1
|
Lu C, He Q, Huang S, Shi P, Yang C, Zhang J, Zhu J, Zhang J, Wang T, Zhuang X. Large Dipole Moment Enhanced CO 2 Adsorption on Copper Surface: Achieving 68.9% Catalytic Ethylene Faradaic Efficiency at 1.0 A cm -2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2415092. [PMID: 39740176 DOI: 10.1002/adma.202415092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/08/2024] [Indexed: 01/02/2025]
Abstract
The electrochemical conversion of carbon dioxide (CO2) into hydrocarbon products emerges as a pivotal sustainable strategy for carbon utilization. Cu-based catalysts are currently prioritized as the most effective means for this process, yet it remains a long-term goal to achieve high product selectivity at elevated current densities. This study delved into exploring the influence of a topological poly(2-aminoazulene) with a substantial dipole moment on modulating the Cu surface dipole field to augment the catalytic activity involved in CO2 reduction. The resulting Cu/poly(2-aminoazulene) heterojunction showcases a remarkable ethylene Faradaic efficiency of 68.9% even at a substantial current density of 1 A cm-2. Through in situ Raman and in situ Fourier-transform infrared spectroscopy, poly(2-aminoazulene)-modified Cu electrode exhibits a heightened concentration of intermediates as compared to the bare Cu, proving advantageous for C-C dimerization. Theoretical calculations demonstrate the reduced energy barrier for C-C dimerization, and meanwhile impeding hydrogen evolution reaction on Cu/poly(2-aminoazulene) heterojunction, which are beneficial to CO2 reduction. The catalyst design in this study, incorporating dipole moment considerations, not only investigates the influence of dipole moment on electrochemical carbon dioxide reduction but also pioneers an innovative strategy to augment catalytic activity by elevating the micro-concentration of reactants on catalyst surfaces.
Collapse
Affiliation(s)
- Chenbao Lu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhang Jiang, Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| | - Qichuan He
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Senhe Huang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Pengfei Shi
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongqing Yang
- College of Smart Energy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai, 201204, China
| | - Jinhui Zhu
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Zhang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tianfu Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Xiaodong Zhuang
- The Soft2D Lab, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, Zhang Jiang, Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 201203, China
| |
Collapse
|
2
|
Gao Z, Sun J, Shi L, Yuan W, Yan H, Tian W. Precise Supramolecular Nanoarchitectonics for Simultaneous Enhanced Photoluminescence and Photocatalysis in a Co-Assembly by a Biomimetic Isolation-Conduction Strategy. Angew Chem Int Ed Engl 2024:e202423174. [PMID: 39714439 DOI: 10.1002/anie.202423174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Limited by the two mutually exclusive physicochemical processes of separation and recombination of photogenerated carriers, achieving photoluminescence and photocatalysis simultaneously is extremely challenging but essential for ever-growing complex issues and specialized scenarios. Here we proposed a biomimetic isolation-conduction strategy induced by an arene-perfluoroarene (A-P) interaction for enabling photoluminescence and photocatalytic hydrogen evolution reaction (HER) activity in the co-assembly of aromatic monomers and octafluoronapthalene (OFN). Inspired by the isolation-conduction effect of periodic isolation of myelin sheaths on the axons of vertebrate nerve fibers by node of Ranvier, we use OFN as a molecular isolator embedded in the aromatic monomers array to block the singlet-to-triplet pathway, while the enlarged intermolecular dipoles resulting from the A-P interactions facilitate the conduction of photogenerated carriers in the isolated regions. The resultant co-assembly exhibits an enhanced monomeric green emission compared to the corresponding monocomponent self-assembly with weak red emission. Meanwhile, it also has an enhanced photocatalytic HER performance with a rate of 2.45 mmol g-1 h-1, which is 15.2 times more than the self-assembled one. On this basis, a sequential fluoric wastewater reuse system that includes real-time fluorescence detection/removal of perfluorooctanoic acids and photocatalytic HER device is constructed.
Collapse
Affiliation(s)
- Zhao Gao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- The two authors contributed equally to this work
| | - Jianxiang Sun
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- The two authors contributed equally to this work
| | - Lulu Shi
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Yuan
- Department of Chemistry, National University of Singapore 3, Science Drive 3, Singapore, 117543, Singapore
| | - Hongxia Yan
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
3
|
Xu J, Zhang X, Chen X, Yan W, Xie T, Chen Y, Wei Y. Carbon Doping Regulates Charge Transfer Paths via a Type-II to S-Scheme Transformation to Improve Photocatalytic Performance. Inorg Chem 2024. [PMID: 39259843 DOI: 10.1021/acs.inorgchem.4c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Designing S-scheme heterojunctions with enhanced interfacial interaction is an effective strategy for promoting the separation of photocarriers while maintaining strong photoredox capabilities. However, precisely tailoring the interfacial charge transport pathways between two contacted semiconductors remains a significant challenge due to the similar band alignment in type-II and S-scheme heterostructures. Herein, we report a facile and low-cost carbon doping strategy to smartly tune the charge transfer pathway via a type-II to S-scheme transformation for efficient photocatalytic H2 evolution and H2O2 synthesis. Density functional theory calculations combined with in situ XPS studies demonstrate that the Fermi level of MoO2 shifts from being higher than that of C3N4 to being lower after carbon doping, which drives the inversion of the internal electric field (IEF) direction between MoO2 and C3N4, thus enabling a transition from type-II MoO2/C3N4 heterojunctions to S-scheme C-MoO2/C3N4 heterojunctions. As a result, the optimal S-scheme C-MoO2/C3N4 heterojunctions exhibit a high H2 evolution rate of 16.2 mmol g-1 h-1 and a H2O2 production rate of 877 μmol g-1 h-1, notably surpassing those of the original C3N4 and type-II MoO2/C3N4 heterojunctions. This work provides valuable insights into the fabrication of C3N4 heterostructures and the control of electron migration pathways, thereby creating new possibilities for photocatalysis and optoelectronics applications.
Collapse
Affiliation(s)
- Jing Xu
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Xueqi Zhang
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Xudong Chen
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Wei Yan
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Tengfeng Xie
- Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Yuanping Chen
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Yingcong Wei
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| |
Collapse
|
4
|
Zhang X, Xiao Z, Jiao L, Wu H, Tan YX, Lin J, Yuan D, Wang Y. Molecular Engineering of Methylated Sulfone-Based Covalent Organic Frameworks for Back-Reaction Inhibited Photocatalytic Overall Water Splitting. Angew Chem Int Ed Engl 2024; 63:e202408697. [PMID: 38923631 DOI: 10.1002/anie.202408697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/13/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Solar-to-hydrogen (H2) and oxygen (O2) conversion via photocatalytic overall water splitting (OWS) holds great promise for a sustainable fuel economy, but has been challenged by the backward O2 reduction reaction (ORR) with favored proton-coupled electron transfer (PCET) dynamics. Here, we report that molecular engineering by methylation inhibits the backward ORR of molecular photocatalysts and enables efficient OWS process. As demonstrated by a benchmark sulfone-based covalent organic framework (COF) photocatalyst, the precise methylation of its O2 adsorption sites effectively blocks electron transfer and increases the barrier for hydrogen intermediate desorption that cooperatively obstructs the PCET process of ORR. Methylation also repels electrons to the neighboring photocatalytic sulfone group that promotes the forward H2 evolution. The resultant DS-COF achieves an impressive inhibition of about 70 % of the backward reaction and a three-fold enhancement of the OWS performance with a H2 evolution rate of 124.7 μmol h-1 g-1, ranking among the highest reported for organic-based photocatalysts. This work provides insights for engineering photocatalysts at the molecular level for efficient solar-to-fuel conversion.
Collapse
Affiliation(s)
- Xiang Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiwei Xiao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lei Jiao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huyue Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Yan-Xi Tan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Lin
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Daqiang Yuan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
5
|
Chen F, Bai CW, Duan PJ, Zhang ZQ, Sun YJ, Chen XJ, Yang Q, Yu HQ. Merging semi-crystallization and multispecies iodine intercalation at photo-redox interfaces for dual high-value synthesis. Nat Commun 2024; 15:7783. [PMID: 39237589 PMCID: PMC11377564 DOI: 10.1038/s41467-024-52158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
The artificial photocatalytic synthesis based on graphitic carbon nitride (g-C3N4) for H2O2 production is evolving rapidly. However, the simultaneous production of high-value products at electron and hole sites remains a great challenge. Here, we use transformable potassium iodide to obtain semi-crystalline g-C3N4 integrated with the I-/I3- redox shuttle mediators for efficient generation of H2O2 and benzaldehyde. The system demonstrates a prominent catalytic efficiency, with a benzaldehyde yield of 0.78 mol g-1 h-1 and an H2O2 yield of 62.52 mmol g-1 h-1. Such a constructed system can achieve an impressive 96.25% catalytic selectivity for 2e- oxygen reduction, surpassing previously reported systems. The mechanism study reveals that the strong crystal electric field from iodized salt enhances photo-generated charge carrier separation. The I-/I3- redox mediators significantly boost charge migration and continuous electron and proton supply for dual-channel catalytic synthesis. This groundbreaking work in photocatalytic co-production opens neoteric avenues for high-value synthesis.
Collapse
Affiliation(s)
- Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China.
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Pi-Jun Duan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Zhi-Quan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Yi-Jiao Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400045, China
| | - Qi Yang
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
6
|
Xu S, Chen S, Li Y, Gao Q, Luo X, Li M, Ren L, Wang P, Liu L, Wang J, Chen X, Chen Q, Zhu Y. Dual Function of Naphthalenediimide Supramolecular Photocatalyst with Giant Internal Electric Field for Efficient Hydrogen and Oxygen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400344. [PMID: 38497503 DOI: 10.1002/smll.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Indexed: 03/19/2024]
Abstract
Organic supramolecular photocatalysts have garnered widespread attention due to their adjustable structure and exceptional photocatalytic activity. Herein, a novel bis-dicarboxyphenyl-substituent naphthalenediimide self-assembly supramolecular photocatalyst (SA-NDI-BCOOH) with efficient dual-functional photocatalytic performance is successfully constructed. The large molecular dipole moment and short-range ordered stacking structure of SA-NDI-BCOOH synergistically create a giant internal electric field (IEF), resulting in a remarkable 6.7-fold increase in its charge separation efficiency. Additionally, the tetracarboxylic structure of SA-NDI-BCOOH greatly enhances its hydrophilicity. Thus, SA-NDI-BCOOH demonstrates efficient dual-functional activity for photocatalytic hydrogen and oxygen evolution, with rates of 372.8 and 3.8 µmol h-1, respectively. Meanwhile, a notable apparent quantum efficiency of 10.86% at 400 nm for hydrogen evolution is achieved, prominently surpassing many reported supramolecular photocatalysts. More importantly, with the help of dual co-catalysts, it exhibits photocatalytic overall water splitting activity with H2 and O2 evolution rates of 3.2 and 1.6 µmol h-1. Briefly, this work sheds light on enhancing the IEF by controlling the molecular polarity and stacking structure to dramatically improve the photocatalytic performance of supramolecular materials.
Collapse
Affiliation(s)
- Shicheng Xu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Siqi Chen
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yuxin Li
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Qiong Gao
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Xingjian Luo
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Min Li
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Lirong Ren
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Peng Wang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Liping Liu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jun Wang
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Xianjie Chen
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Qian Chen
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Yongfa Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, P. R. China
| |
Collapse
|
7
|
Zhu X, Jia Y, Liu Y, Xu J, He H, Wang S, Shao Y, Zhai Y, Zhu Y. Enhancing Built-in Electric Fields via Molecular Symmetry Modulation in Supramolecular Photocatalysts for Highly Efficient Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202405962. [PMID: 38644535 DOI: 10.1002/anie.202405962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/23/2024]
Abstract
Nature-inspired supramolecular self-assemblies are attractive photocatalysts, but their quantum yields are limited by poor charge separation and transportation. A promising strategy for efficient charge transfer is to enhance the built-in electric field by symmetry breaking. Herein, an unsymmetric protonation, N-heterocyclic π-conjugated anthrazoline-based supramolecular photocatalyst SA-DADK-H+ was developed. The unsymmetric protonation breaks the initial structural symmetry of DADK, resulting in ca. 50-fold increase in the molecular dipole, and facilitates efficient charge separation and transfer within SA-DADK-H+. The protonation process also creates numerous active sites for H2O adsorption, and serves as crucial proton relays, significantly improving the photocatalytic efficiency. Remarkably, SA-DADK-H+ exhibits an outstanding hydrogen evolution rate of 278.2 mmol g-1 h-1 and a remarkable apparent quantum efficiency of 25.1 % at 450 nm, placing it among the state-of-the-art performances in organic semiconductor photocatalysts. Furthermore, the versatility of the unsymmetric protonation approach has been successfully applied to four other photocatalysts, enhancing their photocatalytic performance by 39 to 533 times. These findings highlight the considerable potential of unsymmetric protonation induced symmetry breaking strategy in tailoring supramolecular photocatalysts for efficient solar-to-fuel production.
Collapse
Affiliation(s)
- Xiaolin Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yihui Jia
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yuhan Liu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jingyi Xu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huarui He
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Siyue Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yang Shao
- Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Yaxin Zhai
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
8
|
Liu L, Song R, Wu Y, Song X, Song J, Chen M, Nie Y, Wang C, Wan J. Efficient selective aerobic oxidation of sulfides by molecular dipole modulation in methylphosphate-substituted perylene diimide supramolecular polarization photocatalyst. J Colloid Interface Sci 2024; 663:775-786. [PMID: 38442519 DOI: 10.1016/j.jcis.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Photocatalytic aerobic oxidation is a promising sustainable strategy for the selective organic synthesis of industrially valuable chemicals. However, the poor charge separation and insufficient molecular activation restrict the overall photocatalytic efficiency. To address these issues, we have developed a novel approach involving molecular dipole modulation and polar molecular self-assembly to modulate the built-in electric field (BEF) in perylene diimide (PDI) supramolecular polarization photocatalysts by adjusting the electronegativity of terminal substituents. The optimized methylphosphate-substituted PDI (P-PDIP) supramolecular system features the strongest BEF induced by its large molecular dipole, with an intensity 3.89 times higher than that observed in methylcarboxy-substituted PDI (P-PDIC) and 5.64 times higher than that observed in P-PDI. This significant enhancement in BEF generates a powerful driving force within P-PDIP, facilitating directional charge separation toward active sites. Additionally, the incorporation of methylphosphate groups improves the activation efficiency of O2 and thioether molecules, resulting in a remarkable photocatalytic performance for selective aerobic oxidation of sulfides into sulfoxide (up to 99.9% conversion and 99.8% selectivity). This study highlights that enhancing BEF through manipulating molecular dipoles can significantly improve photocatalytic activity, offering great potential for constructing efficient organic polarization photocatalysts in green chemistry and sustainable production.
Collapse
Affiliation(s)
- Lin Liu
- College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Clean Utilization of Low-Rank Coal of Shaanxi Collaborative Innovation Center, Yan'an University, Yan'an 716000, China.
| | - Ru Song
- College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Clean Utilization of Low-Rank Coal of Shaanxi Collaborative Innovation Center, Yan'an University, Yan'an 716000, China
| | - Yan Wu
- College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Clean Utilization of Low-Rank Coal of Shaanxi Collaborative Innovation Center, Yan'an University, Yan'an 716000, China
| | - Xiaoming Song
- College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Clean Utilization of Low-Rank Coal of Shaanxi Collaborative Innovation Center, Yan'an University, Yan'an 716000, China
| | - Jiarui Song
- College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Clean Utilization of Low-Rank Coal of Shaanxi Collaborative Innovation Center, Yan'an University, Yan'an 716000, China
| | - Mo Chen
- College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Clean Utilization of Low-Rank Coal of Shaanxi Collaborative Innovation Center, Yan'an University, Yan'an 716000, China
| | - Yina Nie
- College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Clean Utilization of Low-Rank Coal of Shaanxi Collaborative Innovation Center, Yan'an University, Yan'an 716000, China
| | - Chengming Wang
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Wan
- College of Chemistry & Chemical Engineering, Shaanxi Key Laboratory of Chemical Reaction Engineering, Clean Utilization of Low-Rank Coal of Shaanxi Collaborative Innovation Center, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
9
|
Guo J, Xie M, Li H, Zhang L, Zhang L, Zhang X, Zheng W, Tian J. High Efficiency and Low Roll-Off Pure-Red Perovskite LED Enabled by Simultaneously Inhibiting Auger and Trap Recombination of Quantum Dots. NANO LETTERS 2024; 24:6410-6416. [PMID: 38767286 DOI: 10.1021/acs.nanolett.4c01441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
CsPbI3 perovskite quantum dots (QDs) could achieve pure-red emission by reducing their size, but the increased exciton binding energy (EB) and surface defects for the small-sized QDs (SQDs) cause severe Auger and trap recombinations, thus worsening their electroluminescence (EL) performance. Herein, we utilize the dangling bonds of the SQDs as a driving force to accelerate KI dissolution to solve its low solubility in nonpolar solvents, thereby allowing K+ and I- to bond to the surface of SQDs. The EB of the SQDs was decreased from 305 to 51 meV because of the attraction of K+ to electrons, meanwhile surface vacancies were passivated by K+ and I-. The Auger and trap recombinations were simultaneously suppressed by this difunctional ligand. The SQD-based light-emitting diode showed a stable pure-red EL peak of 639 nm, an external quantum efficiency of 25.1% with low roll-off, and a brightness of 5934 cd m-2.
Collapse
Affiliation(s)
- Jie Guo
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Mingyuan Xie
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 610054, China
| | - Hangren Li
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Lin Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Linxing Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaoyu Zhang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Jianjun Tian
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
10
|
Cappelletti D, Barbieri M, Aliprandi A, Maggini M, Đorđević L. Self-assembled π-conjugated chromophores: preparation of one- and two-dimensional nanostructures and their use in photocatalysis. NANOSCALE 2024; 16:9153-9168. [PMID: 38639760 PMCID: PMC11097008 DOI: 10.1039/d4nr00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Photocatalytic systems have attracted research interest as a clean approach to generate energy from abundant sunlight. In this context, developing efficient and robust photocatalytic structures is crucial. Recently, self-assembled organic chromophores have entered the stage as alternatives to both molecular systems and (in)organic semiconductors. Nanostructures made of self-assembled π-conjugated dyes offer, on the one hand, molecular customizability to tune their optoelectronic properties and activities and on the other hand, provide benefits from heterogeneous catalysis that include ease of separation, recyclability and improved photophysical properties. In this contribution, we present recent achievements in constructing supramolecular photocatalytic systems made of chromophores for applications in water splitting, H2O2 evolution, CO2 reduction, or environmental remediation. We discuss strategies that can be used to prepare ordered photocatalytic systems with an emphasis on the effect of packing between the dyes and the resulting photocatalytic activity. We further showcase supramolecular strategies that allow interfacing the organic nanostructures with co-catalysts, molecules, polymers, and (in)organic materials. The principles discussed here are the foundation for the utilization of these self-assembled materials in photocatalysis.
Collapse
Affiliation(s)
- David Cappelletti
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Marianna Barbieri
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Alessandro Aliprandi
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Michele Maggini
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| | - Luka Đorđević
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131, Padova, Italy.
| |
Collapse
|
11
|
Zhang Y, Cao Q, Meng A, Wu X, Xiao Y, Su C, Zhang Q. Molecular Heptazine-Triazine Junction over Carbon Nitride Frameworks for Artificial Photosynthesis of Hydrogen Peroxide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2306831. [PMID: 37775094 DOI: 10.1002/adma.202306831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Indexed: 10/01/2023]
Abstract
Revealing the photocatalytic mechanism between various junctions and catalytic activities has become a hotspot in photocatalytic systems. Herein, an internal molecular heptazine/triazine (H/T) junction in crystalline carbon nitride (HTCN) is constructed and devoted to selective two-electron oxygen reduction reaction (2e- ORR) for efficient hydrogen peroxide (H2 O2 ) production. In-situ X-ray diffraction spectra under various temperatures authenticate the successful formation of molecular H/T junction in HTCN during the calcining process rather than physically mixing. The increased surface photovoltage and transient photovoltage signals, and the decreased exciton binding energy undoubtably elucidate that an obvious increasement of carrier density and diffusion capability of photogenerated electrons are realized over HTCN. Additionally, the analyses of in situ photoirradiated Kelvin probe force microscopy and femto-second transient absorption spectra reveal the successful construction of the strong internal built-in-electric field and the existence of the majority of long-lived shallow trapped electrons associated with molecular H/T junction over HTCN, respectively. Benefiting from these, the photocatalytic results exhibit an incredible improvement (96.5-fold) for H2 O2 production. This novel work provides a comprehensive understanding of the long-lived reactive charges in molecular H/T junctions for strengthening the driving-force for photocatalytic H2 O2 production, which opens potential applications for enhancing PCN-based photocatalytic redox reactions.
Collapse
Affiliation(s)
- Yunxiao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528300, P. R. China
| | - Qingxiang Cao
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, 528300, P. R. China
| | - Aiyun Meng
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Xuelian Wu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yonghao Xiao
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chenliang Su
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Qitao Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
12
|
Ji H, Qiao D, Yan G, Dong B, Feng Y, Qu X, Jiang Y, Zhang X. Zwitterionic and Hydrophilic Vinylene-Linked Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Evolution. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37845-37854. [PMID: 37489898 DOI: 10.1021/acsami.3c08250] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Developing effective synthetic strategies as well as broadening functionalities for zwitterionic materials that comprise moieties with equimolar cationic and anionic groups still remains a huge challenge. Herein, we develop two zwitterionic vinylene-linked covalent organic frameworks (Zi-VCOF-1 and Zi-VCOF-2) that are a type of novel hydrophilic material. Zi-VCOF-1 and Zi-VCOF-2 are obtained directly through the convenient Knoevenagel condensation of new sulfonic-pyridinium zwitterionic monomers with aromatic aldehyde derivatives. This is the first report on zwitterionic COFs being constructed by the bottom-up functionalization approach from predesigned zwitterionic monomers. Both Zi-VCOFs exhibit a high photocatalytic hydrogen evolution rate (HER) because of their appropriate optical property and outstanding hydrophilicity. Specifically, Zi-VCOF-1 and Zi-VCOF-2 show photocatalytic HER of 13,547 and 5057 μmol h-1 g-1, respectively. Interestingly, the photocatalytic HER of Zi-VCOF-1 is about 2.68 times of that of Zi-VCOF-2, although they differ by only one methyl group in sulfonic-pyridinium zwitterionic pairs. The photocatalytic HER of Zi-VCOF-1 is not only the highest in the vinylene-linked COFs but also outstanding among the most reported COFs. This is the first application of zwitterionic COFs for photocatalytic hydrogen evolution, which would open a new frontier in zwitterionic COFs and be helpful for the design of other photocatalytic materials.
Collapse
Affiliation(s)
- Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Danyang Qiao
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Beibei Dong
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yu Jiang
- School of Pharmacy, Nantong University, Nantong 226019, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
13
|
Ji H, Li M, Yan G, Qiao D, Dong B, Feng Y, Qu X, Shi J, Zhang X. Thiadiazole-Derived Covalent Organic Framework Macroscopic Ultralight Aerogel. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37487247 DOI: 10.1021/acsami.3c08351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Shaping covalent organic frameworks (COFs) into macroscopic objects for practical application remains a huge challenge. Herein, a new thiadiazole-derived COF macroscopic ultralight aerogel (NNS-VCOF) was prepared through acid-catalyzed aldol condensation between 2,5-dimethyl-1,3,4-thiadiazole and a tritopic aromatic aldehyde derivative. NNS-VCOF aerogel shows extremely low density (ca. 0.020 g cm-3), excellent mechanical properties (compression modulus of 16.65 kPa), thermal insulation properties (low thermal conductivity of 0.03270 W m-1 K-1 at 25 °C), and flame retardancy (quickly self-extinguishing after ignition) due to its three-dimensional sponge-like architecture and special nitrogen heterocyclic framework. To our delight, NNS-VCOF aerogel not only can be used as an outstanding macroscopic material but also shows efficient photocatalytic hydrogen evolution properties in a powder state because of the superhydrophilicity and appropriate optical properties.
Collapse
Affiliation(s)
- Haifeng Ji
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Mengke Li
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Danyang Qiao
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Beibei Dong
- School of Chemistry and Chemical Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Xiongwei Qu
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Jingjing Shi
- School of Science, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Xiaojie Zhang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
14
|
Liu D, Yang X, Chen P, Zhang X, Chen G, Guo Q, Hou H, Li Y. Rational Design of PDI-Based Linear Conjugated Polymers for Highly Effective and Long-Term Photocatalytic Oxygen Evolution. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300655. [PMID: 37000924 DOI: 10.1002/adma.202300655] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/12/2023] [Indexed: 06/19/2023]
Abstract
Constructed through relatively weak noncovalent forces, the stability of organic supramolecular materials has shown to be a challenge. Herein, the designing of a linear conjugated polymer is proposed through creating a chain polymer connected via bridging covalent bonds in one direction and retaining π-stacked aromatic columns in its orthogonal direction. Specifically, three analogs of linear conjugated polymers through tuning the aromatic core and its covalently linked moiety (bridging group) within the building block monomer are prepared. Cooperatively supported by strong π-π stacking interactions from the extended aromatic core of perylene and favorable dipole-dipole interactions from the bridging group, the as-expected high crystallinity, wide light absorption, and increased stability are successfully achieved for Oxamide-PDI (perylene diimide) through ordered molecular arrangement, and present a remarkable full-spectrum oxygen evolution rate of 5110.25 µmol g-1 h-1 without any cocatalyst. Notably, experimental and theoretical studies reveal that large internal dipole moments within Oxamide-PDI together with its ordered crystalline structure enable a robust built-in electric field for efficient charge carrier migration and separation. Moreover, density functional theory (DFT) calculations also reveal oxidative sites located at carbon atoms next to imide bonds and inner bay positions based on proven spatially separated photogenerated electrons and holes, thus resulting in highly efficient water photolysis into oxygen.
Collapse
Affiliation(s)
- Di Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Xuan Yang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Peiyan Chen
- State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province. College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xinling Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - GaoYuan Chen
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Qiwei Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Huan Hou
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, 100083, P. R. China
| | - Yi Li
- Future Science Research Institute, Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310013, P. R. China
| |
Collapse
|
15
|
Zhao Y, Gao J, Yang Z, Li L, Cui J, Zhang P, Hu C, Diao C, Choi W. Efficient Exciton Dissociation in Ionically Interacted Methyl Viologen and Polymeric Carbon Nitride for Superior H 2O 2 Photoproduction. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Yubao Zhao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Jingyu Gao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Zhenchun Yang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Lina Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Jiahao Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Peng Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education & Institute of Environmental Research at Greater Bay, Guangzhou University, 510006 Guangzhou, P. R. China
| | - Caozheng Diao
- Singapore Synchrotron Light Source, National University of Singapore, 117603 Singapore, Singapore
| | - Wonyong Choi
- KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), 58330 Naju, Korea
| |
Collapse
|
16
|
Chen T, Weng B, Lu S, Zhu H, Chen Z, Shen L, Roeffaers MBJ, Yang MQ. Photocatalytic Anaerobic Dehydrogenation of Alcohols over Metal Halide Perovskites: A New Acid-Free Scheme for H 2 Production. J Phys Chem Lett 2022; 13:6559-6565. [PMID: 35830601 DOI: 10.1021/acs.jpclett.2c01501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photocatalytic H2 evolution from haloid acid (HX) solution by metal halide perovskites (MHPs) has been intensively investigated; however, the corrosive acid solution severely restricts its practical operability. Therefore, developing acid-free schemes for H2 evolution using MHPs is highly desired. Here, we investigate the photocatalytic anaerobic dehydrogenation of alcohols over a series of MHPs (APbX3, A = Cs+, CH3NH3+ (MA), CH(NH2)2+ (FA); X = Cl-, Br-, I-) to simultaneously produce H2 and aldehydes. Via the coassembly of Pt and rGO nanosheets on MAPbBr3 microcrystals, the optimal MAPbBr3/rGO-Pt reaches a H2 evolution rate of 3150 μmol g-1 h-1 under visible light irradiation (780 nm ≥ λ ≥ 400 nm), which is more than 105-fold higher than pure MAPbBr3 (30 μmol g-1 h-1). The present work not only brings new ample opportunities toward photocatalytic H2 evolution but also opens up new avenues for more effective utilization of MHPs in photocatalysis.
Collapse
Affiliation(s)
- Taoran Chen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Bo Weng
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Suwei Lu
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Haixia Zhu
- Hunan Key Laboratory of Nanophononics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China
| | - Zhihui Chen
- Hunan Key Laboratory of Nanophononics and Devices, School of Physics and Electronics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China
| | - Lijuan Shen
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| | - Maarten B J Roeffaers
- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Min-Quan Yang
- College of Environmental Science and Engineering, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|