1
|
Zhai T, Wang H, Dong X, Wang S, Xin X, Du J, Guan Q, Jiao H, Yang W, Dong R. Laccase: A Green Biocatalyst Offers Immense Potential for Food Industrial and Biotechnological Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24158-24169. [PMID: 39436678 DOI: 10.1021/acs.jafc.4c06669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Laccase, a multipurpose biocatalyst, is widely distributed across all kingdoms of life and plays a key role in essential biological processes such as lignin synthesis, degradation, and pigment formation. These functions are critical for fungal growth, plant-pathogen interactions, and maintenance of soil health. Due to its broad substrate specificity, multifunctional nature, and environmentally friendly characteristics, laccase is widely employed as a catalyst in various green chemistry initiatives. With its ability to oxidize a diverse range of phenolic and nonphenolic compounds, laccase has also been found to be useful as a food additive and for assessing food quality parameters. Ongoing advancements in research and technology are continually expanding the recognition of laccase's potential to address global environmental, health, and energy challenges. This review aims to provide critical insights into the applications of laccases in the biotechnology and food industry.
Collapse
Affiliation(s)
- Tingting Zhai
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Hongwei Wang
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Xiaomin Dong
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Shu Wang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Xin Xin
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Jianfeng Du
- College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, People's Republic of China
| | - Qiuzhu Guan
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Huijun Jiao
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| | - Wei Yang
- College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, People's Republic of China
| | - Ran Dong
- Shandong Institute of Pomology, Tai'an, Shandong 271000, People's Republic of China
| |
Collapse
|
2
|
Das S, Catalano L, Geerts Y. Gas Release as an Efficient Strategy to Tune Mechanical Properties and Thermoresponsiveness of Dynamic Molecular Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401317. [PMID: 38624188 DOI: 10.1002/smll.202401317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/26/2024] [Indexed: 04/17/2024]
Abstract
Dynamic molecular crystals combining multiple and finely tunable functionalities are attracting and an increasing attention due to their potential applications in a broad range of fields as efficient energy transducers and stimuli-responsive materials. In this context, a multicomponent organic salt, piperazinium trifluoroacetate (PZTFA), endowed with an unusual multidimensional responsive landscape is reported. Crystals of the salt undergo smooth plastic deformation under mechanical stress and thermo-induced jumping. Furthermore, via controlled crystal bending and release of trifluoroacetic acid from the lattice, which is anticipated from the design of the material, both the mechanical response and the thermoresponsive behavior are efficiently tuned while partially preserving the crystallinity of the system. In particular, mechanical deformation hampers guest release and hence the macroscopic jumping effect, while trifluoroacetic acid release stiffens the crystals. These complex adaptive responses establish a new crystal engineering strategy to gain further control over dynamic organic crystals.
Collapse
Affiliation(s)
- Susobhan Das
- Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), Brussels, 1050, Belgium
| | - Luca Catalano
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Yves Geerts
- Laboratoire de Chimie des Polymères, Université Libre de Bruxelles (ULB), Brussels, 1050, Belgium
- International Solvay Institutes of Physics and Chemistry, Université Libre de Bruxelles (ULB), Brussels, 1050, Belgium
| |
Collapse
|
3
|
Lin J, Zhou J, Li L, Tahir I, Wu S, Naumov P, Gong J. Highly efficient in crystallo energy transduction of light to work. Nat Commun 2024; 15:3633. [PMID: 38684679 PMCID: PMC11059232 DOI: 10.1038/s41467-024-47881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Various mechanical effects have been reported with molecular materials, yet organic crystals capable of multiple dynamic effects are rare, and at present, their performance is worse than some of the common actuators. Here, we report a confluence of different mechanical effects across three polymorphs of an organic crystal that can efficiently convert light into work. Upon photodimerization, acicular crystals of polymorph I display output work densities of about 0.06-3.94 kJ m-3, comparable to ceramic piezoelectric actuators. Prismatic crystals of the same form exhibit very high work densities of about 1.5-28.5 kJ m-3, values that are comparable to thermal actuators. Moreover, while crystals of polymorph II roll under the same conditions, crystals of polymorph III are not photochemically reactive; however, they are mechanically flexible. The results demonstrate that multiple and possibly combined mechanical effects can be anticipated even for a simple organic crystal.
Collapse
Affiliation(s)
- Jiawei Lin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Jianmin Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Liang Li
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, UAE
- Department of Sciences and Engineering, Sorbonne University Abu Dhabi, PO Box, 38044, Abu Dhabi, UAE
| | - Ibrahim Tahir
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, UAE
| | - Songgu Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| | - Panče Naumov
- Smart Materials Lab, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, UAE.
- Center for Smart Engineering Materials, New York University Abu Dhabi, PO Box, 129188, Abu Dhabi, UAE.
- Research Center for Environment and Materials, Macedonian Academy of Sciences and Arts, Bul. Krste Misirkov 2, MK‒1000, Skopje, Macedonia.
- Molecular Design Institute, Department of Chemistry, New York University, 100 Washington Square East, New York, NY, 10003, USA.
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
| |
Collapse
|
4
|
Wang Z, Han W, Shi R, Han X, Zheng Y, Xu J, Bu XH. Mechanoresponsive Flexible Crystals. JACS AU 2024; 4:279-300. [PMID: 38425899 PMCID: PMC10900217 DOI: 10.1021/jacsau.3c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 03/02/2024]
Abstract
Flexible crystals have gained significant attention owing to their remarkable pliability, plasticity, and adaptability, making them highly popular in various research and application fields. The main challenges in developing flexible crystals lie in the rational design, preparation, and performance optimization of such crystals. Therefore, a comprehensive understanding of the fundamental origins of crystal flexibility is crucial for establishing evaluation criteria and design principles. This Perspective offers a retrospective analysis of the development of flexible crystals over the past two decades. It summarizes the elastic standards and possible plastic bending mechanisms tailored to diverse flexible crystals and analyzes the assessment of their theoretical basis and applicability. Meanwhile, the compatibility between crystal elasticity and plasticity has been discussed, unveiling the immense prospects of elastic/plastic crystals for applications in biomedicine, flexible electronic devices, and flexible optics. Furthermore, this Perspective presents state-of-the-art experimental avenues and analysis methods for investigating molecular interactions in molecular crystals, which is vital for the future exploration of the mechanisms of crystal flexibility.
Collapse
Affiliation(s)
- Zhihua Wang
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Wenqing Han
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Rongchao Shi
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Xiao Han
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Yongshen Zheng
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
| | - Jialiang Xu
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300350, P. R. China
| | - Xian-He Bu
- School
of Materials Science and Engineering, Smart Sensing Interdisciplinary
Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, P. R. China
- Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin 300350, P. R. China
| |
Collapse
|
5
|
Xiao X, Xiao D, Sheng G, Shan T, Wang J, Miao X, Liu Y, Li G, Zhu Y, Sessler JL, Huang F. Formation of polyrotaxane crystals driven by dative boron-nitrogen bonds. SCIENCE ADVANCES 2023; 9:eadi1169. [PMID: 37406124 DOI: 10.1126/sciadv.adi1169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023]
Abstract
The integration of mechanically interlocked molecules (MIMs) into purely organic crystalline materials is expected to produce materials with properties that are not accessible using more classic approaches. To date, this integration has proved elusive. We present a dative boron-nitrogen bond-driven self-assembly strategy that allows for the preparation of polyrotaxane crystals. The polyrotaxane nature of the crystalline material was confirmed by both single-crystal x-ray diffraction analysis and cryogenic high-resolution low-dose transmission electron microscopy. Enhanced softness and greater elasticity are seen for the polyrotaxane crystals than for nonrotaxane polymer controls. This finding is rationalized in terms of the synergetic microscopic motion of the rotaxane subunits. The present work thus highlights the benefits of integrating MIMs into crystalline materials.
Collapse
Affiliation(s)
- Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Ding Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Guan Sheng
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Tianyu Shan
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Jiao Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, P. R. China
| | - Yikuan Liu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| | - Yihan Zhu
- Center for Electron Microscopy, Institute for Frontier and Interdisciplinary Sciences, State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology and College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224, USA
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center-Hangzhou Zhijiang Silicone Chemicals Co. Ltd. Joint Lab, Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 311215, P. R. China
| |
Collapse
|
6
|
An LC, Li X, Li ZG, Li Q, Beldon PJ, Gao FF, Li ZY, Zhu S, Di L, Zhao S, Zhu J, Comboni D, Kupenko I, Li W, Ramamurty U, Bu XH. Plastic bending in a semiconducting coordination polymer crystal enabled by delamination. Nat Commun 2022; 13:6645. [PMCID: PMC9636129 DOI: 10.1038/s41467-022-34351-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
AbstractCoordination polymers (CPs) are a class of crystalline solids that are considered brittle, due to the dominance of directional coordination bonding, which limits their utility in flexible electronics and wearable devices. Hence, engineering plasticity into functional CPs is of great importance. Here, we report plastic bending of a semiconducting CP crystal, Cu-Trz (Trz = 1,2,3-triazolate), that originates from delamination facilitated by the discrete bonding interactions along different crystallographic directions in the lattice. The coexistence of strong coordination bonds and weak supramolecular interactions, together with the unique molecular packing, are the structural features that enable the mechanical flexibility and anisotropic response. The spatially resolved analysis of short-range molecular forces reveals that the strong coordination bonds, and the adaptive C–H···π and Cu···Cu interactions, synergistically lead to the delamination of the local structures and consequently the associated mechanical bending. The proposed delamination mechanism offers a versatile tool for designing the plasticity of CPs and other molecular crystals.
Collapse
|