the rational design of linkages and D-A units as well as functionalization approaches. Then the applications of D-A type COFs in catalytic reactions, photothermal therapy, and electronic materials are systematically summarized. In the final section, the current challenges, and new directions for the development of D-A type COFs are presented.
Collapse
Affiliation(s)
- Yeqing Xia
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
17
|
Wang Z, Zhang Y, Lin E, Geng S, Wang M, Liu J, Chen Y, Cheng P, Zhang Z. Kilogram-Scale Fabrication of a Robust Olefin-Linked Covalent Organic Framework for Separating Ethylene from a Ternary C 2 Hydrocarbon Mixture. J Am Chem Soc 2023; 145:21483-21490. [PMID: 37736678 DOI: 10.1021/jacs.3c07224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
One-step adsorptive purification of ethylene (C2H4) from a ternary mixture of acetylene (C2H2), C2H4, and ethane (C2H6) by a single material is of great importance but challenging in the petrochemical industry. Herein, a chemically robust olefin-linked covalent organic framework (COF), NKCOF-62, is designed and synthesized by a melt polymerization method employing tetramethylpyrazine and terephthalaldehyde as cheap monomers. This method avoids most of the disadvantages of classical solvothermal methods, which enable the cost-effective kilogram fabrication of olefin-linked COFs in one pot. Furthermore, NKCOF-62 shows remarkably selective adsorption of C2H2 and C2H6 over C2H4 thanks to its unique pore environments and suitable pore size. Breakthrough experiments demonstrate that polymer-grade C2H4 can be directly obtained from C2H2/C2H6/C2H4 (1/1/1) ternary mixtures through a single separation process. Notably, NKCOF-62 is the first demonstration of the potential to use COFs for C2H2/C2H6/C2H4 separation, which provides a blueprint for the design and construction of robust COFs for industrial gas separations.
Collapse
Affiliation(s)
- Zhifang Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Yushu Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - En Lin
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Shubo Geng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Mengjin Wang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Jinjin Liu
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yao Chen
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Peng Cheng
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
18
|
Li H, Dilipkumar A, Abubakar S, Zhao D. Covalent organic frameworks for CO 2 capture: from laboratory curiosity to industry implementation. Chem Soc Rev 2023; 52:6294-6329. [PMID: 37591809 DOI: 10.1039/d2cs00465h] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
CO2 concentration in the atmosphere has increased by about 40% since the 1960s. Among various technologies available for carbon capture, adsorption and membrane processes have been receiving tremendous attention due to their potential to capture CO2 at low costs. The kernel for such processes is the sorbent and membrane materials, and tremendous progress has been made in designing and fabricating novel porous materials for carbon capture. Covalent organic frameworks (COFs), a class of porous crystalline materials, are promising sorbents for CO2 capture due to their high surface area, low density, controllable pore size and structure, and preferable stabilities. However, the absence of synergistic developments between materials and engineering processes hinders achieving the qualitative leap for net-zero emissions. Considering the lack of a timely review on the combination of state-of-the-art COFs and engineering processes, in this Tutorial Review, we emphasize the developments of COFs for meeting the challenges of carbon capture and disclose the strategies of fabricating COFs for realizing industrial implementation. Moreover, this review presents a detailed and basic description of the engineering processes and industrial status of carbon capture. It highlights the importance of machine learning in integrating simulations of molecular and engineering levels. We aim to stimulate both academia and industry communities for joined efforts in bringing COFs to practical carbon capture.
Collapse
Affiliation(s)
- He Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Akhil Dilipkumar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| | - Saifudin Abubakar
- ExxonMobil Asia Pacific Pte. Ltd., 1 HarbourFront Place, #06-00 HarbourFront Tower 1, 098633, Singapore
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
19
|
Gui B, Xin J, Cheng Y, Zhang Y, Lin G, Chen P, Ma JX, Zhou X, Sun J, Wang C. Crystallization of Dimensional Isomers in Covalent Organic Frameworks. J Am Chem Soc 2023; 145:11276-11281. [PMID: 37167629 DOI: 10.1021/jacs.3c01729] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Dimensional isomers, defined in reticular chemistry as frameworks consisting of identical molecular building blocks but extended in two or three dimensions (2D or 3D), are an important type of framework isomers that have never been isolated. Herein, we report the crystallization of dimensional isomers in covalent organic frameworks (COFs) for the first time. By polymerization of the same molecular building blocks at different temperatures, both 2D and 3D COFs were successfully constructed due to the temperature-induced conformational changes of precursors from planar to tetrahedral. In addition, the non-fluorescent 2D COF can be gradually converted into the fluorescent 3D COF by increasing the temperature under solvothermal conditions. Therefore, it is reasonable to crystallize the dimensional isomers of reticular materials by controlling the conformation of molecular building blocks, and more examples can be expected. Since the obtained dimensional isomers show different properties and functions, this work will definitely motivate us to design reticular materials for target applications in the future.
Collapse
Affiliation(s)
- Bo Gui
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junjie Xin
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Yuanpeng Cheng
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yufei Zhang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Guiqing Lin
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Jian-Xin Ma
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Xu Zhou
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Cheng Wang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
20
|
Singh N, Kim J, Kim J, Lee K, Zunbul Z, Lee I, Kim E, Chi SG, Kim JS. Covalent organic framework nanomedicines: Biocompatibility for advanced nanocarriers and cancer theranostics applications. Bioact Mater 2023; 21:358-380. [PMID: 36185736 PMCID: PMC9483748 DOI: 10.1016/j.bioactmat.2022.08.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022] Open
Abstract
Nanomedicines for drug delivery and imaging-guided cancer therapy is a rapidly growing research area. The unique properties of nanomedicines have a massive potential in solving longstanding challenges of existing cancer drugs, such as poor localization at the tumor site, high drug doses and toxicity, recurrence, and poor immune response. However, inadequate biocompatibility restricts their potential in clinical translation. Therefore, advanced nanomaterials with high biocompatibility and enhanced therapeutic efficiency are highly desired to fast-track the clinical translation of nanomedicines. Intrinsic properties of nanoscale covalent organic frameworks (nCOFs), such as suitable size, modular pore geometry and porosity, and straightforward post-synthetic modification via simple organic transformations, make them incredibly attractive for future nanomedicines. The ability of COFs to disintegrate in a slightly acidic tumor microenvironment also gives them a competitive advantage in targeted delivery. This review summarizes recently published applications of COFs in drug delivery, photo-immuno therapy, sonodynamic therapy, photothermal therapy, chemotherapy, pyroptosis, and combination therapy. Herein we mainly focused on modifications of COFs to enhance their biocompatibility, efficacy and potential clinical translation. This review will provide the fundamental knowledge in designing biocompatible nCOFs-based nanomedicines and will help in the rapid development of cancer drug carriers and theranostics.
Collapse
Affiliation(s)
- Nem Singh
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jungryun Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jaewon Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Kyungwoo Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Zehra Zunbul
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Injun Lee
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Eunji Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Sung-Gil Chi
- Department of Life Science, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
21
|
Bao R, Xiang Z, Qiao Z, Yang Y, Zhang Y, Cao D, Wang S. Designing Thiophene-Enriched Fully Conjugated 3D Covalent Organic Framework as Metal-Free Oxygen Reduction Catalyst for Hydrogen Fuel Cells. Angew Chem Int Ed Engl 2023; 62:e202216751. [PMID: 36428273 DOI: 10.1002/anie.202216751] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/25/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022]
Abstract
The application of three-dimensional (3D) covalent organic frameworks (COFs) in renewable energy fields is greatly limited due to their non-conjugated skeletons. Here, we design and successfully synthesize a thiophene-enriched fully conjugated 3D COF (BUCT-COF-11) through an all-thiophene-linked saddle-shaped building block (COThTh-CHO). The BUCT-COF-11 exhibits excellent semiconducting property with intrinsic metal-free oxygen reduction reaction (ORR) activity. Using the COF as cathode catalyst, the assembled anion-exchange membrane fuel cells (AEMFCs) exhibited a high peak power density up to 493 mW cm-2 . DFT calculations reveal that thiophene introduction in the COF not only improves the conductivity but also optimizes the electronic structure of the sample, which therefore boosts the ORR performance. This is the first report on the application of COFs as metal-free catalysts in fuel cells, demonstrating the great potential of fully conjugated 3D COFs as promising semiconductors in energy fields.
Collapse
Affiliation(s)
- Rui Bao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhehao Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yongping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yuting Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
22
|
Guan X, Chen F, Qiu S, Fang Q. Three-Dimensional Covalent Organic Frameworks: From Synthesis to Applications. Angew Chem Int Ed Engl 2023; 62:e202213203. [PMID: 36253336 DOI: 10.1002/anie.202213203] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 12/05/2022]
Abstract
Three-dimensional covalent organic frameworks (3D COFs) with spatially periodic networks demonstrate significant advantages over their 2D counterparts, including enhanced specific surface areas, interconnected channels, and more sufficiently exposed active sites. Nevertheless, research on these materials has met an impasse due to serious problems in crystallization and stability, which must be solved for practical applications. In this Minireview, we first summarize some strategies for preparing functional 3D COFs, including crystallization techniques and functionalization methods. Hereafter, applications of these functional materials are presented, covering adsorption, separation, catalysis, fluorescence, sensing, and batteries. Finally, the future challenges and perspectives for the development of 3D COFs are discussed.
Collapse
Affiliation(s)
- Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China.,Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
23
|
Liu S, Wang M, He Y, Cheng Q, Qian T, Yan C. Covalent organic frameworks towards photocatalytic applications: Design principles, achievements, and opportunities. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
24
|
Wang J, Feng J, Lian Y, Sun X, Wang M, Sun M. Advances of the functionalized covalent organic frameworks for sample preparation in food field. Food Chem 2022. [DOI: 10.1016/j.foodchem.2022.134818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Topology control of three-dimensional covalent organic frameworks by adjusting steric hindrance effect. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1366-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Benzotrithiophene-based covalent organic frameworks for real-time visual onsite assays of enrofloxacin. Biosens Bioelectron 2022; 214:114527. [DOI: 10.1016/j.bios.2022.114527] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 01/07/2023]
|
27
|
Gong C, Wang H, Sheng G, Wang X, Xu X, Wang J, Miao X, Liu Y, Zhang Y, Dai F, Chen L, Li N, Xu G, Jia J, Zhu Y, Peng Y. Synthesis and Visualization of Entangled 3D Covalent Organic Frameworks with High-Valency Stereoscopic Molecular Nodes for Gas Separation. Angew Chem Int Ed Engl 2022; 61:e202204899. [PMID: 35639417 DOI: 10.1002/anie.202204899] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Indexed: 12/30/2022]
Abstract
The structural diversity of three-dimensional (3D) covalent organic frameworks (COFs) are limited as there are only a few choices of building units with multiple symmetrically distributed connection sites. To date, 4 and 6-connected stereoscopic nodes with Td , D3h , D3d and C3 symmetries have been mostly reported, delivering limited 3D topologies. We propose an efficient approach to expand the 3D COF repertoire by introducing a high-valency quadrangular prism (D4h ) stereoscopic node with a connectivity of eight, based on which two isoreticular 3D imine-linked COFs can be created. Low-dose electron microscopy allows the direct visualization of their 2-fold interpenetrated bcu networks. These 3D COFs are endowed with unique pore architectures and strong molecular binding sites, and exhibit excellent performance in separating C2 H2 /CO2 and C2 H2 /CH4 gas pairs. The introduction of high-valency stereoscopic nodes would lead to an outburst of new topologies for 3D COFs.
Collapse
Affiliation(s)
- Chengtao Gong
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Hao Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaokang Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xiaoqiu Xu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Jian Wang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Xiaohe Miao
- The Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yinling Zhang
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Fangna Dai
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Liangjun Chen
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Nanjun Li
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Guodong Xu
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource, Yancheng Teachers University, Yancheng, 224007, China
| | - Jianhong Jia
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| | - Yongwu Peng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology, College of Materials Science and Engineering and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China
| |
Collapse
|
28
|
Selective Detection of Nucleotides in Infant Formula Using an N-Rich Covalent Triazine Porous Polymer. NANOMATERIALS 2022; 12:nano12132213. [PMID: 35808047 PMCID: PMC9268561 DOI: 10.3390/nano12132213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 01/27/2023]
Abstract
The aromatic structure and the rich nitrogen content of polymers based on covalent triazine-based frameworks (CTF) and their unique hydrophilic-lipophilic-balanced adsorption properties make them promising candidates for an adsorbent that can be used for sample pretreatment. Herein, a new covalent triazine-based framework (CTF-DBF) synthesized by a Friedel−Crafts reaction was used for the determination of the content of nucleotides in commercial infant formula. It was shown that the synthetic materials had an amorphous microporous structure, a BET surface area of up to 595.59 m2/g, and 0.39 nm and 0.54 nm micropores. The versatile adsorption properties of this material were evaluated by quantum chemistry theory calculations and batch adsorption experiments using five nucleotides as probes. The quantum chemistry results demonstrated that CTF-DBF can participate in multiple interactions with nucleotides. All the analyses performed present good linearity with R2 > 0.9993. The detection limits of targets ranged from 0.3 to 0.5 mg/kg, the spiked recoveries were between 85.8 and 105.3% and the relative standard deviations (RSD, n = 6) were between 1.1 and 4.5%. All these results suggest that this versatile CTF-DBF has great potential for sample pretreatment.
Collapse
|
29
|
Guan X, Fang Q, Yan Y, Qiu S. Functional Regulation and Stability Engineering of Three-Dimensional Covalent Organic Frameworks. Acc Chem Res 2022; 55:1912-1927. [DOI: 10.1021/acs.accounts.2c00200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, Delaware 19716, United States
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
30
|
Gong C, Wang H, Sheng G, Wang X, Xu X, Wang J, Miao X, Liu Y, Zhang Y, Dai F, Chen L, Li N, Xu G, Jia J, Zhu Y, Peng Y. Synthesis and Visualization of Entangled 3D Covalent Organic Frameworks with High‐Valency Stereoscopic Molecular Nodes for Gas Separation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chengtao Gong
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Hao Wang
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Guan Sheng
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Xiaokang Wang
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Xiaoqiu Xu
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Jian Wang
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Xiaohe Miao
- The Instrumentation and Service Center for Physical Sciences Westlake University Hangzhou 310024, Zhejiang China
| | - Yikuan Liu
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Yinling Zhang
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Fangna Dai
- School of Materials Science and Engineering China University of Petroleum (East China) Qingdao 266580 China
| | - Liangjun Chen
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Nanjun Li
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Guodong Xu
- Jiangsu Province Engineering Research Center of Agricultural Breeding Pollution Control and Resource Yancheng Teachers University Yancheng 224007 China
| | - Jianhong Jia
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Yihan Zhu
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| | - Yongwu Peng
- Center for Electron Microscopy Institute for Frontier and Interdisciplinary Sciences State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology College of Materials Science and Engineering and College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014, Zhejiang China
| |
Collapse
|
31
|
Electrochemical (Bio)Sensors Based on Covalent Organic Frameworks (COFs). SENSORS 2022; 22:s22134758. [PMID: 35808255 PMCID: PMC9268951 DOI: 10.3390/s22134758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
Covalent organic frameworks (COFs) are defined as crystalline organic polymers with programmable topological architectures using properly predesigned building blocks precursors. Since the development of the first COF in 2005, many works are emerging using this kind of material for different applications, such as the development of electrochemical sensors and biosensors. COF shows superb characteristics, such as tuneable pore size and structure, permanent porosity, high surface area, thermal stability, and low density. Apart from these special properties, COF’s electrochemical behaviour can be modulated using electroactive building blocks. Furthermore, the great variety of functional groups that can be inserted in their structures makes them interesting materials to be conjugated with biological recognition elements, such as antibodies, enzymes, DNA probe, aptamer, etc. Moreover, the possibility of linking them with other special nanomaterials opens a wide range of possibilities to develop new electrochemical sensors and biosensors.
Collapse
|
32
|
Liu Y, Chen P, Wang Y, Suo J, Ding J, Zhu L, Valtchev V, Yan Y, Qiu S, Sun J, Fang Q. Design and Synthesis of a Zeolitic Organic Framework**. Angew Chem Int Ed Engl 2022; 61:e202203584. [DOI: 10.1002/anie.202203584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shandong 266101 China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering Center for Catalytic Science and Technology University of Delaware Newark DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
33
|
Side Chain Functional Conjugated Porous Polymers for NIR Controlled Carbon Dioxide Adsorption and Release. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2047-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Liu Y, Chen P, Wang Y, Suo J, Ding J, Zhu L, Valtchev V, Yan Y, Qiu S, Sun J, Fang Q. Design and Synthesis of a Zeolitic Organic Framework**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaozu Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Pohua Chen
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Yujie Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jinquan Suo
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shandong 266101 China
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering Center for Catalytic Science and Technology University of Delaware Newark DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Junliang Sun
- College of Chemistry and Molecular Engineering Beijing National Laboratory for Molecular Sciences Peking University Beijing 100871 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
35
|
Gui B, Ding H, Cheng Y, Mal A, Wang C. Structural design and determination of 3D covalent organic frameworks. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.01.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Dong XJ, Li WY, Guan Q, Li YA, Dong YB. A CuS- and BODIPY-loaded nanoscale covalent organic framework for synergetic photodynamic and photothermal therapy. Chem Commun (Camb) 2022; 58:2387-2390. [PMID: 35081192 DOI: 10.1039/d1cc06330h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we report an inorganic photothermal agent, CuS- and an organic photosensitizer, BODIPY-loaded composite nanoscale COF material via a stepwise post-synthetic modification. The obtained CuS@COF-BDP can be a dual-modal therapeutic agent to highly inhibit MCF-7 tumor cell proliferation due to its efficient singlet oxygen generation and photothermal conversion abilities.
Collapse
Affiliation(s)
- Xiao-Jie Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yan-An Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, P. R. China.
| |
Collapse
|
37
|
Gong L, Gao Y, Wang Y, Chen B, Yu B, Liu W, Han B, Lin C, Bian Y, Qi D, Jiang J. Efficient electrocatalytic carbon dioxide reduction with tetraphenylethylene- and porphyrin-based covalent organic frameworks. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01326f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
TPE-CoPor-COF shows high FECO (91–95%) in the range of −0.6 to −1.0 V, and a maximum jCO of −30.4 mA cm−2 at −1.0 V, exceeding most of reported COF-based electrocatalysts.
Collapse
Affiliation(s)
- Lei Gong
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Ying Gao
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yinhai Wang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baotong Chen
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Baoqiu Yu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Wenbo Liu
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Bin Han
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chenxiang Lin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, China
| | - Yongzhong Bian
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Daxing Research Institute, and, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongdong Qi
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianzhuang Jiang
- Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
- Daxing Research Institute, and, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|