1
|
Li X, Liu L, Jia L, Lian Z, He J, Guo S, Wang Y, Chen X, Jiang H. Acceptor engineering of quinone-based cycloparaphenylenes via post-synthesis for achieving white-light emission in single-molecule. Nat Commun 2025; 16:467. [PMID: 39775102 PMCID: PMC11707345 DOI: 10.1038/s41467-025-55895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
Developing donor-acceptor [n]cycloparaphenylenes (D-A [n]CPPs) with multiple emissions from different emissive states remains challenging yet crucial for achieving white-light emission in single-molecule. Here, we report our explorations into acceptor engineering of quinone-based D-A [10]CPPs (Nq/Aq/Tq[10]CPPs) via a post-lateral annulation using Diels-Alder reactions of oxTh[10]CPP. X-ray analysis reveals that Nq[10]CPP displays a side by side packing via naphthoquione stacking while Aq[10]CPP adopts an intercalated conformation through anthraquinone interaction. Fluorescence investigations reveal that the quinone-based [10]CPPs display distinctive acceptor-dependent dual-emission from both the locally excited state and charge transfer state after single-wavelength excitation in organic solvents, consequently leading to multicolor emissions, in particular, white-light emission in CHCl3 for Aq[10]CPP. In THF/water mixture, quinone-based [10]CPPs and oxTh[10]CPP display a wide range of fluorescence emissions including white-light emission as increasing the fraction of water, accompanying by the formation of nanoparticles as demonstrated by Tyndall effect and SEM. Interestingly, the fluorescence of Aq[10]CPP can be switched from white to blue in CHCl3 upon redox. Our investigations demonstrate that acceptor engineering not only endows quinone-based [10]CPPs with two distint emissive states for achieving white-light emission but also highlights an effective post-synthetic strategy for functionalizing CPP nanohoops with desirable properties.
Collapse
Affiliation(s)
- Xiaonan Li
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Lin Liu
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Luyang Jia
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Zhe Lian
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Jing He
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Shengzhu Guo
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Ying Wang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.
| | - Xuebo Chen
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.
| | - Hua Jiang
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China.
| |
Collapse
|
2
|
Schwer F, Zank S, Freiberger M, Steudel FM, Geue N, Ye L, Barran PE, Drewello T, Guldi DM, von Delius M. Nanohoops Favour Light-Induced Energy Transfer over Charge Separation in Porphyrin/[10]CPP/Fullerene Rotaxanes. Angew Chem Int Ed Engl 2025; 64:e202413404. [PMID: 39313478 DOI: 10.1002/anie.202413404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
[2]Rotaxanes offer unique opportunities for studying and modulating charge separation and energy transfer, because the mechanical bond allows the robust, yet spatially dynamic tethering of photoactive groups. In this work, we synthesized [2]rotaxane triads comprising a central (aza)[10]CPP⊃C60 bis-adduct complex and two zinc porphyrin stoppers to address how the movable nanohoop affects light-induced charge separation and energy transfer between the rotaxane subcomponents. We found that neither the parent nanohoop [10]CPP nor its electron-deficient analogue aza[10]CPP actively participate in charge separation. In contrast, the nanohoops completely prevented through-space charge separation. This result is likely due to supramolecular "shielding", because charge separation was observed in the thread that acted as reference dyad. On the other hand, the suppression of electron transfer allowed the observation of energy transfer from the porphyrin triplet to the fullerene triplet state with a lifetime of ca. 25 μs. The presence of the interlocked nanohoops therefore leads to a dramatic switch between charge separation and energy transfer. We suggest that our results explain observations made by others in photovoltaic devices comprising nanohoops and may pave the way toward strategic uses of mechanically interlocked architectures in devices that feature (triplet) energy transfer.
Collapse
Affiliation(s)
- Fabian Schwer
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Simon Zank
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Markus Freiberger
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Fabian M Steudel
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Niklas Geue
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Lei Ye
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Perdita E Barran
- Michael Barber Centre for Collaborative Mass Spectrometry, Manchester Institute of Biotechnology, Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Thomas Drewello
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy, FAU Profile Center Solar, Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
3
|
Cox CJT, Hale J, Molinska P, Lewis JEM. Supramolecular and molecular capsules, cages and containers. Chem Soc Rev 2024; 53:10380-10408. [PMID: 39351690 DOI: 10.1039/d4cs00761a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Stemming from early seminal notions of molecular recognition and encapsulation, three-dimensional, cavity-containing capsular compounds and assemblies have attracted intense interest due to the ability to modulate chemical and physical properties of species encapsulated within these confined spaces compared to bulk environments. With such a diverse range of covalent motifs and non-covalent (supramolecular) interactions available to assemble building blocks, an incredibly wide-range of capsular-type architectures have been developed. Furthermore, synthetic tunability of the internal environments gives chemists the opportunity to engineer systems for uses in sensing, sequestration, catalysis and transport of molecules, just to name a few. In this tutorial review, an overview is provided into the design principles, synthesis, characterisation, structural facets and properties of coordination cages, porous organic cages, supramolecular capsules, foldamers and mechanically interlocked molecules. Using seminal and recent examples, the advantages and limitations of each system are explored, highlighting their application in various tasks and functions.
Collapse
Affiliation(s)
- Cameron J T Cox
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Jessica Hale
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Paulina Molinska
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - James E M Lewis
- School of Chemistry, Molecular Sciences Building, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
4
|
Jamagne R, Power MJ, Zhang ZH, Zango G, Gibber B, Leigh DA. Active template synthesis. Chem Soc Rev 2024; 53:10216-10252. [PMID: 39235620 PMCID: PMC11376342 DOI: 10.1039/d4cs00430b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 09/06/2024]
Abstract
The active template synthesis of mechanically interlocked molecular architectures exploits the dual ability of various structural elements (metals or, in the case of metal-free active template synthesis, particular arrangements of functional groups) to serve as both a template for the organisation of building blocks and as a catalyst to facilitate the formation of covalent bonds between them. This enables the entwined or threaded intermediate structure to be covalently captured under kinetic control. Unlike classical passive template synthesis, the intercomponent interactions transiently used to promote the assembly typically do not 'live on' in the interlocked product, meaning that active template synthesis can be traceless and used for constructing mechanically interlocked molecules that do not feature strong binding interactions between the components. Since its introduction in 2006, active template synthesis has been used to prepare a variety of rotaxanes, catenanes and knots. Amongst the metal-ion-mediated versions of the strategy, the copper(I)-catalysed alkyne-azide cycloaddition (CuAAC) remains the most extensively used transformation, although a broad range of other catalytic reactions and transition metals also provide effective manifolds. In metal-free active template synthesis, the recent discovery of the acceleration of the reaction of primary amines with electrophiles through the cavity of crown ethers has proved effective for forming an array of rotaxanes without recognition elements, including compact rotaxane superbases, dissipatively assembled rotaxanes and molecular pumps. This Review details the active template concept, outlines its advantages and limitations for the synthesis of interlocked molecules, and charts the diverse set of reactions that have been used with this strategy to date. The application of active template synthesis in various domains is discussed, including molecular machinery, mechanical chirality, catalysis, molecular recognition and various aspects of materials science.
Collapse
Affiliation(s)
- Romain Jamagne
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Martin J Power
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Zhi-Hui Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Germán Zango
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - Benjamin Gibber
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
| | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| |
Collapse
|
5
|
Xu Y, Leung MY, Yan L, Chen Z, Li P, Cheng YH, Chan MHY, Yam VWW. Synthesis, Characterization, and Resistive Memory Behaviors of Highly Strained Cyclometalated Platinum(II) Nanohoops. J Am Chem Soc 2024; 146:13226-13235. [PMID: 38700957 DOI: 10.1021/jacs.4c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Strained carbon nanohoops exhibit attractive photophysical properties due to their unique π-conjugated structure. However, incorporation of such nanohoops into the pincer ligand of metal complexes has rarely been explored. Herein, a new family of highly strained cyclometalated platinum(II) nanohoops has been synthesized and characterized. Strain-promoted C-H bond activation has been observed during the metal coordination process, and Hückel-Möbius topology and random-columnar packing in the solid state are found. Transient absorption spectroscopy revealed the size-dependent excited state properties of the nanohoops. Moreover, the nanohoops have been successfully employed as active materials in the fabrication of solution-processable resistive memory devices, including the use of the smallest platinum(II) nanohoop for the fabrication of a binary memory, with low switching threshold voltages of ca. 1.5 V, high ON/OFF current ratios, and good stability. These results demonstrate that strain incorporation into the structure can be an effective strategy to fundamentally fine-tune the reactivity, optoelectronic, and resistive memory properties.
Collapse
Affiliation(s)
- Youzhi Xu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Ming-Yi Leung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Liangliang Yan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Ziyong Chen
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Panpan Li
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Yat-Hin Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Michael Ho-Yeung Chan
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, P. R. China
| |
Collapse
|
6
|
May JH, Fehr JM, Lorenz JC, Zakharov LN, Jasti R. A High-Yielding Active Template Click Reaction (AT-CuAAC) for the Synthesis of Mechanically Interlocked Nanohoops. Angew Chem Int Ed Engl 2024; 63:e202401823. [PMID: 38386798 DOI: 10.1002/anie.202401823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Mechanically interlocked molecules (MIMs) represent an exciting yet underexplored area of research in the context of carbon nanoscience. Recently, work from our group and others has shown that small carbon nanotube fragments-[n]cycloparaphenylenes ([n]CPPs) and related nanohoop macrocycles-may be integrated into mechanically interlocked architectures by leveraging supramolecular interactions, covalent tethers, or metal-ion templates. Still, available synthetic methods are typically difficult and low yielding, and general methods that allow for the creation of a wide variety of these structures are limited. Here we report an efficient route to interlocked nanohoop structures via the active template Cu-catalyzed azide-alkyne cycloaddition (AT-CuAAC) reaction. With the appropriate choice of substituents, a macrocyclic precursor to 2,2'-bipyridyl embedded [9]CPP (bipy[9]CPP) participates in the AT-CuAAC reaction to provide [2]rotaxanes in near-quantitative yield, which can then be converted into the fully π-conjugated catenane structures. Through this approach, two nanohoop[2]catenanes are synthesized which consist of a bipy[9]CPP catenated with either Tz[10]CPP or Tz[12]CPP (where Tz denotes a 1,2,3-triazole moiety replacing one phenylene ring in the [n]CPP backbone).
Collapse
Affiliation(s)
- James H May
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| | - Julia M Fehr
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| | - Jacob C Lorenz
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| | - Lev N Zakharov
- CAMCOR-Center for Advanced Materials Characterization in Oregon, University of Oregon, Eugene, Oregon, 97403, United States
| | - Ramesh Jasti
- Department of Chemistry and Biochemistry, Materials Science Institute, and Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, Oregon, 97403, United States
| |
Collapse
|
7
|
Bu A, Gao JN, Chen Y, Xiao H, Li H, Tung CH, Wu LZ, Cong H. Modular Synthesis of Improbable Rotaxanes with All-Benzene Scaffolds. Angew Chem Int Ed Engl 2024; 63:e202401838. [PMID: 38404165 DOI: 10.1002/anie.202401838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 02/25/2024] [Indexed: 02/27/2024]
Abstract
"Improbable" rotaxanes consisting of interlocked conjugated components represent non-trivial synthetic targets, not to mention those with all-benzene scaffolds. Herein, a modular synthetic strategy has been established using an isolable azo-linked pre-rotaxane as the core module, in which the azo group functions as a tracelessly removable template to direct mechanical bond formations. Through versatile connections of the pre-rotaxane and other customizable modules, [2]- and [3]rotaxanes derived from all-benzene scaffolds have been accomplished, demonstrating the utility and potential of the synthetic design for all-benzene interlocked supramolecules.
Collapse
Affiliation(s)
- An Bu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jia-Nan Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiming Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongwei Li
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Beijing NMR Center, Peking University, Beijing, 100871, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry; School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Saura-Sanmartin A. Synthesis of 'Impossible' Rotaxanes. Chemistry 2024; 30:e202304025. [PMID: 38168751 DOI: 10.1002/chem.202304025] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
'Impossible' rotaxanes, which are constituted by interlocked components without obvious binding motifs, have attracted the interest of the mechanically interlocked molecules (MIMs) community. Within the synthetic efforts reported in the last decades towards the preparation of MIMs, some innovative protocols for accessing 'impossible' rotaxanes have been developed. This short review highlights different selected synthetic examples of 'impossible' rotaxanes, as well as suggests some future directions of this research area.
Collapse
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
9
|
Bernt F, Leonhardt CM, Schatz D, Wegner HA. Synthesis and investigation of a meta[6]cycloparaphenylene gold(I) N-heterocyclic carbene complex. Chem Commun (Camb) 2024; 60:3055-3058. [PMID: 38381535 DOI: 10.1039/d3cc06225b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Meta[n]cycloparaphenylenes (m[n]CPPs) as well as N-heterocyclic carbene (NHC) gold(I)-complexes are intriguing building blocks for material and life sciences due to their extraordinary structures resulting in unique photophysical properties. Herein, we report the combination of a m[6]CPP with a N-heterocyclic carbene serving as a ligand in a linear gold(I)-complex possessing the form [AuBr(NHC)]. Solid-state structures of both the precursor and the complex are presented and discussed. Moreover, we investigated the luminescence properties of both the imidazolium intermediate and the corresponding gold(I)-complex.
Collapse
Affiliation(s)
- Felix Bernt
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| | - Christopher M Leonhardt
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| | - Dominic Schatz
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| | - Hermann A Wegner
- Institute of Organic Chemistry, Justus Liebig University Giessen, Heinrich Buff Ring 17, Giessen 35392, Germany.
- Centre for Materials Research (ZfM/LaMa), Justus Liebig University Giessen, Heinrich Buff Ring 16, Giessen 35392, Germany
| |
Collapse
|
10
|
Saura-Sanmartin A. Interlocked polyynes towards stable carbynes. Nat Chem 2024; 16:154-156. [PMID: 38263383 DOI: 10.1038/s41557-023-01425-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Affiliation(s)
- Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Facultad de Química, Universidad de Murcia, Murcia, Spain.
| |
Collapse
|
11
|
Patrick CW, Gao Y, Gupta P, Thompson AL, Parker AW, Anderson HL. Masked alkynes for synthesis of threaded carbon chains. Nat Chem 2024; 16:193-200. [PMID: 37973943 PMCID: PMC10849957 DOI: 10.1038/s41557-023-01374-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 10/17/2023] [Indexed: 11/19/2023]
Abstract
Polyynes are chains of sp1 carbon atoms with alternating single and triple bonds. As they become longer, they evolve towards carbyne, the 1D allotrope of carbon, and they become increasingly unstable. It has been anticipated that long polyynes could be stabilized by supramolecular encapsulation, by threading them through macrocycles to form polyrotaxanes-but, until now, polyyne polyrotaxanes with many threaded macrocycles have been synthetically inaccessible. Here we show that masked alkynes, in which the C≡C triple bond is temporarily coordinated to cobalt, can be used to synthesize polyrotaxanes, up to the C68 [5]rotaxane with 34 contiguous triple bonds and four threaded macrocycles. This is the length regime at which the electronic properties of polyynes converge to those of carbyne. Cyclocarbons constitute a related family of molecular carbon allotropes, and cobalt-masked alkynes also provide a route to [3]catenanes and [5]catenanes built around cobalt complexes of cyclo[40]carbon and cyclo[80]carbon, respectively.
Collapse
Affiliation(s)
- Connor W Patrick
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Yueze Gao
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Prakhar Gupta
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Amber L Thompson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK
| | - Anthony W Parker
- Central Laser Facility, Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, UK
| | - Harry L Anderson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Song D, Li J, Liu K, Guo J, Li H, Okulov A. Size- and Voltage-Dependent Electron Transport of C 2N-Rings-Based Molecular Chains. Molecules 2023; 28:7994. [PMID: 38138484 PMCID: PMC10745836 DOI: 10.3390/molecules28247994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
C2N-ring-based molecular chains were designed at the molecular level and theoretically demonstrated to show distinctive and valuable electron transport properties that were superior to the parent carbonaceous system and other similar nanoribbon-based molecular chains. This new -type molecular chain presented an exponential attenuation of the conductance and electron transmission with the length. Essentially, the molecular chain retained the electron-resonant tunneling within 7 nm and the dominant transport orbital was the LUMO. Shorter molecular chains with stronger conductance anomalously possessed a larger tunnel barrier energy, attributing to the compensation of a much smaller HOMO-LUMO gap, and these two internal factors codetermined the transport capacity. Some influencing factors were also studied. In contrast to the common O impurity with a tiny effect on electron transmission of the C2N rings chain, the common H impurity clearly improved it. When the temperature was less than 400 K, the electron transmission varied with temperature within a narrow range, and the structural disorder deriving from proper heating did not greatly modify the transmission possibility and the exponentially decreasing tendency with the length. In a non-equilibrium condition, the current increased overall with the bias but the growth rate varied with size. A valuable negative differential resistance (NDR) effect appeared in longer molecular chains with an even number of big carbon-nitrogen rings and strengthened with size. The emergence of such an effect originated from the reduction in transmission peaks. The conductance of longer molecular chains was enhanced with the voltage but the two shortest ones presented completely different trends. Applying the bias was demonstrated to be an effective way for C2N-ring-based molecular chains to slow down the conductance decay constant and affect the transport regime. C2N-ring-based molecular chains show a perfect application in tunneling diodes and controllable molecular devices.
Collapse
Affiliation(s)
- Dian Song
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (D.S.); (K.L.)
| | - Jie Li
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (D.S.); (K.L.)
| | - Kun Liu
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (D.S.); (K.L.)
| | - Junnan Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China;
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China;
| | - Artem Okulov
- M.N. Mikheev Institute of Metal Physics, Ural Branch of Russian Academy of Sciences, Ekaterinburg 620077, Russia;
| |
Collapse
|
13
|
Tsai CY, Cheng HT, Chiu SH. Improbable Rotaxanes Constructed From Surrogate Malonate Rotaxanes as Encircled Methylene Synthons. Angew Chem Int Ed Engl 2023; 62:e202308974. [PMID: 37712453 DOI: 10.1002/anie.202308974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/16/2023]
Abstract
We have developed a new approach for the synthesis of "improbable" rotaxanes by using malonate-centered rotaxanes as interlocked surrogate precursors. Here, the desired dumbbell-shaped structure can be assembled from two different, completely separate, portions, with the only residual structure introduced from the malonate surrogate being a methylene group. We have synthesized improbable [2]- and [3]rotaxanes with all-hydrocarbon dumbbell-shaped components to demonstrate the potential structural flexibility and scope of the guest species that can be interlocked when using this approach.
Collapse
Affiliation(s)
- Chi-You Tsai
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Hung-Te Cheng
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| | - Sheng-Hsien Chiu
- Department of Chemistry and Center for Emerging Material and Advanced Devices, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, Taiwan
| |
Collapse
|
14
|
Shahamirian M, Wieczorkiewicz PA, Krygowski TM, Szatylowicz H. Substituent Effects from the Point of View of Energetics and Molecular Geometry in Acene, Polyene, and Polyyne Derivatives. J Org Chem 2023. [PMID: 37267218 DOI: 10.1021/acs.joc.2c02936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The substituent effect (SE) is one of the most important topics in organic chemistry and related fields, and Hammett constants (σ) are commonly used to describe it. The results of the computational studies carried out for Y-R-X systems (reaction sites Y = NO2, O-; substituents X = NO2, CN, Cl, H, OH, NH2; spacers R = polyene, polyyne, acene with n = 1-5 repeatable units) show that the substituent properties depend significantly on n, the type of R, and Y. Results of the analysis of the substituent effect stabilization energy and geometrical parameters of the Y-R-X systems reveal that (i) the SE strength and its inductive and resonance components decay with the increase in spacer length, its weakening depends on the Y and R type; quantitative relations describing decay are presented; (ii) the ratio between inductive and resonance effect strength changes with n and depends on Y; (iii) differences in the substituents' properties are examples of reverse SE; (iv) in general, structural parameters are mutually well correlated as well as with the SE descriptors; (v) due to the strong O- resonance effect, the changes in π-electron delocalization within R are well correlated with the SE strength only for Y = O- systems.
Collapse
Affiliation(s)
- Mozhgan Shahamirian
- Department of Chemistry, Faculty of Science, Islamic Azad University, Sarvestan Branch, Sarvestan 73451-173, Iran
| | - Paweł A Wieczorkiewicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Tadeusz M Krygowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Halina Szatylowicz
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
15
|
Abstract
The formation and study of molecules that model the sp-hybridized carbon allotrope, carbyne, is a challenging field of synthetic physical organic chemistry. The target molecules, oligo- and polyynes, are often the preferred candidates as models for carbyne because they can be formed with monodisperse lengths as well as defined structures. Despite a simple linear structure, the synthesis of polyynes is often far from straightforward, due in large part to a highly conjugated framework that can render both precursors and products highly reactive, i.e., kinetically unstable. The vast majority of polyynes are formed as symmetrical products from terminal alkynes as precursors via an oxidative, acetylenic homocoupling reaction based on the Glaser, Eglinton-Galbraith, and Hay reactions. These reactions are very efficient for the synthesis of shorter polyynes (e.g., hexaynes and octaynes), but yields often drop dramatically as a function of length for longer derivatives, usually starting with the formation of decaynes. The most effective approach to circumvent unstable precursors and products has been through the incorporation of sterically demanding end groups that serve to "protect" the polyyne skeleton. This approach was arguably identified in the early 1950s by Bohlmann and co-workers with the synthesis of tBu-end-capped polyynes. During the next 50 years, a polyyne with 14 contiguous alkyne units remained the longest isolated derivative until 2010, when the record was extended to 22 alkyne units. The record length was broken again in 2020, when a polyyne consisting of 24 alkynes was isolated and characterized. Beyond polyynes, there have been several reports describing the potential synthesis of carbyne, but conclusive characterization and proof of structure have been tenuous. The sole example of synthetic carbyne arises from synthesis within carbon nanotubes, when chains of thousands of sp carbon atoms have been linked to form polydisperse samples of carbyne. Thus, model compounds for carbyne, the polyynes, remain the best means to examine and predict the experimental structure and properties of this carbon allotrope.This Account will discuss the general synthesis of polyynes using homologous series of polyynes with up to 10 alkyne units as examples (decaynes). The limited number of specific syntheses of series with longer polyynes will then be presented and discussed in more detail based on end groups. The monodisperse polyynes produced from these synthetic efforts are then examined toward providing our best extrapolations for the expected characteristics for carbyne based on 13C NMR spectroscopy, UV-vis spectroscopy, X-ray crystallography, and Raman spectroscopy.
Collapse
Affiliation(s)
- Yueze Gao
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Rik R Tykwinski
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
16
|
Lan B, Zhang R, Yan J, Yuan Y, Li Y. When nanocarbon science meets with molecular machine: a new type of mechanically interlocked molecules (MIMs). CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2022. [DOI: 10.1016/j.cjsc.2022.100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Dhindsa JS, Cotterill EL, Buguis FL, Anghel M, Boyle PD, Gilroy JB. Blending the Optical and Redox Properties of Oligoynes and Boron Difluoride Formazanates. Angew Chem Int Ed Engl 2022; 61:e202208502. [DOI: 10.1002/anie.202208502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Jasveer S. Dhindsa
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario London ON N6A 5B7 Canada
| | - Erin L. Cotterill
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario London ON N6A 5B7 Canada
| | - Francis L. Buguis
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario London ON N6A 5B7 Canada
| | - Michael Anghel
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario London ON N6A 5B7 Canada
| | - Paul D. Boyle
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario London ON N6A 5B7 Canada
| | - Joe B. Gilroy
- Department of Chemistry and the Centre for Advanced Materials and Biomaterials Research (CAMBR) The University of Western Ontario London ON N6A 5B7 Canada
| |
Collapse
|
18
|
Bu A, Zhao Y, Xiao H, Tung C, Wu L, Cong H. A Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022; 61:e202209449. [DOI: 10.1002/anie.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Yongye Zhao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Hongyan Xiao
- Key Laboratory of Bio-inspired Materials and Interfacial Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 China
- School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
19
|
Bu A, Zhao Y, Xiao H, Tung CH, Wu LZ, Cong H. Conjugated Covalent Template Strategy for All‐Benzene Catenane Synthesis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- An Bu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Yongye Zhao
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Hongyan Xiao
- Technical Institute of Physics and Chemistry Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Chen-Ho Tung
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Li-Zhu Wu
- Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials CHINA
| | - Huan Cong
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials No.29 Zhongguancun East Road 100190 Beijing CHINA
| |
Collapse
|
20
|
Dhindsa JS, Cotterrill EL, Buguis FL, Anghel M, Boyle PD, Gilroy JB. Blending the Optical and Redox Properties of Oligoynes and Boron. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jasveer S Dhindsa
- University of Western Ontario: Western University Department of Chemistry CANADA
| | - Erin L. Cotterrill
- University of Western Ontario: Western University Department of Chemistry CANADA
| | - Francis L. Buguis
- University of Western Ontario: Western University Department of Chemistry CANADA
| | - Michael Anghel
- University of Western Ontario: Western University Department of Chemistry CANADA
| | - Paul D. Boyle
- University of Western Ontario: Western University Department of Chemistry CANADA
| | - Joe B. Gilroy
- The University of Western Ontario Department of Chemistry 1151 Richmond St. N. N6A 5B7 London CANADA
| |
Collapse
|
21
|
Li X, Xie J, Du Z, Yu R, Jia J, Chen Z, Zhu K. 2D and 3D metal-organic frameworks constructed with a mechanically rigidified [3]rotaxane ligand. Chem Commun (Camb) 2022; 58:5829-5832. [PMID: 35388851 DOI: 10.1039/d2cc01198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mechanically interlocked [3]rotaxane was newly designed, synthesized, and employed as a ligand for constructing metal-organic frameworks (MOFs). The nano-confinement by macrocycles forces the soft bis-isophthalate axle into a pseudo-rigid conformation and coordinates to zinc(II) ions, affording a two- or three-dimensional MOF under controlled conditions. The 2D MOF exhibits a neutral framework with a periodic puckering sheet structure, while an anionic framework with a pts topology was observed for the 3D MOF. The phase purity of both bulk materials was confirmed by powder X-ray diffraction. Thermogravimetric analysis reveals that both materials are stable up to 250 °C. The success of applying mechanical bonds to rigidify flexible ligands provides new insights for the design of metal-organic frameworks.
Collapse
Affiliation(s)
- Xia Li
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Jialin Xie
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Zhenglin Du
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Ruiyang Yu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Jianhua Jia
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| | - Zhong Chen
- Department of Orthopedics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, P. R. China.
| | - Kelong Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China.
| |
Collapse
|
22
|
Fadler RE, Flood AH. Rigidity and Flexibility in Rotaxanes and Their Relatives; On Being Stubborn and Easy-Going. Front Chem 2022; 10:856173. [PMID: 35464214 PMCID: PMC9022846 DOI: 10.3389/fchem.2022.856173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
Rotaxanes are an emerging class of molecules composed of two building blocks: macrocycles and threads. Rotaxanes, and their pseudorotaxane and polyrotaxane relatives, serve as prototypes for molecular-level switches and machines and as components in materials like elastic polymers and 3D printing inks. The rigidity and flexibility of these molecules is a characteristic feature of their design. However, the mechanical properties of the assembled rotaxane and its components are rarely examined directly, and the translation of these properties from molecules to bulk materials is understudied. In this Review, we consider the mechanical properties of rotaxanes by making use of concepts borrowed from physical organic chemistry. Rigid molecules have fewer accessible conformations with higher energy barriers while flexible molecules have more accessible conformations and lower energy barriers. The macrocycles and threads become rigidified when threaded together as rotaxanes in which the formation of intermolecular interactions and increased steric contacts collectively reduce the conformational space and raise barriers. Conversely, rotational and translational isomerism in rotaxanes adds novel modes of flexibility. We find that rigidification in rotaxanes is almost universal, but novel degrees of flexibility can be introduced. Both have roles to play in the function of rotaxanes.
Collapse
|
23
|
Seale JSW, Feng Y, Feng L, Astumian RD, Stoddart JF. Polyrotaxanes and the pump paradigm. Chem Soc Rev 2022; 51:8450-8475. [DOI: 10.1039/d2cs00194b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The year 2022 marks the 30th anniversary of the first reports of polyrotaxanes in the scientific literature.
Collapse
Affiliation(s)
- James S. W. Seale
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Liang Feng
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - R. Dean Astumian
- Department of Physics and Astronomy, University of Maine, Orono, Maine 04469, USA
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310021, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
| |
Collapse
|