1
|
Gaeta M, Oliveri IP, Munzi G, Lo Presti F, Di Bella S. Stimuli-Responsive Properties of a Zinc(II) Salen-Type Schiff-Base Complex and Vapochromic Detection of Volatile Organic Compounds. Inorg Chem 2024; 63:3850-3858. [PMID: 38353116 DOI: 10.1021/acs.inorgchem.3c04165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
This contribution reports, through a combined thermogravimetric analysis, differential scanning calorimetry, UV-vis, powder X-ray diffraction, and Rietveld refinement analysis, on the stimuli-responsive chromic properties of a substituted Zn(salmal) Schiff-base Lewis acidic complex with unique and distinct thermo- and vapochromic characteristics. The solid complex obtained in air or by evaporation of the solvent from their THF solutions shows a marked thermochromism associated with a phase transition, unusually triggered by the reversible desorption/adsorption of one lattice water molecule. In contrast, the anhydrous solid, achieved from THF solutions of the complex by evaporation of the solvent under anhydrous conditions, behaves very differently as it does not show any absorption of water or thermochromism and exhibits varied vapochromic properties. Detection of volatile organic compounds having Lewis basicity is demonstrated by using the anhydrous solid or the related cast films on glass or paper substrates. In both cases, a marked vapochromism is observed upon exposure to vapors of various volatile species and involves well-defined optical absorptions and naked-eye color changes, also allowing the discrimination of primary aliphatic amines. Vapochromic behavior with the formation of stable, stoichiometric adducts is also demonstrated for both the solid obtained in air and the anhydrous solid or for the related cast films after exposure to vapors of pyridine.
Collapse
Affiliation(s)
- Massimiliano Gaeta
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| | - Ivan Pietro Oliveri
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| | - Gabriella Munzi
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| | - Francesca Lo Presti
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| | - Santo Di Bella
- Dipartimento di Scienze Chimiche, Università di Catania, I-95125 Catania, Italy
| |
Collapse
|
2
|
Shi Q, Wu J, Chen H, Xu X, Yang YB, Ding M. Inertial migration of polymer micelles in a square microchannel. SOFT MATTER 2024; 20:1760-1766. [PMID: 38295375 DOI: 10.1039/d3sm01304a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
Using a hybrid simulation approach that combines a lattice-Boltzmann method for fluid flow and a molecular dynamics model for polymers, we investigate the inertial migration of star-like and crew-cut polymer micelles in a square microchannel. It is found that they exhibit two types of equilibrium positions, which shift further away from the center of the microchannel when the Reynolds number (Re) increases, as can be observed for soft particles. What differs from the behaviors of soft particles is that here, the blockage ratio is no longer the decisive factor. When the sizes are the same, the star-like micelles are always relatively closer to the microchannel wall as they gradually transition from spherical to disc-like with the increase of Re. In comparison, the crew-cut micelles are only transformed into an ellipsoid. Conversely, when the hydrophobic core sizes are the same, the equilibrium position of the star-like micelles becomes closer to that of the crew-cut micelles. Our results demonstrate that for polymer micelles with a core-shell structure, the equilibrium position is no longer solely determined by their overall dimensions but depends on the core and shell's specific dimensions, especially the hydrophobic core size. This finding opens up a new approach for achieving the separation of micelles in inertial migration.
Collapse
Affiliation(s)
- Qingfeng Shi
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jintang Wu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Haisong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiaolong Xu
- School of Environmental and Chemical Engineering, Institute of Carbon Peaking and Carbon Neutralization, Wuyi University, Jiangmen 529020, China
| | - Yong-Biao Yang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Mingming Ding
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| |
Collapse
|
3
|
Sharma A, Singh G, Kaur N, Singh N. Core-Labeled Reverse Micelle-Based Supramolecular Solvents for Assisted Quick and Sensitive Determination of Amitriptyline in Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38319126 DOI: 10.1021/acs.langmuir.3c03691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
In recent years, the issue of pharmaceutical contaminants in water bodies has emerged as a significant environmental concern owing to the potential negative impacts on both aquatic ecosystems and human health. Consequently, the development of efficient and eco-friendly methods for their determination and removal is of paramount importance. In this context, the development of a surfactant ensemble sensor has been explored for hard-to-sense amphiphilic drug, i.e., amitriptyline. Herein, a pyrene-based amphiphile chemoreceptor was synthesized and characterized through various spectroscopic techniques such as 1H, 13C NMR, single-crystal XRD, FTIR, and ES-mass spectrometry. Then, dodecanoic acid (DA) and a pyrene-based receptor in a THF/water solvent system were used to generate reverse micelle-based self-aggregates of SUPRAS (SUPRAmolecular Solvent). The structural aspects, such as morphology and size, along with the stability of the SUPRAS aggregates were unfolded through spectroscopic and microscopic insights. The present investigation describes a synergistic approach that combines the unique properties of premicellar concentration of supramolecular solvent with the promising potential of pyrene-based receptor for enhanced amitriptyline extraction with simultaneous determination from water (LOD = 12 nM). To evaluate the effectiveness of the developed aggregates in real-world scenarios, experiments were conducted to determine the sensing efficiency among various pharmaceutical pollutants commonly found in water sources. The results reveal that the synergistic nanoensemble exhibits remarkable sensing ability, toward the amitriptyline (AMT) drug outperforming conventional methods.
Collapse
Affiliation(s)
- Arun Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
4
|
Wei H, Yang C, Bi F, Li B, Xie R, Yu D, Fang S, Hua Z, Wang Q, Yang G. Structure-Controllable and Mass-Produced Glycopolymersomes as a Template of the Carbohydrate@Ag Nanobiohybrid with Inherent Antibacteria and Biofilm Eradication. Biomacromolecules 2024; 25:315-327. [PMID: 38100369 DOI: 10.1021/acs.biomac.3c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Glycopolymer-supported silver nanoparticles (AgNPs) have demonstrated a promising alternative to antibiotics for the treatment of multidrug-resistant bacteria-infected diseases. In this contribution, we report a class of biohybrid glycopolymersome-supported AgNPs, which are capable of effectively killing multidrug-resistant bacteria and disrupting related biofilms. First of all, glycopolymersomes with controllable structures were massively fabricated through reversible addition-fragmentation chain transfer (RAFT) polymerization-induced self-assembly (PISA) in an aqueous solution driven by complementary hydrogen bonding interaction between the pyridine and amide groups of N-(2-methylpyridine)-acrylamide (MPA) monomers. Subsequently, Ag+ captured by glycopolymersomes through the coordination between pyridine-N and Ag+ was reduced into AgNPs stabilized by glycopolymersomes upon addition of the NaBH4 reducing agent, leading to the formation of the glycopolymersome@AgNPs biohybrid. As a result, they showed a wide-spectrum and enhanced removal of multidrug-resistant bacteria and biofilms compared to naked AgNPs due to the easier adhesion onto the bacterial surface and diffusion into biofilms through the specific protein-carbohydrate recognition. Moreover, the in vivo results revealed that the obtained biohybrid glycopolymersomes not only demonstrated an effective treatment for inhibiting the cariogenic bacteria but also were able to repair the demineralization of caries via accumulating Ca2+ through the recognition between carbohydrates and Ca2+. Furthermore, glycopolymersomes@AgNPs showed quite low in vitro hemolysis and cytotoxicity and almost negligible acute toxicity in vivo. Overall, this type of biohybrid glycopolymersome@AgNPs nanomaterial provides a new avenue for enhanced antibacterial and antibiofilm activities and the effective treatment of oral microbial-infected diseases.
Collapse
Affiliation(s)
- Hanchen Wei
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Caiyun Yang
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Feihu Bi
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Bang Li
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei 230032, China
| | - Rui Xie
- Department of Plant Pathology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Deshui Yu
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Shuzhen Fang
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Zan Hua
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Qingqing Wang
- College & Hospital of Stomatology, Anhui Medical University, Key Laboratory of Oral Diseases Research of Anhui Province, Periodontal Department, Anhui Stomatology Hospital affiliated to Anhui Medical University, Hefei 230032, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
5
|
Chua MH, Chin KLO, Loh XJ, Zhu Q, Xu J. Aggregation-Induced Emission-Active Nanostructures: Beyond Biomedical Applications. ACS NANO 2023; 17:1845-1878. [PMID: 36655929 DOI: 10.1021/acsnano.2c10826] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The discovery of aggregation-induced emission (AIE) phenomenon in 2001 has had a significant impact on materials development across different research disciplines. AIE-active materials have been widely exploited for various applications in optoelectronics, sensing, biomedical, and stimuli-responsive systems, etc. This is made possible by integrating AIE features with other fields of science and engineering, such as nanoscience and nanotechnology. AIE has been extensively employed, particularly for biomedical applications, such as biosensing, bioimaging, and theranostics. However, development of AIE-based nanotechnology for other applications is comparatively less, although there have been increasing research activities in recent years. Given the significance and potential of the marriage between AIE hallmark and nanotechnology in AIE-active materials development, this review article summarizes and showcases the latest research efforts in AIE-based nanomaterials, including nanomaterials synthesis and their nonbiomedical applications, such as sensing, optoelectronics, functional coatings, and stimuli-responsive systems. A perspective on the outlook of AIE-based nanostructured materials and relevant nanotechnology for nonbiomedical applications will be provided, giving an insight into how to design AIE-active nanostructures as well as their applications beyond the biomedical domain.
Collapse
Affiliation(s)
- Ming Hui Chua
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Kang Le Osmund Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
| | - Xian Jun Loh
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
- Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore 117575
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Block S8 Level 3, Singapore 117543
| |
Collapse
|