1
|
Chen W, Liu Z, Yi X, Zheng A. Confinement-Driven Dimethyl Ether Carbonylation in Mordenite Zeolite as an Ultramicroscopic Reactor. Acc Chem Res 2024; 57:2804-2815. [PMID: 39189337 DOI: 10.1021/acs.accounts.4c00389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
ConspectusThe conversion of C1 molecules to methyl acetate through the carbonylation of dimethyl ether in mordenite zeolite is an appealing reaction and a crucial step in the industrial coal-to-ethanol process. Mordenite zeolite has large 12-membered-ring (12MR) channels (7.0 × 6.5 Å2) and small 8MR channels (5.7 × 2.6 Å2) connected by a side pocket (4.8 × 3.4 Å2), and this unique pore architecture supplies its high catalytic activity to the key step of carbonylation. However, the reaction mechanism of carbonylation in mordenite zeolite is not thoroughly established in that it is able to explain all experimental phenomena and improve its industrial applications, and the classical potential energy surface exerted by static density function theory calculations cannot reflect the reaction kinetics under realistic conditions because the diffusion kinetics of bulk DME (kinetic dimeter: 4.5 Å) and methyl acetate (MA, kinetic dimeter: 5.5 Å) were not well considered and their restricted diffusion in the narrow side pocket and 8MR channels may greatly alter the integrated kinetics of DME carbonylation in mordenite zeolite. Moreover, the precise illustration of the dynamic behaviors of the ketene intermediate and its derivatives (surface acetate and acylium ion) confined within various voids in mordenite has not been effectively portrayed.Advanced ab initio molecular dynamics (AIMD) simulations with or without the acceleration of enhanced sampling methods provide tremendous opportunities for operando modeling of both reaction and diffusion processes and further identify the geometrical structure and chemical properties of the reactants, intermediates, and products in the different confined voids of mordenite under realistic reaction conditions, which enables high consistency between computations and experiments.In this Account, the carbonylation process in mordenite is comprehensively described by the results of decades of continuous research and newly acquired knowledge from both multiscale simulations and in-(ex-)situ spectroscopic experiments. Three primary steps (DME demethylation to surface methoxy species (SMS), carbon-carbon bond coupling between SMS and CO to acetyl species, and methyl acetate formation by acetyl species and methanol/DME) have been respectively studied with a careful consideration of different molecular factors (reactant distribution, concentration, and attack mode). By utilizing the free-energy surface of diffusion and reaction obtained from AIMD simulations, a comprehensive reaction/diffusion kinetic model was formulated for the first time, illustrating the entire zeolite catalytic process. In this context, a comprehensive and informative analysis of the reaction kinetics of carbonylation in mordenite, including the function of the 12MR channels, 8MR channels, and side pockets in the adsorption, diffusion, and reaction of DME carbonylation, was performed. The different channels of mordenite play different roles in all ordered reaction steps, illustrating a highly organized ultramicroscopic reactor that is encompassed.
Collapse
Affiliation(s)
- Wei Chen
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark-Zwijnaarde 46, Zwijnaarde 9052, Belgium
| | - Zhiqiang Liu
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Anmin Zheng
- Interdisciplinary Institute of NMR and Molecular Sciences, Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
2
|
Wijerathne A, Sawyer A, Daya R, Paolucci C. Competition between Mononuclear and Binuclear Copper Sites across Different Zeolite Topologies. JACS AU 2024; 4:197-215. [PMID: 38274255 PMCID: PMC10806779 DOI: 10.1021/jacsau.3c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
A key challenge for metal-exchanged zeolites is the determination of metal cation speciation and nuclearity under synthesis and reaction conditions. Copper-exchanged zeolites, which are widely used in automotive emissions control and potential catalysts for partial methane oxidation, have in particular evidenced a wide variety of Cu structures that are observed to change with exposure conditions, zeolite composition, and topology. Here, we develop predictive models for Cu cation speciation and nuclearity in CHA, MOR, BEA, AFX, and FER zeolite topologies using interatomic potentials, quantum chemical calculations, and Monte Carlo simulations to interrogate this vast configurational and compositional space. Model predictions are used to rationalize experimentally observed differences between Cu-zeolites in a wide-body of literature, including nuclearity populations, structural variations, and methanol per Cu yields. Our results show that both topological features and commonly observed Al-siting biases in MOR zeolites increase the population of binuclear Cu sites, explaining the small population of mononuclear Cu sites observed in these materials relative to other zeolites such as CHA and BEA. Finally, we used a machine learning classification model to determine the preference to form mononuclear or binuclear Cu sites at different Al configurations in 200 zeolites in the international zeolite database. Model results reveal several zeolite topologies at extreme ends of the mononuclear vs binuclear spectrum, highlighting synthetic options for realization of zeolites with strong Cu nuclearity preferences.
Collapse
Affiliation(s)
- Asanka Wijerathne
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Allison Sawyer
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| | - Rohil Daya
- Cummins
Inc, Columbus, Indiana 47201, United States
| | - Christopher Paolucci
- Department
of Chemical Engineering, University of Virginia, Charlottesville, Virginia 22903, United States
| |
Collapse
|
3
|
Guo Y, Wang S, Geng R, Wang P, Li S, Dong M, Qin Z, Wang J, Fan W. Enhancement of the dimethyl ether carbonylation activation via regulating acid sites distribution in FER zeolite framework. iScience 2023; 26:107748. [PMID: 37701576 PMCID: PMC10494173 DOI: 10.1016/j.isci.2023.107748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/12/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023] Open
Abstract
The carbonylation of dimethyl ether (DME) with CO is a key step for ethanol synthesis from syngas, but traditional mordenite (MOR) zeolite shows low catalytic stability. Herein, various FER zeolite nanosheets were prepared with four types of organic templates. The catalytic performance of FER in DME carbonylation is strongly dependent on the location of strong acid site in framework, which can be effectively regulated by altering organic template. FER-MORP sample synthesized with morpholine shows the highest DME conversion of 53%, thus, giving a methyl acetate space-time yield (STYMA) of 0.889 mmol g-1 h-1. DFT calculation, NH3-IR, 1H/27Al/29Si MAS NMR, and in situ DRIFTS results indicate that morpholine directs more Al species, or strong Brønsted acid sites (BAS), to locate in 8-membered ring (8-MR) channels, which not only enhances carbonylation activity but also suppresses formation of coke species. The catalytic performance is well maintained within 4 repeated recycles (∼460 h).
Collapse
Affiliation(s)
- Yanxia Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sen Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Rui Geng
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengfei Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Shiying Li
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Mei Dong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Zhangfeng Qin
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| | - Jianguo Wang
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weibin Fan
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, China
| |
Collapse
|
4
|
Prodinger S, Berdiell IC, Cordero-Lanzac T, Bygdnes OR, Solemsli BG, Kvande K, Arstad B, Beato P, Olsbye U, Svelle S. Cation-induced speciation of port-size during mordenite zeolite synthesis. JOURNAL OF MATERIALS CHEMISTRY. A 2023; 11:21884-21894. [PMID: 38013680 PMCID: PMC10581370 DOI: 10.1039/d3ta03444e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/27/2023] [Indexed: 11/29/2023]
Abstract
Mordenite (MOR) zeolite, an important industrial catalyst exists in two, isostructural variants defined by their port-size, small and large-port. Here we show for the first time how a systematic, single-parameter variation influences the synthesis out-come on the final MOR material leading to distinctly different catalysts. The cation identity has a direct impact on the synthesis mechanism with potassium cations generating the more constrained, small-port MOR variant compared to the large-port obtained with sodium cations. This was expressed by different degrees of accessibility ascertained with a combination of toluene breakthrough and temperature programmed desorption (TPD), propylamine TPD, as well as sterically sensitive isobutane conversion. Rietveld refinement of the X-ray diffractograms elucidated the preferential siting of the smaller sodium cations in the constricted 8-ring, from which differences in Al distribution follow. Note, there are no organic structure directing agents utilized in this synthesis pointing at the important role of inorganic structure directing agents (ISDA).
Collapse
Affiliation(s)
- Sebastian Prodinger
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Izar Capel Berdiell
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Tomas Cordero-Lanzac
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Odd Reidar Bygdnes
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Bjørn Gading Solemsli
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Karoline Kvande
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | | | - Pablo Beato
- Topsøe A/S Haldor Topsøes Allé 1 2800 Kongens Lyngby Denmark
| | - Unni Olsbye
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| | - Stian Svelle
- Center for Materials Science and Nanotechnology (SMN), Department of Chemistry, University of Oslo 1033 Blindern 0315 Oslo Norway
| |
Collapse
|
5
|
Chizallet C, Bouchy C, Larmier K, Pirngruber G. Molecular Views on Mechanisms of Brønsted Acid-Catalyzed Reactions in Zeolites. Chem Rev 2023; 123:6107-6196. [PMID: 36996355 DOI: 10.1021/acs.chemrev.2c00896] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
The Brønsted acidity of proton-exchanged zeolites has historically led to the most impactful applications of these materials in heterogeneous catalysis, mainly in the fields of transformations of hydrocarbons and oxygenates. Unravelling the mechanisms at the atomic scale of these transformations has been the object of tremendous efforts in the last decades. Such investigations have extended our fundamental knowledge about the respective roles of acidity and confinement in the catalytic properties of proton exchanged zeolites. The emerging concepts are of general relevance at the crossroad of heterogeneous catalysis and molecular chemistry. In the present review, emphasis is given to molecular views on the mechanism of generic transformations catalyzed by Brønsted acid sites of zeolites, combining the information gained from advanced kinetic analysis, in situ, and operando spectroscopies, and quantum chemistry calculations. After reviewing the current knowledge on the nature of the Brønsted acid sites themselves, and the key parameters in catalysis by zeolites, a focus is made on reactions undergone by alkenes, alkanes, aromatic molecules, alcohols, and polyhydroxy molecules. Elementary events of C-C, C-H, and C-O bond breaking and formation are at the core of these reactions. Outlooks are given to take up the future challenges in the field, aiming at getting ever more accurate views on these mechanisms, and as the ultimate goal, to provide rational tools for the design of improved zeolite-based Brønsted acid catalysts.
Collapse
Affiliation(s)
- Céline Chizallet
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Christophe Bouchy
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Kim Larmier
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| | - Gerhard Pirngruber
- IFP Energies nouvelles, Rond-Point de l'Echangeur de Solaize, BP 3, Solaize 69360, France
| |
Collapse
|
6
|
Abstract
Zeolites with ordered microporous systems, distinct framework topologies, good spatial nanoconfinement effects, and superior (hydro)thermal stability are an ideal scaffold for planting diverse active metal species, including single sites, clusters, and nanoparticles in the framework and framework-associated sites and extra-framework positions, thus affording the metal-in-zeolite catalysts outstanding activity, unique shape selectivity, and enhanced stability and recyclability in the processes of Brønsted acid-, Lewis acid-, and extra-framework metal-catalyzed reactions. Especially, thanks to the advances in zeolite synthesis and characterization techniques in recent years, zeolite-confined extra-framework metal catalysts (denoted as metal@zeolite composites) have experienced rapid development in heterogeneous catalysis, owing to the combination of the merits of both active metal sites and zeolite intrinsic properties. In this review, we will present the recent developments of synthesis strategies for incorporating and tailoring of active metal sites in zeolites and advanced characterization techniques for identification of the location, distribution, and coordination environment of metal species in zeolites. Furthermore, the catalytic applications of metal-in-zeolite catalysts are demonstrated, with an emphasis on the metal@zeolite composites in hydrogenation, dehydrogenation, and oxidation reactions. Finally, we point out the current challenges and future perspectives on precise synthesis, atomic level identification, and practical application of the metal-in-zeolite catalyst system.
Collapse
Affiliation(s)
- Qiang Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Shiqin Gao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China.,International Center of Future Science, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
7
|
Liu R, Fan B, Zhi Y, Liu C, Xu S, Yu Z, Liu Z. Dynamic Evolution of Aluminum Coordination Environments in Mordenite Zeolite and Their Role in the Dimethyl Ether (DME) Carbonylation Reaction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rongsheng Liu
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Benhan Fan
- Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Yuchun Zhi
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Chong Liu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Shutao Xu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Zhengxi Yu
- DICP: Chinese Academy of Sciences Dalian Institute of Chemical Physics Dalian National Laboratoty for Clean Energy CHINA
| | - Zhongmin Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Science Dalian National Laboratory for Clean Energy Zhongshan Road #457 116023 Dalian CHINA
| |
Collapse
|